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Abstract 

 

The aerobiological monitoring of Olea europaea L. is of great importance in the Mediterranean basin due to 

olive pollen is one of the most represented pollen types of the airborne pollen spectrum for the entire territory. 

The main aim of this study was to elaborate an airborne-pollen map based on the Pollen Index considering a 

4-year period (2008-2011) in order to obtain a geographic continuous map for the pollen intensity with 

practical applications from an agronomical and allergological point of view. For this purpose, the main 

predictor variable was an index based on the distribution and abundance of the potential sources of pollen 

emission, including intrinsic information about the general atmospheric patterns of pollen dispersal and the 

aerodynamical features of the olive pollen. Other meteorological variables were included in the modeling in 

conjunction with spatial interpolation, allowing obtaining a spatial model of the Pollen Index from the main 

olive cultivation areas along the Mediterranean region. The results showed marked differences with respect to 

the dispersal patterns associated to the altitudinal gradient. The findings pointed that areas located at an altitude 

above than 300 m a.s.l. receive a greater amount of pollen from shorter-distance pollen sources (maximum 

influence: 27 km) with respect to areas lower than 300 m a.s.l. (maximum influence: 59 km). 
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1. Introduction 

 

Olive tree is primarily an anemophilous species with high flower and pollen production (Rojo et al., 2015b). 

Due to its great land cover extensions in the Mediterranean region, olive pollen is considered one of the more 

represented pollen types of the airborne pollen spectrum for the entire territory (Caiola et al., 2002; Perez-

Badia et al., 2010; Martínez-Bracero et al., 2015). In this sense, olive pollen monitoring has become an 

important aspect from an agricultural (Ribeiro et al., 2008), ecological (Orlandi et al., 2014) or medical 

(Bonofiglio et al., 2013) point of view, promoting the study of several aerobiological parameters related to 

olive flowering (e.g. Díaz de la Guardia 2003; Zhang et al., 2014). 

 

The Pollen Index (‘PI’), i.e. the yearly sum of daily pollen grains per m3 of air, is an aerobiological variable 

directly related to flower production (Rojo et al., 2015b), and considered an important indicator of the 

flowering intensity for the olive tree (Orlandi et al., 2014). The ‘PI’ is associated to marked year-on-year 

variations, being governed by different factors related to pollen emission and pollen dispersal. Olive is a spring-

flowering tree and its reproductive cycle is regulated by bioclimatic requirements that must be satisfied during 

the period from summer of the previous year (year x-1) to the flowering time (year x) (Rojo and Pérez-Badia, 

2015a). During this period, processes involved in floral organ development take place (Rallo and Martin, 1991; 

Connor and Fereres, 2005), determining olive flower production and thereby pollen emission (Oteros et al., 

2013a). Furthermore, olive tree is characterized by displaying alternate pollen production cycles because olive 

reproductive cycle is completed over two years, producing a balance in endogenous hormones levels which 

promote or inhibit flowering (Al-Shdiefat and Qrunfleh, 2008); this behavior is reflected in the variability of 

the pollen production (Galán et al., 2001; Ribeiro et al., 2005).  

 

Once pollen grains have been released into the air, spatiotemporal variations on the meteorological conditions 

influence the extent of pollen dispersal and airborne pollen transport (Jones and Harrison, 2004; Damialis et 

al., 2005; Makra et al., 2010). Furthermore, distance and distribution of the potential pollen sources, largely 

determine pollen amounts recorded in a given geographic location (Fernández-Rodríguez et al., 2014). Oteros 

et al. (2015) estimate that in a given sampling station the maximum influence on pollen emission is observed 

in olive groves located to 37 km of distance from the trap. However, the small size of the olive pollen favours 

long range transport of pollen (Hernández-Ceballos et al., 2014; Rojo and Pérez-Badia, 2015b). Therefore 

from the standpoint of the spatial variability, olive-growing areas must be considered for ‘PI’ modeling. 

