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Abstract 

The aim of the present paper is to show and validate an innovative method, developed by authors to evaluate, in frequency 
domain, the fatigue damage of mechanical components modeled by modal approach and subjected to random dynamic loads. The 
authors, in particular, have theoretically demonstrated that the exact statistical properties (spectral moments) of the PSD 
functions matrix of stress tensor of the model are obtainable only from PSD functions matrix of its modal coordinates and from 

PSD functions matrix of inputs. To show the capabilities of this new approach and to verify the obtainable speeding up of the 
evaluation process two test cases are analyzed and discussed. 
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1. Introduction 

The evolution, in last three decades, of the techniques of analysis and evaluation of fatigue damage in frequency 
domain of components subjected to random loads has brought this kind of approach to be an established feature in 

the scenario of fatigue design.  

Even if the attention was addressed only to fatigue damage evaluation, starting from works of Whirsching [1] or 

Bendat [2], it is possible to notice a great progress in the approaches developed to evaluate load spectra or fatigue 

damage directly from the frequency domain representation of the components of stress state tensor, developed from 

theoretical, numerical or experimental point of view [3-24]. 

Whatever consolidated criteria is considered, it assumes to have a single stress power spectral density (PSD) 

function [2, 25-26] as input (i.e. uniaxial stress state). To extend the capabilities of this kind of approach to 

multiaxial stress states, a lot of criteria were developed to adapt results and methods, designed for uniaxial stress 

conditions, to multiaxial ones, obtaining encouraging results [27-37]. 

Starting from a single stress PSD function, so called direct [3,8-10,13,22], correction coefficients [1,7,11-12,14], 
and indirect [21] criteria allow to obtain an evaluation of the load spectrum and of the cycles probability density 

function (pdf) or to, directly, assess the damage, by adopting a damage cumulation rule, such as the linear Palmgren-

Miner one [38]. 

The aim of the present paper is to show and validate an innovative method, developed by authors to evaluate, in 

frequency domain, the fatigue damage of mechanical components modeled by modal approach and subjected to 

random dynamic loads. 

In previous papers, the authors have focused their attention on the numerical evaluation of the stress state and of 

the associated fatigue damage of mechanical components subjected to random dynamic loads; this activity was 

developed starting from the hypotheses of mechanical systems modeled within a multibody code (MBS) and of 

component/s modeled by using modal approach [16-18, 39-40]. From these hypotheses, the analysis of the dynamic 

behavior of the component, when performed in the frequency domain, was assumed to have the system 

representation expressed in a linearized form, as a state space system [2,25], having as inputs whatever loading 
condition and as outputs the modal coordinates of the component. The latter were associated with the corresponding 

mode shapes (i.e. stress mode shapes), previously obtained in the component mode synthesis process, carried out in 

any finite element analysis (FEA) environment. This utility is now implemented in all the major MBS codes, also 
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thanks to the research activity of the authors themselves [16,39]. This hypothesis, apparently restrictive, allows to 

tackle the analysis of non-linear system too, in  case of random load conditions [16], by always considering the 

linear behavior of the component (modal approach). In a previous work the authors have shown that it is possible to 

successfully deal with these conditions and, therefore, to well recover the matrix of power spectral density functions 

(PSDs) [16] of the stress tensor of a generic element of the FEA model, by combining time domain dynamic analysis 

with the previously cited one. 
The reference frequency domain procedure to evaluate damage was and is a method that, by looping among all 

elements, reconstructs the power spectral density matrix of the stress tensor, a matrix     , and then summarizes its 
content in a single power spectral density function [39,4,26,29-31], for example by using Preumont’s approach, that 

can be subjected to any frequency criterion. When the stress state satisfies the hypothesis of Gaussian stationary 

ergodic signal and is synthesized by a single signal, the literature shows a whole series of approaches that, starting 

from its power spectral density function (PSD) and the relative spectral moments, allow to directly obtain an 

estimation of the damage [3-24]. Dirlik’s one [3] is considered by authors as reference criterion, which, if compared 

to the other ones, shows a greater applicability to a wide range of PSDs [11-12,23]. A lot of approaches then try to 

adapt results and methods developed for uniaxial stress conditions to multiaxial stress states with encouraging results 

[27-31,33,35,36-37]. 

One of the aims that the research on fatigue arises is to provide the designer with tools that are able to understand 

the physical behavior of the phenomenon correctly without huge computational costs. The frequency domain stress 

state recovery (dynamic analysis step) and the use of the above approaches (results post-processing step) allow to 

reach this aim, especially if their use is oriented to the first stage of the mechanical system design process and, in 
particular, to the identification of components critical locations. 

In order to speed up as much as possible the frequency domain method, the authors have undertaken a further 

research activity aimed to minimize calculation time and errors in the damage evaluation of flexible components by 

FEA or multibody (MBS/Flex) approach[39, 18].  

This paper demonstrates the capabilities of an innovative stress recovery and statistical content evaluation, 

especially for finite element analysis calculation environments (FEA). First of all the authors briefly describe the 

state of the art of performing dynamic numerical analysis in frequency domain. By addressing and illustrating the 

theoretical problems in using the modal approach, focusing on finite element analysis, a new dynamic simulation 

procedure, adoptable and easily implementable by FEA codes, is shown. The authors show the theoretical 

demonstration - of how the fatigue damage of all or  of a subset of elements of the model can be assessed with great 

speed and without error from the knowledge of a set of halfway results of the classical dynamic analysis, without 
necessarily to recover the power spectral density function matrix (PSD) of the stress tensor of each element. The 

paper- theoretically demonstrates as the statistical properties (spectral moments [2,25-26]) of the PSD matrix of the 

modal coordinates of the model, together with the stress mode shapes, are necessary and sufficient to achieve the 

statistical properties of the stress tensor PSD functions, and thus to allow, for all the so called “direct” approaches 

(based on the spectral moments of the stress PSD function), to assess the damage with no margin for error.  

Two numerical test cases are presented to show the capabilities of this new approach. For every example a FE 

shell model of the structure, loaded by single point base motion, is considered. The dynamic analysis was conducted 

in frequency domain by classical modal approach and, for each element, starting from the PSD function of the 

equivalent stress (Preumont’s approach), the damage was obtained by a frequency domain criterion (Dirlik’s one). 

Dirlik’s damage was considered the reference damage value for the frequency approach. Previous results are 

compared with those obtained with the developed and proposed procedure, with the aim to show its goodness (zero 

error if compared with frequency domain reference results) and how much faster it is (two hundred times faster than 

the frequency domain reference approach). Two frequency domain criteria were adopted: Dirlik’s one and Bands 

method, a criterion proposed by authors in a previous paper [22]. 

2. Dynamic modelling and simulation 

If a generic component and its FEA model, characterized by   degrees of freedom (dofs), is considered, the 

equation of motion is, in general, expressed by the following: 



  

 

                (1) 

where   is the mass matrix (    ),   is the damping matrix (    ),   is the stiffness matrix (    ),   is the 

vector of forces (    ) and   is the displacement vector (    ).  

It’s possible to rewrite equation (1) by rearranging the degrees of freedom, and consequently vectors   and   and 

the  ,   and   matrices, by separating the   constrained (boundary) degrees of freedom, denoted by the subscript  , 

and the   free (internal) degrees of freedom, denoted by the subscript  , as described in (2). 
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If the dynamic analysis is carried out by adopting a modal representation of the system [26] the displacements of 

the internal dofs   are obtainable by the evaluation of the modal coordinates  , which are the unknowns of the 

reduced modal system. This change of coordinates is described by the following relations for the internal or free 

degrees of freedom: 

             (3) 

                      (4) 

The equation (3) refers to forced vibration instead equation (4) to motion base condition. 

In this relations       represents the physical displacement of the internal or free degrees of freedom of the model 

at time   (    ),   is a transformation matrix named modal (   ) with   the number of modes, generally less 

than or equal to  .      represents the set of coordinates defined by the transformation (modal coordinates or 

Lagrangian coordinates) of size (    ). The matrix   . is a (    ) matrix named constraint modes [41] and it is 

equal to the product        
      . Each    column represents the deformed shape of   dofs when an unitary 

displacement at the j-th   dof is imposed and the other   degrees of freedom are constrained (zero 

displacement/rotation). 

For loading condition characterized by force inputs and by modal transformation the previous time domain 

motion equations (2) become eqn. (5):  
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where the      term has dimension (    ). 
Instead, for loading condition characterized by motion inputs the motion equations become eqn. (6). 
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The                matrix is named modal participation factors matrix and it is denoted by  . 
To translate the problem into frequency domain, it is convenient to calculate the frequency response between the 

  Lagrangian coordinates of the model (outputs) and the   inputs, that is the matrix of complex functions      . 

This matrix, for the generic frequency  , assumes the dimensions (    ). The FRF matrix in terms of stress is 

obtainable as a linear combination between       and the stress mode shapes. 

The    matrix is evaluable by the following equation: 
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where the term    is a       matrix defined by the following: 
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that is the frequency response function of a sdof (single degree of freedom) system of unitary mass,    natural 

frequency and   damping ratio. 

The matrix   (      assumes a formulation (i.e. motion inputs) and dimensions (i.e.  ) that depend from the 

inputs type. In the case of force excitation is represented by the following: 

     (9) 

for imposed motion condition by the following: 

    (10) 

If equations (3) and (4) are true for the displacement the same approach is true for the stress recovery of a single 

element in time domain, if the mode shapes of the same are expressed in terms of stress. 

The equations (3) and (4) become the following ones: 

             (11) 

       
              (12) 

where   is the stress tensor at   instant (    ),   
  is the stress constraint modes matrix (    ) and    is the 

stress modal shapes one (   ). 
To translate the time domain equations (11) and (12) into the frequency domain, Fourier Transform operator 

(FT) [5, 7] must be adopted: 

           
(13a) 

       
           (13b) 

in which      is the FT of stress tensor,   is the FT of modal coordinates, that is a matrix of dimensions (    ). 

The symbol      represent FT operator.        is the FT of constraints acceleration, a matrix of dimensions (    ). 

      is the FT of constraints displacement, a matrix of dimensions (    ) and      is the FT of stress tensor, a 

matrix of dimensions (    ). By definition [5, 7], at each frequency, the stress PSD matrix    (    ) can be 
obtained by the following: 

               (14) 

where      is the complex conjugate operator. 

The (14) can be rewritten by using the (13): 
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Recalling that                
 , the (15) becomes: 
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in which the PSD matrices of inputs    (    ) and of modal coordinates    (   ) are defined by the 

following equations. For acceleration inputs condition    . 

                 
 
 

                 
  

(17a) 

(17b) 

Equation (16) could be used to analyze force inputs condition too, by simply neglecting the static contribution to 

the stress state and considering only its first term: 

               (18) 

where    is calculated by the (17b),    is defined by (7), (8) and    by the following: 

               
  (19) 

with       the FT of forces vector (    ). For load inputs condition    has dimensions (    ) with    . 
Usually only few internal dofs are loaded and   is less than  . 

The result of this first part of the paper is the proposal to implement in FEA codes a dynamic analysis procedure 

for the evaluation of the stress state by PSD frequency analysis which identifies the following steps and obtains 

halfway results, directly accessible by the user: 

- definition of the PSD matrix    of the inputs, 

- constrained modal analysis aimed at obtaining the natural frequencies    of the system and the stress modal 

matrix    and of any other output is desired as the output of an element subset or of all elements, 

- static analyses with imposed unitary displacement for the evaluation of the stress matrix   
  (analyses needed for 

accelerations input) and of any other output is desired as the output of an element subset or of all elements, 

- evaluation of the FRF matrix of modal coordinates   , 

- evaluation of the PSD matrix of modal coordinates   . 

These results could be post or directly processed into the FEA code, by means of relation (16) and/or (18), or 

accessible by the user as an halfway result and exportable for FC codes, in which it might be useful to implement 

these relations. If compared with the heavy computational effort of the fatigue codes, this approach would avoid the 

FEA code to evaluate an high number of frequency response functions matrices, expressed in terms of stress    

with dimensions (    ), equal to the number of the elements. It only needs the calculation of a single matrix    

(    ), and allows to obtain stress PSD matrix    (    ) of the elements through trivial matrix products, when the 
terms showed into the previously steps are known. 

The result of a generic FE frequency domain dynamic analysis will be, for the generic j-th element (of a finite 

elements model), a matrix (6  6)    of power spectral density functions, representative of a general multiaxial stress 

state [39]. the relations, respectively for forced vibration and motion base conditions, to obtain    are the following: 
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This matrix    is represented in equation (20) and contains the auto-spectra of each of the six components of the 

stress tensor (21) in the main diagonal and the relative cross-spectra in terms outside of it. This is true whatever 

dynamic analysis is performed and whatever inputs type is considered. 

Obtaining a PSD stress tensor such as that shown in (20) highlights a fundamental problem:  

- how to utilise a tensor such as the matrix   () that, in general, in addition to the auto-correlation terms, 
presents terms of cross-correlation between the stress tensor’s components, in the consolidated frequency 

domain evaluation criteria for fatigue damage, which limit is to consider a single stress random process? 

Currently, this result is managed, or directly by the FEA codes or by those developed for the evaluation of the 
fatigue behaviour (FC), providing the user the possibility to post-process, according to the criteria mentioned before, 

a single function of the matrix (20), a particular combination of the components of this (i.e. by applying von Mises' 

rule), the PSD function of one of the three stress principal components. 

The answer to the above question is of particular interest especially analysing both the theoretical [26-27] and 

experimental [28] results obtained by several researchers. These results demonstrate that the cross-correlation terms 

of the PSD stress matrix       have a strong impact on the calculated fatigue life. 

According Lagoda and Macha [27], all of the 36 PSD functions of the matrix (20) should be appropriately 

considered, without neglecting the terms outside the main diagonal [39]. To this end, as shown in papers [16,35,39], 

the approach proposed by Preumont [4,26,29-31] (equivalent von Mises stress, EQVM) could be considered an 

useful procedure to synthesize into a single PSD function the full stress state. Moreover, it could be easily 

implemented in any FEA code and used starting from the PSD stress matrix       of the element, but it is not 

tracked by the authors in any of the most commonly used codes. 
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The PSD function of the equivalent von Mises stress of Preumont,      , is shown by the following relation: 

                   
(22) 

where    is: 
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3. Proposed procedure for damage estimation 

The principal aim of the paper is to assess the elements damage by avoiding to evaluate    matrix for each one 

but by only analyzing, from a statistical point of view, PSD matrix    and, where it is necessary, PSD matrix   . 

This would allow to considerably speed up the damage evaluation process and, therefore, to emphasize and 



  

 

disseminate the frequency approach as fatigue assessment tool very useful in the first phase of the design process. In 

previous work [18,39] the authors had begun to walk this road with good results but having to accept a not always 

negligible margin of error on the evaluation of the damage.  

If motion input condition is considered the stress PSD matrix of the j-th element is provided by (8). 

To better understand the following steps an uniaxial stress condition is considered, that is, the    matrix has a 

single component, represented by the power spectral density function   . In this case the spectral moments of the 

PSD function are evaluable by the following equation (12). 

      

 

 

      

             
 

 

 

            
    

      

  
          

     

            
  

  
          

      
       

  

  
      

 
             

(12) 

where the symbol       is the “real part” operator. Only real parts of all the terms are considered because    

itself is real and result of a linear combination of real terms (the real part of the linear combination is equal to the 

combination of the real parts). 