Furthermore, temporal variations of the olive grove surface is of great relevance for analyzing long-term trend 

in the ‘PI’, as documented by García-Mozo et al. (2014). 

 

The olive pollen concentration has previously been studied from a spatial point of view (Hidalgo et al., 2002; 

Fernández-Rodríguez et al., 2014), taking into account both distribution of the potential pollen sources and 

dispersal conditions in the atmosphere. Otherwise, techniques based on spatial interpolation for aerobiological 



studies i.e. kriging, may be carried out due to the spatial correlation showed in airborne pollen concentration 

(Alba et al., 2000). Thus, the combination of these modeling techniques results of great interest in order to 

analyze airborne pollen levels (Rojo and Perez-Badia, 2015b). 

 

Spatial interpolation allows modeling a given variable along a continuous area in the territory from data 

measured in a specific number of sampling points, being this aspect one of the most important advantages of 

these techniques (Oliver and Webster, 2014). In this sense, nowadays the number of papers based on 

geostatistical techniques is increasing according to the study of the parameters in relation to the plant 

reproductive cycle such as time flowering or pollen intensity (e.g. Schröder et al., 2014; Aguilera et al., 2015). 

In addition, this methodology allows optimizing the sampling stations by minimizing the number of sites or 

searching the most appropriate locations (Garcia-Mozo et al., 2006; Hengl, 2007), thereby reducing time and 

economical resources associated to the aerobiological monitoring. 

 

The main goal of the study was to model the Pollen Index (‘PI’) using as main predictor variable an index 

based on the distribution and abundance of the potential sources of pollen emission which contemporary 

consider intrinsic information about the general atmospheric patterns of pollen dispersal and the aerodynamical 

features of the olive pollen. Other meteorological variables were included in the modeling in conjunction with 

spatial interpolation allowing obtaining a geographic continuous model of the ‘PI’ from the main olive 

cultivation areas in the Mediterranean region in order to predict the pollen intensity in unsampled areas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Methods 



 

2.1 Pollen records 

 

Airborne olive pollen counts were recorded at 32 sampling sites in the Mediterranean region that belong to 

four of the most important countries in terms of olive oil production on the world (Spain, Italy, Tunisia and 

Morocco) (Fig. 1).  

 

Daily pollen samples were obtained according to the standardized Spanish method (Galán et al. 2007). The 

Pollen Index (PI) was calculated as the sum of the daily pollen concentrations recorded during the Main Pollen 

Season (MPS). The MPS includes 95% of the seasonal total pollen count, starting on the day when the sum of 

daily pollen concentrations reaches 2.5% of the total annual sum and ending on the day when the sum reaches 

97.5% (Andersen, 1991), as the best criterion to estimate MPS in the area considered. This study was 

performed over four years (2008-2011) taking into account the continuous availability of aerobiological data 

in each study area and considering contemporary the selection of a number of sampling sites as great as possible 

to have the major availability of real data to elaborate the model. The average amount of annual ‘PI’ recorded 

during this period was used as the dependent variable for modeling. 

 

2.2 Emission surface data 

 

The influence of the emission surface data was calculated by using the Concentric Ring Method (CRM) 

proposed by Oteros et al. (2015) and also the same nomenclature has been followed with respect to the required 

indexes, i.e. the Influence Index ‘II’ and the Specific Influence Index ‘SII’. This methodology analyzes the 

relationship between pollen index and theoretical influence of the emission surface from the olive-growing 

areas which are divided into concentric rings from the pollen station. Olive grove surface was obtained from 

the CORINE Land Cover database (CLC, 2006). 

 

The Influence Index ‘II’ was calculated for all concentric rings which were considered consecutively for the 

entire total influence area from the sampling points. This index ‘II’ shows the theoretical influence for the 

pollen emission of the olive groves in relation to their location from the sampling point (distance) and was 

calculated as a function of the correlation between pollen index and ring distance (Oteros et al. 2015).  