In the case of multiaxial stress condition, if the Preumont approach is adopted, it is possible to demonstrate the 

following relationship: 

          
    

 

 

 

                       
 

 

 

            
    

      

  
          

       

              
  

  
          

      
       

  

  
      

 
               

(13) 

that is obtainable by considering the following relation: 
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In (14) it is sufficient to take the real parts of the    because the trace operator contains terms such as:        

                    . Because of symmetry conditions               and                the previous sum is 

only real. It can be concluded that the imaginary parts of the stress cross-spectra do not affect the values of   . 
Furthermore, it should be noted that the real part of    , linear combination of matrices, is a linear combination of 

the real parts of matrices   ,   ,    end   , introduced below (15). 

The equation (13) could be rewritten as the following equation (15): 

                           
        

             
      

             (15) 

in which the matrices   ,   ,    and    (named spectral matrices, of   order) are evaluated only once (16), by 

not considering the j-th element that has to be processed but only the system outputs (that is the Lagrangian 

coordinates) and, in general, the inputs characteristics. 
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Finally, it is possible to calculate the spectral moments of stress state without error for each element by using 

simple matrix operations (see eqn. 15), once these matrices (see eqn. 16) are evaluated. 

It is worth to note that the described approach can be used for every multiaxial criterion (i.e. critical plane) that is 

used to evaluate a single real PSD function of the stress by linear operations between    components. The choice of 

Preumont’s was done because it gives results with an acceptable error (especially for ductile materials where 

bending and torsion fatigue curves have the same reverse slope and fatigue strength is scaled by   ) [36-38]. 

This procedure speeds up the calculation because the number of integrals (spectral moments)   to be calculated is 

reduced. If the model has N elements,   modal coordinates, and   inputs, the number of integrations needed for 

damage calculation by the proposed approach is given by the following relation: 

                  (17) 

where   is the number of spectral moment needed for the adopted frequency method (i.e.     for Dirlik’s 

criterion and     for Bands method [22].). The computational time is reduced as the following inequality shows: 

                    (18) 

in which the second terms represents the number of integrations needed by the classical and reference approach. 

The equation (18) is satisfied because     and    . For example if      inputs,      normal modes 

and       elements are considered, the integrals to be evaluated by the proposed approach are 14.4·103, while 
4·106 are those needed by the classical one. Moreover, it has to be considered that the proposed approach needs the 

evaluation of only (     frequency response functions     
 and       PSDs     

 . The standard method needs of 

        frequency response functions     
 and consequently N times     6 )  stress PSDs      and N syntheses of 

these functions into a single PSD function, for example by von Mises’ rule or Preumont approach. So the speed up is 

much more evident than the only comparison in terms of spectral moments evaluation. 

Finally, it has to be highlighted that for force excitation equation (15) becomes: 

                           (19) 

For this kind of problems the proposed approach is faster because the integrals to be calculated are        and 

equation (18) becomes: 

         (20) 

If the previous example is considered, only 1·104 integrals have to be evaluated instead of 4·106. 

It is worth noting that the proposed approach is a clever rewriting of the classical approach and therefore does not 

cause any error or approximation with respect to the standard procedure, shown in the previous section. In figure 1 

the flow chart of the proposed procedure is compared with that of the classical approach. 

4. Damage evaluation procedures 

In the present paper two test cases are analyzed and two fatigue damage evaluation procedures are used: Dirlik’s 

method [3] and Bands method [22]. The first approach is based on four spectral moments and the second one on only 



  

 

one of these. The first method is, moreover, the standard for a great number of researcher and in this case too 

represents the referment point for the judge on the others frequency domain approacches. 

Obviously, starting from the exact evaluation of the stress PSD function spectral moments, all the frequency 

domain criteria based on spectral moments are adoptable. 

 

Equation (21) shows Dirlik’s approach. 
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where: 
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From the knowledge of the stress range probability density function and of the fatigue strength curve of the 

material (i.e. in the stress/cycles domain, S-N) [38], it is possible to calculate the fatigue damage by employing a 

cumulative damage law (i.e. linear cumulative damage law) [38]. 

By adopting, for the S-N curve, the following relation (22):  

   
 

 
 (22) 

and knowing the probability density function of the stress range, is possible to write the fatigue damage   by 

relation (23):  

  
    

 
             

 

 

      (23) 

where    is the number of cycles per time unit, that it is equal to      
  

  
 and   is the duration of random 

signal application characterized by the assigned PSD function. 

 

The second one was developed by authors [22] to speed up the damage evaluation step by using only the first 

spectral moment of the stress PSD function. Braccesi et al. in [22] proposed a method to estimate the fatigue damage 

of a wide-band random process in the frequency domain. It is based on the same starting idea of Benasciutti’s one 

[36-38] (even if developed and applied in different application scenarios, i.e. uniaxial and multiaxial conditions) that 

is on the decomposition of a Power Spectral Density (PSD) into narrow-band frequency components, sufficiently 

narrow to be associated to a Rayleigh distribution of stress cycles amplitude. 



  

 

From a procedural point of view if the Power Spectral Density function is divided into   bands, each i-th band 

characterized by a central frequency   ,   Narrow Band independent random variables are obtained. Each band and 

the relative random process has a different cycles numerousness, function of   . The combination of the   processes 

is possible only if these processes have the same cycles numerousness. In order to obtain this condition, the bands, 

that is the relative central frequencies (  ), are “moved” to an arbitrary reference band, that is to a reference central 

frequency (    ).  

By performing this operation,   Narrow Band independent random processes, that takes place at the same 

frequency, are obtained. The distribution of cycles of the combination process will then be a Rayleigh distribution, 

with a cycles number equal to the reference frequency     .  

The formulation of the total fatigue damage is given for this approach by the following: 
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in which: 
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being   the Γ function and   and   parameters of the Wöhler’s curve, expressed in Eq. (26): 

   
  
 
 
 

  

 (26) 

where   is the number of loading cycles,    is the amplitude of the applied loading (         ,   is the 

curve slope and   is the curve intercept. 

The advantage of the this formulation lies, however, in its simplicity: it is sufficient to correct the original Power 

Spectral Density function with a coefficient that depends on the frequency and to calculate the PSD area to evaluate 

the damage. 

5. Test cases 

To demonstrate the efficiency of the proposed modal procedure two FE models were analyzed. 

The models were built by a commercial FE code (HyperMesh©). 

As first example, a simple portal was considered [24]. A 2D model of the structure was realized, by using shell 

elements with 3 or 4 nodes and 3 dofs per node, characterized by 4791 elements, 5283 nodes, 15849 dofs, clamped 

to the lower extremes (fig.2). It is a 1.0 × 1.0 m portal with beams width of 0.6 m and thickness of 4 mm, realized in 

aluminum alloy, with elastic modulus of 0.7·1011 N/m2 and mass density of 2600 kg/m3. 

A single point motion base load condition is considered. An acceleration PSD function was applied to load dofs 

along y direction (fig. 2). It is a flat PSD with constant amplitude of 83.13 (g2/Hz) between 10 to 2000 Hz (fig.3). A 

modal coordinates subset of 10 modes is considered (in figure 4, left column, the first four mode shapes are shown; 

in table 1 the relative natural frequencies are reported). A Wöhler curve S   N  was adopted, in which S represents 

the alternating stress component and N the number of cycles to failure. The strength curve of the choose material is 

characterized by a single constant slope. The material’s constants are   800 MPa, and    0.10.  

The reference procedure and the proposed one were performed in MATLAB© starting by input PSD and FEA 

intermediate results as previously defined. 

The comparison, first of all, was performed in terms of spectral moments of the equivalent stress PSD function 

for each element and, then, in terms of damage. As theoretically demonstrated, a zero error is measured in the 

evaluation of all moments of each element. This means that zero error is obtainable for damage evaluation by 

adopting whatever damage evaluation methods based on spectral moments. 
In order to allow to verify this affirmation the stress state of a single element (ID 1678) is analyzed. This element 

is the most damageable. The stress PSD of this element, obtainable by the standard approach [39,26] (see paragraph 



  

 

no.2), is represented in figure 5. In table 2 the relative spectral moments are reported. In table 3 the spectral 

moments of PSD matrix of Lagrangian coordinates of the model are reported and in figure 6 some functions of the 

first modal coordinates are represented. Moreover, in table 4 the modal stress shapes of the above element are 

shown. From these data (   and   ) is possible to immediately recover the same stress spectral moments of the 

first row of table 2 by the relation (19), as it is observable in the second row of the same table, verifying the 

goodness of the previous affirmation. 