 

In order to calculate the Influence Index, rings with a width of 10 km were considered as the most suitable 

width taking into account the magnitude of the calculations in this work, considering so large geographical 

areas. Nevertheless, it was proved that the accuracy of the Influence Index calculation is appropriate with 

respect to a smaller width considered. However, the mathematical integration of the curve for the Influence 

Index was performed to rings 1 km wide in order to determine the maximum influence on the Pollen Index as 

well as the end of the influence. The ‘II’ calculation also was carried out independently for stations depending 



on different altitudinal ranges in order to determine different dispersion patterns of pollen according to 

topographical characteristics related to the elevation. 

 

Then, the Specific Influence Index (‘SII’) was determined as the sum of olive grove surface included in each 

ring and weighted by the corresponding Influence Index according to the distance from the sampling point. In 

a practical sense, ‘SII’ reflects the characteristics of a given geographic area to receive pollen grains in relation 

to the distribution of potential pollen sources and to the dispersion dynamics of the particle considered, i.e. 

Olea pollen.   

 

In the present study, a continuous layer with the ‘SII’ was performed for the entire studied area according to 

the Influence Index calculated at each ring from the sampling stations analysis. The ‘SII’ layer was elaborated 

as a continuous grid of 10 x 10 km where ‘SII’ was calculated at the centroid of the pixel such as described 

above. Finally, this variable ‘SII’ was included as independent variable for modeling the ‘PI’. 

 

2.3 Meteorological data 

 

Meteorological data were obtained from the weather stations nearest to sampling sites. The weather stations 

belong to: the National Council of Agricultural Research (CRA-Cma) in Italy, the Physics Departament of the 

Faculty of Science in Morocco, the Spanish Meteorological Agency (AEMET) in Spain, and the National 

Meteorological Centre (NIM) in Tunisia. The meteorological variables analyzed have been maximum 

temperature, minimum temperature and cumulated rainfall from monthly and seasonally periods. 

 

Furthermore, the continuous layers in the study area were performed for the meteorological variables included 

in the regression model. In order to elaborate these layers, daily meteorological gridded dataset were obtained 

from the European Climate Assessment & Dataset (ECA&D, http://www.ecad.eu, Haylock et al., 2008) whose 

data were transformed to a grid of 10 x 10 km. 

 

2.4 Pollen Index maps 

 

A general regression model was generated to model the ‘PI’ using the independent variables measured from 

the sampling points. The ‘SII’ is an important variable to predict the ‘PI’ since these variables are strongly 

correlated according to the results shown in Oteros et al. (2015). Furthermore, meteorological variables were 

included in the model by means of stepwise selection and collinearity analysis. In addition to internal validation 

(R2) 5-fold cross validation was performed in order to check the reliability of the model. The regression 

equation obtained was used thereafter for spatial modeling of ‘PI’ using geostatistical techniques. For this 

purpose, regression-kriging was used taking the independent variables selected (‘SII’ and meteorological 

variables) as continuous layers in space whose design has been described above. 



 

Regression-kriging is a technique included in spatial prediction models that combines both correlation with 

independent predictors and spatial autocorrelation (Hengl, 2007). Spatial modeling of the PI was carried out 

considering the entire study area (Fig. 1). However in order to improve the visualization of the results, airborne-

pollen maps are independently shown for the Spain-Morocco area (341,700 km2) and Italy-Tunisia area 

(703,500 km2). In both cases, the boundaries were selected according to rectangular areas containing 

sufficiently close sampling points, not considering larger areas where no sampling points are present and 

consequently the statistical validation cannot performed. 

 

The analysis of the spatial behavior of the data was required for spatial modeling purposes. Given the 

asymmetrical distribution of the Pollen Index and Specific Influence Index, a logarithmic transformation was 

required for the geostatistical analysis (Oliver and Webster, 2014). Furthermore, these transformations 

improved the distribution of ‘PI’ and ‘SII’ data and avoided excessive weights of certain sampling points 

(Spanish sites such as Jaen and Cordoba). After, the variograms for the model were performed in order to 

analyze the spatial behavior of the data. The best fitting function in the experimental variogram was selected 

to model the response variable (Oliver and Webster, 2014). 

 

Finally, also the goodness of fit of the spatial model obtained was tested by internal validation (R2) and by 5-

fold cross-validation (Q2), which enabled estimated values to be compared to observed values. Moreover, the 

Mean Error (ME), the Root Mean Square Error (RMSE) and the Mean Absolute Error (MAE) were obtained 

from both validation ways. 

 

Models were constructed using R software (R Development Core Team, 2015) and the ‘gstat’ package was 

used for the regression-kriging analysis (Pebesma, 2004). 

 

 

 

 

 

 

 

 

 

 

 

3. Results 

 



The influence area of the pollen emission from the olive groves surrounding sampling sites is shown in Fig. 2 

where a third-degree polynomial function is well fitted to the data resulting from the relationship between both 

olive-grove surface in each ring and correlation with ‘PI’. According to the calculation of the Influence Index 

(‘II’) from all sampling sites, the influence of the pollen emission ends at the 175 km surrounding the sampling 

sites (Fig. 2a). This fact indicates that the pollen emission from olive groves located at greater distances do not 

influence Pollen Index recorded for a given site. 

 

On the other hand, the distance of the maximum influence on the ‘PI’ is observed at 42 km (Fig. 2a), however 

considerable differences are observed taking into account the maximum influence, using different altitudinal 

ranges. In this sense, at sites lower than 300 m a.s.l. the maximum influence is observed at 59 km from the 

sampling points (Fig. 2b); while at sites above 300 m a.s.l. the maximum influence is found at 27 km (Fig. 2c), 

showing a difference of 32 km with respect to lower sites. 

 

The ‘SII’ is calculated using both the influence area under the curve of the polynomial function as shown in 

the Fig. 2 and olive-grove surfaces located in each ring. In the first place, this index (‘SII’) has been calculated 

from the sampling points where a positive relationship is observed between ‘SII’ and ‘PI’ (R2 = 0.72) (Fig. 3), 

allowing the use of ‘SII’ as the most important independent variable for the spatial modeling of ‘PI’. Then, 

‘SII’ was calculated for the entire study area obtaining the ‘SII’ map where the dark green (values near 40) 

represents the geographic areas more influenced by pollen emission and dispersion (Fig. 4). 

 

The general regression model from the 32 sampling sites generated in this work is shown in Table 1. The ‘PI’ 

(transformed variable) is explained by the ‘SII’ (transformed variable) and the cumulative rainfall during May, 

all variables being calculated as four years average (period 2008-2011). As commented above, the ‘SII’ 

presents a strong positive correlation with the ‘PI’, while cumulative rainfall during May shows a negative 

influence on ‘PI’ (Table 1). This model is adequately fitted (R2 = 0.77) and the cross-validation of the model 

shows a coefficient of determination Q2 = 0.74. 

 

The analysis of the spatial behavior of the regression model is carried out using experimental variogram (Fig. 

5). According to the spatial autocorrelation of residuals from the regression analysis, the variance of the 

residuals is fitted to a linear model which is defined by the following parameters: Nugget = 0.02 ; Sill = 0.04 ; 

Range = 6E+5. This function is adequately fitted with a coefficient of determination (R2) of 0.70 and a Sum 

Square Error (SSE) of 7E-13. 

 

The spatial modeling for ‘PI’ is shown in both Figs. 6 and 7. These airborne-pollen maps are the result by 

combining the regression model for ‘PI’ (Table 1) and the spatial autocorrelation analysis for the semivariance 

of the residuals from the regression model (Fig 5). 

 



According to the model of the spatial distribution for the mean ‘PI’ in the study area, the highest concentration 

is observed in the South-central Spanish area, in the Southeast Italian area and in the Tunisia studied area (Figs. 

6 and 7). These areas include the sampling sites where the greatest mean annual ‘PI’ (period 2008-2011) were 

recorded such as: Jaen (44,925 grains m-3 air), Cordoba (30,126 grains m-3 air) and Granada (22,331 grains m-

3 air) in Spain; Lecce (23,135 grains m-3 air) and Bari (22,859 grains m-3 air) in Italy; Chaal (16,914 grains m-

3 air) in Tunisia. 