The analysis of results shows that the difference between the reference approach and the proposed one is evident 

in terms of computation time. For this test case    ,      and       , and equation (20) shows that the 

integrals to be evaluated by the proposed approach to obtain the stress spectral moments for all the elements are 400 

or 100 respectively if Dirlik’s (      or Bands method is used (    , while 19164 are those needed by the 

reference one. 

Consequently, the damage of the whole model was evaluated both by Dirlik’s and Bands method and adopting 

Miner’s rule to obtain damage by SN fatigue approach. This constitutes an ulterior test bench for the Bands 

method, compared to the “standard” approach (Dirlik’s).  

In terms of computational time (see table 5) this means that to obtain the damage for the whole model the 

reference approach plus Dirlik’s method needs 196 s (about three minutes) and the proposed one, plus Dirlik’s 

method too, 0.9 s, two hundred times faster. Moreover, if Bands method is used the computational times decreases 

to 0.2 s, one thousand times faster. 

This ratio becomes more significant if translated into industrial test case as the following example shows. This 

results also confirms the extremely speeding up of the proposed procedure respect the standard one, obtainable 

without introducing any error in the evaluation of the stress spectral moments. 

As concern, instead, the comparison between Dirlik’s and Bands method, figure 7 shows a comparison in terms 

of absolute damage values. Damage maps are overlapping both in a global and in a local representation, this last 

focused on the most damageable zone. A numerical comparison is reported in table 6 in which, for the ten most 

damaged elements, damage values, obtained by the two methods, are shown together with the stress PSD function 

spectral moments. 

As second example, a pedestrian bridge was considered. A 3D model was realized (fig. 8), by using shell 

elements with 3 or 4 nodes and 6 dofs per node, characterized by 77333 elements, 79932 nodes, 479592 dofs, 

constrained as figure 8 shows. It is a 4.0 × 0.92 × 0.80 m bridge, realized in steel, with elastic modulus of 2.1·1011 

N/m2 and mass density of 7800 kg/m3. 

A single point motion base load condition is considered. An acceleration PSD function was applied to load dofs 

along y direction (see figure 9) in a range between 3 to 500 Hz. A modal coordinates subset of 15 modes is 

considered (in figure 4, right column, the first four mode shapes are shown; in table 1 the relative natural 

frequencies are reported). A Wöhler curve S   N  was adopted, in which S represents the alternating stress 

component and N the number of cycles to failure. The strength curve of the chosen material is characterized by a 

single constant slope. The material’s constants are   556 MPa, and    0.084.  

As for the previous test case, the reference procedure and the proposed one were performed in MATLAB© 

starting by input PSD and FEA intermediate results, as previously defined. 

Also for this example, the comparison was performed in terms of spectral moments of the equivalent stress PSD 

function for each element and then in terms of damage. Zero error is measured in the evaluation of all the moments 

of each element. 
The stress state of the most damageable element (ID 67357) is analyzed. The stress PSD of this element, 

obtainable by the standard approach, is represented in figure 10. In table 7 the relative spectral moments are 

reported. In table 8 the spectral moments of PSD matrix of Lagrangian coordinates of the model are reported and in 

figure 11 some functions of the first modal coordinates are represented. Moreover, in table 9 the modal stress shapes 

of the above element are shown. From these data (   and   ) is possible to immediately recover by eqn. (18), the 

same stress spectral moments obtainable by reference approach, as it is observable in table 7. 

The analysis of results shows that the difference between the reference approach and the proposed one is evident 

in terms of computational time. For this test case    ,      and        , and equation (20) shows that the 

integrals to be evaluated by the proposed approach to obtain the stress spectral moments for all the elements are 900 

or 225 respectively if Dirlik’s (      or Bands method is used (    , while 309332 are those needed by the 



  

 

reference one. 

Consequently, the damage of the whole model was evaluated both by Dirlik’s and Bands method and adopting 

Miner’s rule to obtain damage by SN fatigue approach. This constitutes an ulterior test bench for the Bands 

method, compared to the “standard” approach (Dirlik’s).  

In terms of computation time (see table 10) this means that to obtain the damage for all model the reference 

approach plus Dirlik’s method needs 1594 s (about half an hour) and the proposed one, plus Dirlik’s method too, 

13.3 s, one hundred times faster. Moreover, if Bands method is used the computational times decreases to 1.7 s, nine 

hundred times faster. 

This results also confirms the extremely speeding up of the proposed procedure especially if combined with the 

adoption of a frequency domain evaluation method that use few spectral moments (i.e. Bands method). 

As concern, instead, the comparison between damage maps, obtained by Dirlik’s and Bands method, figures 12 

and 13, it shows the overlapping of them, both in a global and in a local representation, this last focused on the most 

damageable zone. A numerical comparison is reported in table 11 in which, for the ten most damaged elements, 

damage values, obtained by the two methods, are shown together with the stress PSD function spectral moments. 

 

6. Conclusions  

In this paper an innovative procedure, developed by authors to obtain exact values of spectral moments of stress 

PSD functions of a generic finite element model modelled by modal approach, is shown. The innovation consists in 

a smart use of the Lagrangian coordinates and inputs PSD functions matrices that very deeply accelerates the 

evaluation process, determining a speeding up that reduces the standard computational times among four and nine 

hundred times. 

Starting from PSD input matrix, intermediate frequency analysis results, such as PSD matrix of Lagrangian 

coordinates and stress shapes of normal and constraint modes, it is possible to obtain the exact values of the stress 

spectral moments of all elements and, by adopting whatever direct frequency domain approach based on these, the 

exact values of the fatigue damage. This procedure is very fast and easily implementable in any commercial FE 

codes. 

In this paper a detailed verification of this approach is shown. By using two different structures and relative FE 

models the efficiency of the above procedure and of some frequency domain damage evaluation methods was 

verified both in terms of damage and of computational times. In particular, a new frequency domain method, 

proposed by authors in a previous paper, was compared to the consolidated Dirlik’s one. The comparison has shown 

the goodness of it, especially in terms of computational times. 
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Figure 1 – Comparison between flow charts of reference and proposed procedure 

Figure 2 – Representation of FE model of test case no.1 and of the most damageable element (ID = 1678)  

Element ID 1678 



  

 

 

 

 

 

  

Figure 3 – PSD function of the acceleration input - test case no.1 
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Figure 4 – Mode shapes of FE models (test cases no.1 and no.2) 
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Figure 5 – PSD function of the equivalent stress obtained by standard approach for the most damageable 

element (ID = 1678) - test case no.1 

Figure 6 – PSD functions (autospectra) of the first three Lagrangian coordinates - test case no.1 
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Element ID 1678 

Element ID 1678 

Figure 7 – Comparison in terms of absolute damage values between Dirlik’s (left figures) and Bands (right 

figures) method. Damage maps are shown both in a global (upper figures) and in a local (bottom ones) 
representation, this last focused on the most damageable zone (model upper left corner) - test case no.1 



  

 

 

  

Figure 8 – Representation of FE model of test case no.2 and of the most damageable element (ID = 67357)  

Element ID 67357 
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Figure 9 – PSD function of the acceleration input - test case no.2 
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Figure 10 – PSD function of the equivalent stress obtained by standard approach for the most damageable 

element (ID = 67357) - test case no.2 

Figure 11 – PSD functions (autospectra) of the first three Lagrangian coordinates - test case no.2 



  

 

 

 

 

  

Element ID 67357 

Figure 12 – Comparison in terms of absolute damage values between Dirlik’s (upper figure) and Bands (bottom 

figure) method. Damage maps are shown in a global representation - test case no.2 



  

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
  

Figure 13 – Comparison in terms of absolute damage values between Dirlik’s (left figure) and Bands (right 

figure) method. Damage maps are shown in a local representation, this last focused on the most damageable 

zone (model upper left structural node) - test case no.2 
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Table 2. Spectral moments of equivalent stress PSD function (Element ID = 1678) – test case no. 1 

Procedure type             

 [MPa2
] [MPa2·Hz] [MPa2·Hz2

] [MPa2·Hz4
] 

Reference Procedure 2.219·10
4
 7.968·10

6
 5.612·10

9
 6.116·10

15
 

Proposed Procedure  2.219·10
4
 7.968·10

6
 5.612·10

9
 6.116·10

15
 

 

Table 1. Natural Frequencies of FE models (test cases no.1 and no.2) 

Procedure type                                         

 [Hz] [Hz] [Hz] [Hz] 

Test case no. 1 48.9 186 308 335 

Test case no. 2 4.26 15.20 17.10 32.10 

 

 



  

 

 

Table 3. Spectral moments of PSD matrix of Lagrangian coordinates –test case no. 1 

                                  

   1.009E-14 -1.444E-11 -1.232E-17 7.368E-12 -1.582E-17 -2.992E-13 -1.374E-17 -2.109E-12 -1.928E-17 -4.479E-13 

   -1.444E-11 3.249E-03 8.008E-11 -3.378E-05 9.849E-12 1.115E-07 3.164E-12 1.482E-07 -6.034E-13 -5.104E-08 

   -1.232E-17 8.008E-11 8.748E-16 -3.427E-10 2.419E-17 2.836E-13 9.197E-18 8.370E-13 4.704E-18 5.791E-14 

   7.368E-12 -3.378E-05 -3.427E-10 3.070E-04 -1.897E-11 -2.161E-07 -6.939E-12 -6.340E-07 -3.658E-12 -4.852E-08 

   -1.582E-17 9.849E-12 2.419E-17 -1.897E-11 1.776E-15 1.091E-11 2.062E-16 1.287E-11 6.843E-17 1.010E-12 

   -2.992E-13 1.115E-07 2.836E-13 -2.161E-07 1.091E-11 7.121E-07 1.463E-11 6.057E-07 2.775E-12 3.872E-08 

   -1.374E-17 3.164E-12 9.197E-18 -6.939E-12 2.062E-16 1.463E-11 1.651E-15 7.202E-11 2.656E-16 3.380E-12 

   -2.109E-12 1.482E-07 8.370E-13 -6.340E-07 1.287E-11 6.057E-07 7.202E-11 4.470E-05 1.731E-10 1.689E-06 

   -1.928E-17 -6.034E-13 4.704E-18 -3.658E-12 6.843E-17 2.775E-12 2.656E-16 1.731E-10 4.124E-15 5.043E-11 

    -4.479E-13 -5.104E-08 5.791E-14 -4.852E-08 1.010E-12 3.872E-08 3.380E-12 1.689E-06 5.043E-11 2.392E-06 

 

                                  

   4.828E-13 -1.239E-08 -7.413E-15 4.436E-09 -1.079E-14 -2.142E-10 -1.024E-14 -1.671E-09 -1.605E-14 -3.899E-10 

   -1.239E-08 5.832E-01 6.058E-09 -4.271E-04 -1.954E-08 -4.322E-04 -2.208E-08 -3.902E-03 -3.950E-08 -1.000E-03 

   -7.413E-15 6.058E-09 2.598E-13 -1.043E-07 -7.836E-15 -2.577E-10 -1.510E-14 -2.993E-09 -3.208E-14 -8.448E-10 

   4.436E-09 -4.271E-04 -1.043E-07 9.931E-02 2.968E-09 1.423E-04 8.947E-09 1.853E-03 2.023E-08 5.383E-04 

   -1.079E-14 -1.954E-08 -7.836E-15 2.968E-09 1.128E-12 6.864E-09 1.066E-13 1.265E-09 -3.875E-14 -1.653E-09 

   -2.142E-10 -4.322E-04 -2.577E-10 1.423E-04 6.864E-09 5.399E-04 1.119E-08 3.419E-04 4.255E-10 -2.054E-05 

   -1.024E-14 -2.208E-08 -1.510E-14 8.947E-09 1.066E-13 1.119E-08 1.435E-12 6.013E-08 1.586E-13 5.077E-10 

   -1.671E-09 -3.902E-03 -2.993E-09 1.853E-03 1.265E-09 3.419E-04 6.013E-08 4.711E-02 1.810E-07 1.475E-03 

   -1.605E-14 -3.950E-08 -3.208E-14 2.023E-08 -3.875E-14 4.255E-10 1.586E-13 1.810E-07 4.997E-12 6.110E-08 

    -3.899E-10 -1.000E-03 -8.448E-10 5.383E-04 -1.653E-09 -2.054E-05 5.077E-10 1.475E-03 6.110E-08 3.237E-03 

 

                                  

   2.451E-11 1.034E-07 -1.140E-13 8.861E-08 -9.002E-13 -2.474E-08 -1.520E-12 -3.567E-07 -4.510E-12 -1.383E-07 

   1.034E-07 1.116E+02 3.996E-06 -1.695E+00 -2.224E-06 -7.796E-02 -5.277E-06 -1.341E+00 -1.757E-05 -5.495E-01 

   -1.140E-13 3.996E-06 8.210E-11 -3.483E-05 8.456E-13 -4.126E-08 -4.153E-12 -1.281E-06 -1.785E-11 -5.760E-07 

   8.861E-08 -1.695E+00 -3.483E-05 3.415E+01 -1.435E-06 1.749E-02 2.439E-06 8.229E-01 1.173E-05 3.821E-01 

   -9.002E-13 -2.224E-06 8.456E-13 -1.435E-06 7.563E-10 5.178E-06 9.232E-11 2.216E-06 -3.162E-11 -1.741E-06 

   -2.474E-08 -7.796E-02 -4.126E-08 1.749E-02 5.178E-06 4.311E-01 9.666E-06 3.393E-01 4.483E-07 -2.691E-02 

   -1.520E-12 -5.277E-06 -4.153E-12 2.439E-06 9.232E-11 9.666E-06 1.310E-09 6.087E-05 1.674E-10 1.863E-07 

   -3.567E-07 -1.341E+00 -1.281E-06 8.229E-01 2.216E-06 3.393E-01 6.087E-05 5.201E+01 2.125E-04 1.731E+00 

   -4.510E-12 -1.757E-05 -1.785E-11 1.173E-05 -3.162E-11 4.483E-07 1.674E-10 2.125E-04 6.328E-09 8.070E-05 

    -1.383E-07 -5.495E-01 -5.760E-07 3.821E-01 -1.741E-06 -2.691E-02 1.863E-07 1.731E+00 8.070E-05 4.571E+00 

 

                                  