 

The areas where the highest ‘PI’ values are reached as highlighted above, are distributed surrounding the most 

important olive-grove surfaces in the territory (Figs. 6 and 7). In Spanish area, the ‘PI’ calculated in the 

territories near to those that show the maximum ‘PI’ values is observed to be influenced by the most important 

olive-growing areas. Therefore, concentric band areas are showed where the ‘PI’ intensity decreases as the 

distance from the most important potential pollen sources is increased (Fig. 6). However, this relationship do 

not present linear behavior, i.e. the maximum influence on the ‘PI’ is observed at 42 km from the emission 

source as calculated in the Fig. 2. On the other hand, some sampling sites located within the influence area 

from the most important olive-grove surfaces (175 km, Fig. 2) display a high relative ‘PI’ ,e.g. Almeria (7,209 

grains m-3 air) and Albacete (4,293 grains m-3 air), despite that these sites account with a sparse olive-grove 

surface in their proximities.  

 

In the case of Italy-Tunisia area, the concentric pattern in the variation of the ‘PI’ is again observed, i.e. ‘PI’ 

decreases as the distance from the olive groves increases (Fig. 7). In Italy, certain sampling sites such as 

Cosenza (18,475 grains m-3 air) and Salerno (18,416 grains m-3 air) should be highlighted because they have a 

low olive-grove surface in their proximities displaying a high ‘PI’ value. 

 

The internal validation (R2 = 0.88, RMSE = 3521)  and the cross-validation (Q2 = 0.74, RMSE = 4871) from 

the spatial modeling for the ‘PI’ reflect the goodness and the accuracy of the model (Fig. 8). Therefore, 

estimated ‘PI’ values from the airborne-pollen maps are quite reliable with respect to the observed values from 

the sampling sites considered. 

 

 

 

 

 

 

4. Discussion 

 

The ‘PI’ model presented in this paper was generated taking into account the spatial autocorrelation of the 

pollen concentration and the strong relationship between both ‘PI’ and ‘SII’ in the most important 



Mediterranean areas in terms of olive production. ‘SII’ may be a complex term because this index includes 

information of different kinds. In this sense, ‘SII’ reflects the general characteristic of the pollen dispersal in a 

given geographic area depending on the distance to the potential pollen sources, the atmospheric dynamics and 

the aerodynamic features of the olive pollen (Oteros et al., 2015). The ‘SII’ calculation was based on the 

Concentric Ring Method and our results was found to be fitted well with those documented by Oteros et al. 

(2015). 

 

Therefore, the ‘PI’ model allows to study in a general way the dispersal features of the olive pollen and the 

potential distance at which the pollen grains can be transported in the Mediterranean region. For this purpose, 

modeling was performed from the annual average of the ‘PI’, dealing to reduce temporal variability. Then, 

since the flower production in olive trees is related to alternate bearing behavior which is generally fitted to a 

biennial pattern (Gonzalez-Minero et al., 1998; Al-Shdiefat and Qrunfleh, 2008; Rojo et al., 2015b), selecting 

a 4-year period allows considering the same number of bearing years (‘on’ years of production) and non-

bearing years (‘off’ years of  production) from a productivity point of view. In this way, alternate bearing 

effects being characteristic of the physiological behavior of the olive trees (Baktir et al., 2004; Lavee, 2007), 

were smoothed out for the modeling task. 

 

The annual average for the 4-year period also allowed determining the general dynamics of the atmospheric 

circulation patterns directly influencing pollen transport (Makra et al., 2010; Hernández-Ceballos et al., 2015), 

information included in the ‘SII’. Therefore, this methodology is shown to be useful in order to analyze pollen 

dispersal depending on the general features affecting pollen transport in the study areas, with practical 

applications because this technique allows mapping and monitoring the olive pollen intensity in the 

Mediterranean region.  