   2.414E-07 7.491E-01 8.061E-07 -5.388E-01 3.150E-06 7.624E-02 4.124E-06 7.335E-01 6.421E-06 1.075E-01 

   7.491E-01 6.947E+06 3.605E+00 -2.368E+06 1.330E+01 3.212E+05 1.736E+01 3.085E+06 2.702E+01 4.533E+05 

   8.061E-07 3.605E+00 1.148E-05 -6.078E+00 1.531E-05 3.635E-01 1.949E-05 3.435E+00 2.988E-05 4.951E-01 

   -5.388E-01 -2.368E+06 -6.078E+00 5.505E+06 -1.051E+01 -2.473E+05 -1.321E+01 -2.319E+06 -2.012E+01 -3.318E+05 

   3.150E-06 1.330E+01 1.531E-05 -1.051E+01 3.951E-04 4.332E+00 1.468E-04 1.938E+01 1.509E-04 2.270E+00 

   7.624E-02 3.212E+05 3.635E-01 -2.473E+05 4.332E+00 3.104E+05 9.254E+00 7.513E+05 5.046E+00 7.246E+04 

   4.124E-06 1.736E+01 1.949E-05 -1.321E+01 1.468E-04 9.254E+00 1.211E-03 8.703E+01 4.580E-04 6.215E+00 

   7.335E-01 3.085E+06 3.435E+00 -2.319E+06 1.938E+01 7.513E+05 8.703E+01 6.869E+07 3.526E+02 3.942E+06 

   6.421E-06 2.702E+01 2.988E-05 -2.012E+01 1.509E-04 5.046E+00 4.580E-04 3.526E+02 1.084E-02 1.597E+02 

    1.075E-01 4.533E+05 4.951E-01 -3.318E+05 2.270E+00 7.246E+04 6.215E+00 3.942E+06 1.597E+02 9.646E+06 

 

  



  

 

Table 4. Modal stress shapes (Element ID = 1678) [MPa] – test case no. 1 

mode                      

   -4.9808 -2339.220 -44.3548 2380.730 270.174 -1674.570 229.266 10103.100 -410.759 -5064.990 

   -2.1009 -291.873 -18.6471 305.261 114.040 -241.575 97.3701 1244.090 -173.384 -694.206 

   0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

    -7.3344 -203.777 -65.0285 212.596 398.237 -166.705 340.718 861.386 -605.519 -475.090 

    0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

    0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 

  

Table 5. Computation times comparison – test case no. 1 

Procedure type Computational Time [s] 

Reference Procedure (by Dirlik) 196 

Proposed Procedure (by Dirlik) 0.9 

Proposed Procedure (by Bands) 0.2 

 

Table 6. Spectral moments and damage for some FE model elements – test case no. 1 

Element ID               (by Dirlik)   (by Bands) 

 [MPa2
] [MPa2·Hz] [MPa2·Hz2

] [MPa2·Hz4
] [no units] [no units] 

3224 1.098·10
4
 3.853·10

6
 2.661·10

9
 2.872·10

15
 1.778·10

-3
 1.515·10

-3
 

3277 1.102·10
4
 3.771·10

6
 2.547·10

9
 2.743·10

15
 1.789·10

-3
 1.513·10

-3
 

3360 1.103·10
4
 3.774·10

6
 2.549·10

9
 2.745·10

15
 1.796·10

-3
 1.519·10

-3
 

3297 1.219·10
4
 4.183·10

6
 2.833·10

9
 3.053·10

15
 2.963·10

-3
 2.507·10

-3
 

3339 1.220·10
4
 4.186·10

6
 2.835·10

9
 3.055·10

15
 2.973·10

-3
 2.516·10

-3
 

3318 1.262·10
4
 4.337·10

6
 2.940·10

9
 3.169·10

15
 3.532·10

-3
 2.990·10

-3
 

3223 1.453·10
4
 5.178·10

6
 3.624·10

9
 3.938·10

15
 7.284·10

-3
 6.225·10

-3
 

3169 1.515·10
4
 5.400·10

6
 3.780·10

9
 4.107·10

15
 8.984·10

-3
 7.679·10

-3
 

3186 2.197·10
4
 7.885·10

6
 5.551·10

9
 6.049·10

15
 5.779·10

-2
 4.947·10

-2
 

1678 2.219·10
4
 7.968·10

6
 5.612·10

9
 6.116·10

15
 6.082·10

-2
 5.207·10

-2
 

 



  

 

 

 

 

 

 

 

 

  

Table 7. Spectral moments of equivalent stress PSD function (Element ID = 67357) – test case no. 2 

Procedure type             

 [MPa2
] [MPa2·Hz] [MPa2·Hz2

] [MPa2·Hz4
] 

Reference Procedure 8.672·10
3
 3.747·10

4
 1.680·10

5
 1.141·10

7
 

Proposed Procedure  8.672·10
3
 3.747·10

4
 1.680·10

5
 1.141·10

7
 

 

 



  

 

 

Table 8. Spectral moments of PSD matrix of Lagrangian coordinates –test case no. 2 

                                                      

   4.060E+01 7.116E-08 -4.331E-02 2.788E-06 4.586E-09 -1.078E-05 1.989E-08 1.152E-08 5.470E-04 -6.421E-09 8.059E-08 5.061E-07 1.321E-03 4.349E-08 8.627E-10 

   7.116E-08 1.208E-13 -3.690E-08 8.261E-14 1.389E-16 -3.309E-13 6.147E-16 4.486E-16 2.188E-11 -2.825E-16 3.864E-15 2.430E-14 6.353E-11 2.119E-15 4.336E-17 

   -4.331E-02 -3.690E-08 4.598E-02 -1.005E-07 -1.584E-10 3.719E-07 -6.859E-10 -4.379E-10 -2.114E-05 2.639E-10 -3.517E-09 -2.211E-08 -5.779E-05 -1.920E-09 -3.900E-11 

   2.788E-06 8.261E-14 -1.005E-07 1.511E-10 1.627E-13 -3.273E-10 5.603E-13 1.248E-13 5.733E-09 -6.283E-14 7.766E-13 4.877E-12 1.273E-08 4.196E-13 8.379E-15 

   4.586E-09 1.389E-16 -1.584E-10 1.627E-13 3.959E-16 -8.978E-13 1.592E-15 2.422E-16 1.087E-11 -1.133E-16 1.376E-15 8.640E-15 2.256E-11 7.424E-16 1.480E-17 

   -1.078E-05 -3.309E-13 3.719E-07 -3.273E-10 -8.978E-13 2.172E-09 -3.967E-12 -5.982E-13 -2.661E-08 2.727E-13 -3.293E-12 -2.068E-11 -5.398E-08 -1.776E-12 -3.538E-14 

   1.989E-08 6.147E-16 -6.859E-10 5.603E-13 1.592E-15 -3.967E-12 7.360E-15 1.132E-15 5.013E-11 -5.090E-16 6.127E-15 3.847E-14 1.004E-10 3.303E-15 6.579E-17 

   1.152E-08 4.486E-16 -4.379E-10 1.248E-13 2.422E-16 -5.982E-13 1.132E-15 2.188E-15 9.437E-11 -4.938E-16 4.552E-15 2.853E-14 7.431E-11 2.407E-15 4.691E-17 

   5.470E-04 2.188E-11 -2.114E-05 5.733E-09 1.087E-11 -2.661E-08 5.013E-11 9.437E-11 4.851E-06 -2.705E-11 2.261E-10 1.416E-09 3.685E-06 1.187E-10 2.296E-12 

    -6.421E-09 -2.825E-16 2.639E-10 -6.283E-14 -1.133E-16 2.727E-13 -5.090E-16 -4.938E-16 -2.705E-11 6.229E-16 -3.600E-15 -2.240E-14 -5.786E-11 -1.769E-15 -3.173E-17 

    8.059E-08 3.864E-15 -3.517E-09 7.766E-13 1.376E-15 -3.293E-12 6.127E-15 4.552E-15 2.261E-10 -3.600E-15 9.174E-14 5.755E-13 1.498E-09 4.536E-14 6.288E-16 

    5.061E-07 2.430E-14 -2.211E-08 4.877E-12 8.640E-15 -2.068E-11 3.847E-14 2.853E-14 1.416E-09 -2.240E-14 5.755E-13 3.615E-12 9.426E-09 2.883E-13 4.004E-15 

    1.321E-03 6.353E-11 -5.779E-05 1.273E-08 2.256E-11 -5.398E-08 1.004E-10 7.431E-11 3.685E-06 -5.786E-11 1.498E-09 9.426E-09 2.462E-05 7.628E-10 1.063E-11 

    4.349E-08 2.119E-15 -1.920E-09 4.196E-13 7.424E-16 -1.776E-12 3.303E-15 2.407E-15 1.187E-10 -1.769E-15 4.536E-14 2.883E-13 7.628E-10 2.653E-14 4.057E-16 

    8.627E-10 4.336E-17 -3.900E-11 8.379E-15 1.480E-17 -3.538E-14 6.579E-17 4.691E-17 2.296E-12 -3.173E-17 6.288E-16 4.004E-15 1.063E-11 4.057E-16 1.049E-17 

 

                                                      

   1.755E+02 6.271E-07 -4.130E-01 3.605E-05 6.017E-08 -1.419E-04 2.621E-07 1.549E-07 7.357E-03 -8.614E-08 1.067E-06 6.696E-06 1.747E-02 5.728E-07 1.121E-08 

   6.271E-07 1.775E-12 -5.526E-07 -3.294E-12 -5.725E-15 1.357E-11 -2.511E-14 -1.450E-14 -6.826E-10 7.621E-15 -8.679E-14 -5.437E-13 -1.416E-09 -4.546E-14 -8.331E-16 

   -4.130E-01 -5.526E-07 7.565E-01 1.339E-06 2.598E-09 -6.258E-06 1.166E-08 7.131E-09 3.352E-04 -3.677E-09 3.982E-08 2.491E-07 6.476E-04 2.048E-08 3.559E-10 

   3.605E-05 -3.294E-12 1.339E-06 4.322E-09 4.533E-12 -8.881E-09 1.497E-11 1.890E-12 8.247E-08 -8.023E-13 1.007E-11 6.334E-11 1.657E-07 5.561E-12 1.185E-13 

   6.017E-08 -5.725E-15 2.598E-09 4.533E-12 1.227E-14 -2.798E-11 4.956E-14 4.584E-15 1.927E-10 -1.702E-15 2.041E-14 1.283E-13 3.356E-10 1.122E-14 2.376E-16 

   -1.419E-04 1.357E-11 -6.258E-06 -8.881E-09 -2.798E-11 6.868E-08 -1.259E-10 -1.200E-11 -4.985E-07 4.269E-12 -5.048E-11 -3.174E-10 -8.297E-07 -2.771E-11 -5.859E-13 

   2.621E-07 -2.511E-14 1.166E-08 1.497E-11 4.956E-14 -1.259E-10 2.350E-13 2.338E-14 9.651E-10 -8.130E-15 9.544E-14 5.999E-13 1.568E-09 5.235E-14 1.106E-15 

   1.549E-07 -1.450E-14 7.131E-09 1.890E-12 4.584E-15 -1.200E-11 2.338E-14 9.105E-14 3.920E-09 -1.563E-14 1.140E-13 7.133E-13 1.856E-09 5.985E-14 1.200E-15 

   7.357E-03 -6.826E-10 3.352E-04 8.247E-08 1.927E-10 -4.985E-07 9.651E-10 3.920E-09 2.090E-04 -9.590E-10 6.103E-09 3.816E-08 9.913E-05 3.164E-09 6.243E-11 

    -8.614E-08 7.621E-15 -3.677E-09 -8.023E-13 -1.702E-15 4.269E-12 -8.130E-15 -1.563E-14 -9.590E-10 3.112E-14 -1.420E-13 -8.793E-13 -2.259E-09 -6.633E-14 -1.146E-15 

    1.067E-06 -8.679E-14 3.982E-08 1.007E-11 2.041E-14 -5.048E-11 9.544E-14 1.140E-13 6.103E-09 -1.420E-13 5.561E-12 3.495E-11 9.114E-08 2.750E-12 3.527E-14 

    6.696E-06 -5.437E-13 2.491E-07 6.334E-11 1.283E-13 -3.174E-10 5.999E-13 7.133E-13 3.816E-08 -8.793E-13 3.495E-11 2.200E-10 5.748E-07 1.758E-11 2.265E-13 

    1.747E-02 -1.416E-09 6.476E-04 1.657E-07 3.356E-10 -8.297E-07 1.568E-09 1.856E-09 9.913E-05 -2.259E-09 9.114E-08 5.748E-07 1.505E-03 4.680E-08 6.073E-10 

    5.728E-07 -4.546E-14 2.048E-08 5.561E-12 1.122E-14 -2.771E-11 5.235E-14 5.985E-14 3.164E-09 -6.633E-14 2.750E-12 1.758E-11 4.680E-08 1.686E-12 2.514E-14 

    1.121E-08 -8.331E-16 3.559E-10 1.185E-13 2.376E-16 -5.859E-13 1.106E-15 1.200E-15 6.243E-11 -1.146E-15 3.527E-14 2.265E-13 6.073E-10 2.514E-14 7.431E-16 

 

                                                      

   7.850E+02 2.756E-06 -2.321E+00 4.240E-04 7.301E-07 -1.733E-03 3.211E-06 1.964E-06 9.299E-02 -1.045E-06 1.107E-05 6.916E-05 1.795E-01 5.575E-06 8.863E-08 

   2.756E-06 2.714E-11 -8.963E-06 -9.292E-11 -1.668E-13 3.986E-10 -7.406E-13 -4.581E-13 -2.158E-08 2.328E-13 -2.145E-12 -1.334E-11 -3.441E-08 -1.009E-12 -1.197E-14 

   -2.321E+00 -8.963E-06 1.294E+01 4.956E-05 9.542E-08 -2.305E-04 4.302E-07 2.786E-07 1.312E-02 -1.391E-07 1.170E-06 7.251E-06 1.863E-02 5.219E-07 4.379E-09 

   4.240E-04 -9.292E-11 4.956E-05 1.334E-07 1.429E-10 -2.793E-07 4.697E-10 4.531E-11 1.912E-06 -1.864E-11 3.217E-10 2.040E-09 5.385E-06 1.956E-10 5.141E-12 

   7.301E-07 -1.668E-13 9.542E-08 1.429E-10 4.153E-13 -9.563E-10 1.700E-12 1.369E-13 5.592E-09 -4.838E-14 7.444E-13 4.711E-12 1.242E-08 4.443E-13 1.132E-14 

   -1.733E-03 3.986E-10 -2.305E-04 -2.793E-07 -9.563E-10 2.378E-06 -4.383E-09 -3.762E-10 -1.520E-05 1.270E-10 -1.900E-09 -1.202E-08 -3.167E-05 -1.129E-09 -2.857E-11 

   3.211E-06 -7.406E-13 4.302E-07 4.697E-10 1.700E-12 -4.383E-09 8.231E-12 7.499E-13 3.013E-08 -2.472E-13 3.648E-12 2.307E-11 6.077E-08 2.163E-12 5.454E-14 

   1.964E-06 -4.581E-13 2.786E-07 4.531E-11 1.369E-13 -3.762E-10 7.499E-13 4.389E-12 1.923E-07 -7.828E-13 6.389E-12 4.015E-11 1.049E-07 3.530E-12 8.010E-14 

   9.299E-02 -2.158E-08 1.312E-02 1.912E-06 5.592E-09 -1.520E-05 3.013E-08 1.923E-07 1.053E-02 -5.047E-08 3.577E-07 2.245E-06 5.857E-03 1.945E-07 4.323E-09 

    -1.045E-06 2.328E-13 -1.391E-07 -1.864E-11 -4.838E-14 1.270E-10 -2.472E-13 -7.828E-13 -5.047E-08 1.896E-12 -9.764E-12 -6.063E-11 -1.563E-07 -4.750E-12 -9.102E-14 

    1.107E-05 -2.145E-12 1.170E-06 3.217E-10 7.444E-13 -1.900E-09 3.648E-12 6.389E-12 3.577E-07 -9.764E-12 4.353E-10 2.742E-09 7.172E-06 2.223E-10 3.127E-12 

    6.916E-05 -1.334E-11 7.251E-06 2.040E-09 4.711E-12 -1.202E-08 2.307E-11 4.015E-11 2.245E-06 -6.063E-11 2.742E-09 1.730E-08 4.534E-05 1.424E-09 2.011E-11 