 

However, other techniques should be considered to study pollen transport according to particular atmospheric 

processes or during a given period of time, such as the study of the local-scale winds (Damialis et al., 2005; 

Silva et al., 2000; Rojo et al., 2015a), long range transport of pollen (Hernández-Ceballos et al., 2014; Rojo 

and Pérez-Badia, 2015b), or the combination with other environmental features such as the distribution of the 

emission sources or the topography (Hidalgo et al., 2002; Fernández-Rodríguez et al., 2014). 

 

The olive tree reproductive cycle is strongly influenced by meteorological variables prior to the flowering 

period (Oteros et al., 2013b), mainly temperature (Aguilera et. al., 2014; Orlandi et al.2010; 2014), and it has 

been documented that temperature and water availability influence pollen production (Galán et al., 2001; 

Siscard et al., 2012), in this sense, ‘SII’ includes information about meteorological variables influencing flower 

bud development. On the other hand, the results of this ‘PI’ model showed that the rainfall during May (portion 

of the pollen season) negatively influences ‘PI’ as documented by Sicard et al. (2012). This fact reflects the 



washing effect of rainfall, thus restricting pollen dispersal in atmosphere and favouring pollen precipitation 

(Bonofiglio et al., 2008; Rojo et al., 2015a). 

 

Using Concentric Ring Method implies to consider uniformity in the study area conditions with respect to 

pollen emission and pollen dispersal (Oteros et al., 2015). However from a point of view of the spatial 

variability, other environmental factors such as topography may vary these homogeneous conditions, thus 

terrain topography is an important issue to be considered in relation to the pollen dispersal (García-Mozo et 

al., 2004). The distribution of the olive grove surfaces in combination with the relief of the land may influence 

on pollen dispersal due to the topographic effect, thus limiting pollen transport (Kasprzyk, 2008). Our model 

was generated according to different altitudinal ranges (below and above 300 m a.s.l.), taking into account part 

of this spatial variability related to the topography. The patterns associated to pollen dispersal were studied for 

each altitudinal range, obtaining considerable differences about maximum influence, i.e. the distance of the 

most influential olive grove surfaces on the ‘PI’. 

 

According to our results, areas higher than 300 m a.s.l. in elevation receive a greater amount of pollen from 

shorter-distance pollen sources (maximum influence: 27 km) with respect to areas lower than 300 m a.s.l. 

(maximum influence: 59 km). This difference may be related to the topographic characteristics of the territories 

(Hidalgo et al., 2002), because in general, higher altitudinal areas are associated with more irregular reliefs 

sometimes limiting pollen transport by an effective orographic barrier. Otherwise, lower altitudinal areas in 

general are related to more homogeneous territories from a topographical point of view, thus favouring pollen 

dispersal mainly in areas close to the coastline and in the broad fluvial valleys (García-Mozo et al., 2004; 

Hernández-Ceballos et al., 2011). 

 

The model presented in this work showed high reliability for modeling the ‘PI’ in the Mediterranean region, 

as highlighted by validation process. According to this finding, the spatial model explained 88 % of the 

variance of the ‘PI’. Therefore, the spatial interpolation method used for geostatistical modeling i.e. regression-

kriging, showed to be useful for analyzing the spatial variability in airborne pollen concentrations, as 

documented also from other geostatistical techniques (Alba et al., 2006; DellaValle et al., 2012; Aguilera et 

al., 2015). It is important to emphasize that areas showing a lower olive grove surface in their proximities, may 

record relative high pollen counts mainly coming from external pollen sources (Fernández-Rodríguez et al., 

2014). In general, these areas are less sampled from the standpoint of the aerobiological researches based on 

olive pollen, thus spatial modeling may be a useful tool for predicting pollen intensity in unsampled areas. 

 

In general, mixed geostastical models such as cokriging or regression-kriging may result in more accurately 

predictions than simple kriging methods (Yao et al., 2013) since these techniques combine both spatial 

interpolation and inference of the response variable from one (cokriging) or several (regression-kriging) 

predictors (Knotters et al., 1995). According to our findings, using ‘SII’ and rainfall during May as predictors 



increased cross-validation in a significative way when compared with ordinary kriging (Q2 = 0.65; RMSE = 

5591; MAE = 3884) or cokriging only ‘SII’ being used (Q2 = 0.73; RMSE = 4979; MAE = 3427). However, 

regression-kriging is not always the most appropriate technique for spatial modeling from an environmental 

variable (Hosseini et al., 2014), otherwise the selecting of the optimal geostatistical technique depends on both 

response variable characteristics and spatial autocorrelation (Hengl, 2007; Li and Heap, 2014). 

 

One case where the ‘PI’ value estimated by the model was more different with respect ‘PI’ observed value i.e. 

with one of the most greater error of prediction (residual: -6,525 grains m-3 air), is the Salerno station (Italy). 

The average annual ‘PI’ observed in Salerno was 18,416 grains m-3 air, a relative high value considering the 

olive grove surfaces surrounding to the pollen trap. Furthermore, Salerno is located in a topographically 

isolated territory surrounded by mountains, suggesting that probably pollen recirculation phenomenon within 

this area may be particularly important. In this sense, the maximum influence according to pollen emission 

must be reached to shorter distance from the pollen trap when compared with the rest of sampling points. 

 

On the other hand, a marked interannual variability with respect to the pollen production, i.e. ‘PI’ value (mean 

= 20,045; standard deviation = 21,752; coefficient of variation = 109 %) was observed in the Salerno station 

taking into account a greater number of years (period 1999-2011). This alternating behavior may be influenced 

by a less developed agricultural techniques favouring the alternate bearing (Fernández-Escobar et al., 2004; 

Bustan et al., 2011; Fernández et al., 2015) when compared with other Italian regions where olive growing is 

more relevant. But also this fact may reflect that the pollen recorded in Salerno is originated in a reduced 

geographical area with homogeneous environmental conditions, thus favouring the year-to-year synchrony of 

the olive groves (Monselise and Goldschmidt, 1982). This fact may support the hypothesis of pollen 

recirculation, although other studies must be performed taking into account a local or regional scale for 

studying wind direction pattern and more detailed pollen dispersion. 

 

The ‘PI’ values estimated by the model in the Jaen and Cordoba stations also show a certain error with respect 

to observed values (residuals: -8,498 grains m-3 air y -7,762 grains m-3 air, respectively). In this case, the 

prediction error may be due to both sites are located in areas with important extensions of olive groves (Díaz 

de la Guardia et al., 2003), specifically the largest olive groves surface in the Mediterranean region (Barranco 

et al., 2008). Therefore, both stations displayed a large difference in ‘PI’ values when compared with the rest 

of the sampling sites. For this reason, logarithmic transformation was required in order to improve skewness 

of the distribution of data, being an important premise for the geostatistical techniques (Li and Heap, 2014). 

 

5. Conclusions 

 

The spatial model generated in this study results to be a very powerful tool, obtaining a reliable Pollen Index 

map in the Mediterranean region. Furthermore, the model also includes information about general patterns of 



pollen dispersal from the potential sources, since Specific Influence Index and rainfall during the pollen season 

(May) was included as predictors. The airborne-pollen maps may have important agricultural implications due 

to the interest of the Pollen Index for forecasting accurately crop yields. In this sense, geographical variability 

of the olive production may be studied by the spatial distribution of the Pollen Index. On the other hand, 

airborne-pollen maps allow defining higher risk areas for pollen allergy sufferers.  

 

Mapping was carried out from the main olive cultivation areas along the Mediterranean basin, representing 

approximately 75 % of the total Mediterranean olive-growing areas, according to CORINE land-use data. 

Modeling was not extended to the entire Mediterranean region because the lack of sampling sites in the certain 

areas, thus limiting the statistical validation of the results. In the future, the model may be extended to the 

entire Mediterranean region as long as the presence of aerobiological sampling sites are also increased. 
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