    1.795E-01 -3.441E-08 1.863E-02 5.385E-06 1.242E-08 -3.167E-05 6.077E-08 1.049E-07 5.857E-03 -1.563E-07 7.172E-06 4.534E-05 1.191E-01 3.800E-06 5.399E-08 

    5.575E-06 -1.009E-12 5.219E-07 1.956E-10 4.443E-13 -1.129E-09 2.163E-12 3.530E-12 1.945E-07 -4.750E-12 2.223E-10 1.424E-09 3.800E-06 1.399E-10 2.263E-12 

    8.863E-08 -1.197E-14 4.379E-09 5.141E-12 1.132E-14 -2.857E-11 5.454E-14 8.010E-14 4.323E-09 -9.102E-14 3.127E-12 2.011E-11 5.399E-08 2.263E-12 6.978E-14 

 

                                                      

   3.894E+04 -7.814E-03 5.546E+03 -9.194E-01 -1.835E-03 4.532E+00 -8.564E-03 -9.786E-03 -5.099E+02 8.895E-03 -1.855E-01 -1.176E+00 -3.106E+03 -1.125E-01 -2.872E-03 

   -7.814E-03 9.032E-09 -4.329E-03 3.183E-07 6.348E-10 -1.568E-06 2.963E-09 3.423E-09 1.786E-04 -3.135E-09 6.576E-08 4.170E-07 1.101E-03 3.994E-08 1.021E-09 

   5.546E+03 -4.329E-03 5.234E+03 -2.393E-01 -4.736E-04 1.168E+00 -2.207E-03 -2.533E-03 -1.322E+02 2.319E-03 -4.865E-02 -3.085E-01 -8.147E+02 -2.955E-02 -7.558E-04 

   -9.194E-01 3.183E-07 -2.393E-01 1.894E-04 2.663E-07 -5.820E-04 1.039E-06 6.297E-07 3.216E-02 -5.366E-07 1.099E-05 6.969E-05 1.840E-01 6.658E-06 1.696E-07 

   -1.835E-03 6.348E-10 -4.736E-04 2.663E-07 7.265E-10 -1.737E-06 3.171E-09 1.361E-09 6.850E-05 -1.110E-09 2.250E-08 1.426E-07 3.765E-04 1.361E-08 3.463E-10 

   4.532E+00 -1.568E-06 1.168E+00 -5.820E-04 -1.737E-06 4.383E-03 -8.205E-06 -3.447E-06 -1.726E-01 2.766E-06 -5.589E-05 -3.543E-04 -9.352E-01 -3.381E-05 -8.596E-07 

   -8.564E-03 2.963E-09 -2.207E-03 1.039E-06 3.171E-09 -8.205E-06 1.557E-08 6.603E-09 3.295E-04 -5.251E-09 1.059E-07 6.713E-07 1.772E-03 6.406E-08 1.628E-09 

   -9.786E-03 3.423E-09 -2.533E-03 6.297E-07 1.361E-09 -3.447E-06 6.603E-09 1.698E-08 8.136E-04 -7.770E-09 1.327E-07 8.404E-07 2.216E-03 7.934E-08 1.987E-09 

   -5.099E+02 1.786E-04 -1.322E+02 3.216E-02 6.850E-05 -1.726E-01 3.295E-04 8.136E-04 4.486E+01 -4.409E-04 7.048E-03 4.461E-02 1.175E+02 4.196E-03 1.046E-04 

    8.895E-03 -3.135E-09 2.319E-03 -5.366E-07 -1.110E-09 2.766E-06 -5.251E-09 -7.770E-09 -4.409E-04 1.208E-08 -1.423E-07 -8.965E-07 -2.351E-03 -8.123E-08 -1.935E-09 

    -1.855E-01 6.576E-08 -4.865E-02 1.099E-05 2.250E-08 -5.589E-05 1.059E-07 1.327E-07 7.048E-03 -1.423E-07 4.469E-06 2.828E-05 7.442E-02 2.513E-06 4.955E-08 

    -1.176E+00 4.170E-07 -3.085E-01 6.969E-05 1.426E-07 -3.543E-04 6.713E-07 8.404E-07 4.461E-02 -8.965E-07 2.828E-05 1.791E-04 4.719E-01 1.605E-05 3.164E-07 

    -3.106E+03 1.101E-03 -8.147E+02 1.840E-01 3.765E-04 -9.352E-01 1.772E-03 2.216E-03 1.175E+02 -2.351E-03 7.442E-02 4.719E-01 1.245E+03 4.270E-02 8.425E-04 



  

 

    -1.125E-01 3.994E-08 -2.955E-02 6.658E-06 1.361E-08 -3.381E-05 6.406E-08 7.934E-08 4.196E-03 -8.123E-08 2.513E-06 1.605E-05 4.270E-02 1.587E-06 3.299E-08 

    -2.872E-03 1.021E-09 -7.558E-04 1.696E-07 3.463E-10 -8.596E-07 1.628E-09 1.987E-09 1.046E-04 -1.935E-09 4.955E-08 3.164E-07 8.425E-04 3.299E-08 9.602E-10 

  



  

 

 

Table 9. Modal stress shapes (Element ID = 67357) [MPa] – test case no. 2 

mode                                     

   -14.6614 9.1214 -7.8629 62.3638 17.7904 18.0816 -4.8335 53.7383 79.1259 142.433 51.1746 -75.6424 1.8068 -183.105 -105.183 

   -4.4488 0.258 0.2486 18.2249 -0.1014 -0.0077 -2.8973 11.8317 24.3716 33.4705 11.5092 -23.2718 -5.1998 -46.5001 -26.5195 

   0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

    -3.8405 0.4777 0.0194 15.7716 0.5823 0.3482 -1.1262 14.6129 21.3066 34.6082 12.4617 -23.8022 -4.6666 -40.6511 -25.7943 

    0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

    0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 

 

 

Table 10. Computation times comparison – test case no. 2 

Procedure type Computational Time [s] 

Reference Procedure (by Dirlik) 1594 

Proposed Procedure (by Dirlik) 13.33 

Proposed Procedure (by Bands) 1.7 

 

Table 11. Spectral moments and damage for some FE model elements – test case no. 2 

Element ID               (by Dirlik)   (by Bands) 

 [MPa2
] [MPa2·Hz] [MPa2·Hz2

] [MPa2·Hz4
] [no units] [no units] 

71981 4.424·10
3
 1.927·10

4
 8.845·10

4
 9.707·10

6
 5.370·10

-6
 1.844·10

-6
 

68136 4.616·10
3
 2.010·10

4
 9.207·10

4
 9.080·10

6
 6.349·10

-6
 2.375·10

-6
 

69408 5.267·10
3
 2.404·10

4
 1.262·10

5
 1.365·10

7
 7.930·10

-6
 5.359·10

-6
 

71909 5.289·10
3
 2.285·10

4
 1.024·10

5
 6.697·10

6
 8.165·10

-6
 5.311·10

-6
 

67358 5.331·10
3
 2.303·10

4
 1.032·10

5
 6.754·10

6
 8.557·10

-6
 5.570·10

-6
 

69433 5.151·10
3
 2.318·10

4
 1.180·10

5
 2.483·10

7
 8.688·10

-6
 4.652·10

-6
 

71983 5.417·10
3
 2.362·10

4
 1.088·10

5
 1.355·10

7
 1.869·10

-5
 6.164·10

-6
 

68155 5.634·10
3
 2.455·10

4
 1.128·10

5
 1.255·10

7
 2.274·10

-5
 7.786·10

-6
 

71905 8.589·10
3
 3.711·10

4
 1.664·10

5
 1.142·10

7
 1.602·10

-4
 9.523·10

-5
 

67357 8.672·10
3
 3.747·10

4
 1.680·10

5
 1.141·10

7
 1.660·10

-4
 1.008·10

-4
 

 


