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Abstract

We introduce Dynamic Entropy Pooling, a quantitative technique to perform dynamic portfo-
lio construction with discretionary, non-synchronous views. With Dynamic Entropy Pooling,
the portfolio manager can embed in the allocation process signals with life spans ranging from
minutes to years, calendar views, autocorrelation stress-testing, and the traditional views on
expectations, correlations and volatilities.

After introducing the theoretical framework for Dynamic Entropy Pooling, we show how to
solve the respective portfolio construction problem by means of dynamic programming with
time-dependent coeffi cients. To understand the optimal exposures ensuing from Dynamic
Entropy Pooling we analyze a variety of relevant sub-cases and we present two case-studies.

Fully documented code is available at http://www.symmys.com/node/831.
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1 Introduction

Portfolio construction is about blending market views or signals into optimized portfolios.
Conceptually, there are three dimensions of complexity in constructing portfolios.

First, simple "myopic" sequences of one-period problems versus a more complex multi-
period framework.

Second, systematic trading based on rules and algorithms that process market signals, ver-
sus the more complex discretionary trading, where trades follow from the bespoke subjective
bearish/bullish views of analysts, strategists, or macroeconomists.

Third, simple mean-variance optimization versus true optimization that accounts for con-
straints and market impact.

We summarize the main approaches in the table below, which we proceed to comment.

Discretionary Multiperiod Mkt impact
Grinold (’89) × × ×
Black-Litterman (’90) X × ×
Entropy Pooling (’08) X × ×
Davis-Lleo (’14) × X ×
Garleanu-Pedersen (’13) × X X
Dynamic Entropy Pooling X X X

Table 1: Methodologies for portfolio construction

The path to portfolio construction started decades ago, with the path-breaking work
on systematic factors by [Rosenberg and Lanstein, 1985] and [Fama and French, 1993], which
then became the systematic cross-sectional signals popularized in [Grinold, 1989] and later
in [Grinold and Kahn, 1999], which in turn were adopted by systematic hedge funds world-
wide, see e.g. [Asness et al., 2013]. In these early "Grinold" approaches, dynamic portfolios
are built from a sequence of myopic one-period mean-variance optimizations, where the ex-
pected returns are set systematically as deterministic functions of securities characteristics.
In essence, Grinold laid the foundation for portfolio construction with an effective systematic,
one-period, no-market impact framework.

Next, portfolio construction has focused on processing more complex, discretionary views.
The celebrated model by [Black and Litterman, 1990] is among the first approaches to use
quantitative techniques to combine subjective views within a base-case risk model. In Black-
Litterman, the distribution of the risk factors is assumed normal and the views are expressed
on the expectation of linear combinations of the risk factors. The Entropy Pooling approach
in [Meucci, 2008] extends the Black-Litterman methodology to allow for fully general market
distributions and for views on general features of such distributions. Conceptually, a key
difference between the Black-Litterman methodology and Entropy Pooling is that Black-
Litterman expresses views on the parameters of the market under rigid (normal) parametric
assumptions, whereas Entropy Pooling expresses views on features of the market, such as
expectation or correlations, regardless of the market distribution.

Despite its generality, the original Entropy Pooling approach operates within a one-period
framework: the subjective views or stress-tests refer to the distribution of the market at one
specific investment horizon. However, portfolio managers operate with multiple horizons. Fur-
thermore, the views often stem from signals with different spans: signals from microstructure
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analysis can last a few minutes; signals from technical analysis have a life of hours or days;
econometric mean reversion materializes over days or months; and macroeconomic signals can
be of the order of years.

True multi-period portfolio construction is tackled in [Grinold, 2007], [Grinold, 2010] and
[Gârleanu and Pedersen, 2013], where systematic signals follow a VAR(1) process.

[Davis and Lleo, 2013] provide a theoretical framework for multi-period portfolio view-
processing with discretionary views. However, the framework can be implemented in practice
only with systematic views that follow a VAR(1) process. Furthermore, the authors do not
show how to build their view-processing framework within a multi-period optimization.

The above history of portfolio construction is summarized in Table 1.
In this article we introduce Dynamic Entropy Pooling, a quantitative approach to blend

views and stress tests at multiple horizons, and to embed such views and stress-tests into a
multi-period optimization process. Dynamic Entropy Pooling allows the discretionary port-
folio manager to implement a truly quantitative portfolio construction process. Portfolio
managers can focus on the view generation process, by filtering the opinions of analysts,
strategists, or macroeconomists, while leaving to Dynamic Entropy Pooling the burden to
optimally reflect their views in a dynamic portfolio.

First of all, we model the market risk drivers (such as interest-rate term-structures, implied
volatility surfaces, stock log-prices, etc.). Using the nomenclature of [Black and Litterman, 1990],
we call the estimated process of the drivers the "prior" model. More precisely, in Dynamic
Entropy Pooling we assume a multivariate Ornstein-Uhlenbeck process as the prior model.
This process allows us to model mean-reversion, cointegration, explosive behaviors, as well as
the standard arithmetic and geometric Brownian motion.

Second, we model views, scenarios, and stress-tests on the risk drivers, which are con-
straints on the multivariate stochastic process followed by the risk drivers. To preserve an-
alytical tractability, in Dynamic Entropy Pooling we model the views as statements on ex-
pectations and cross-covariances of arbitrary linear combinations of the multivariate process
at arbitrary times. This approach accommodates a number of practical applications: in par-
ticular, it is possible to process cross-assets calendar views and stress-testing on volatility
propagation and cross-assets autocorrelations.

Third, we compute the posterior process for the dynamic drivers, which embeds the views
in the prior model, using Entropy Pooling framework in [Meucci, 2008]. In particular, we
adopt the analytical implementation of Entropy Pooling, which allows for computational
speed even in large-dimensional markets with an arbitrary number of trading periods.

Fourth, we map the risk drivers into the portfolio profit and loss (P&L) over each trading
period. To this purpose, we make the standard assumption that the P&L is linear in the
increments of the risk drivers through exposures (durations for rates, deltas and vegas for
implied volatilities, etc.). We highlight that the risk drivers can also include external variables
[Chen et al., 1986], such as macroeconomic variables (CPI, GDP, etc.), which do not affect
directly the portfolio P&L, but on which the manager can express views that indirectly affect
the P&L via correlations and autocorrelations.

Fifth and last, we optimize a multi-period objective function. In Dynamic Entropy Pooling
we consider as objective function the discounted expected stream of the future P&L’s, penal-
ized with a risk aversion term and with a market impact term, as in [Gârleanu and Pedersen, 2013].
As a matter of fact, our approach and results coincides with [Gârleanu and Pedersen, 2013]
in the special case of no discretionary views and no constraints. Our work generalizes
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[Gârleanu and Pedersen, 2013] in three directions: first and foremost, we include discretionary
views in the portfolio construction process; second, we allow for arbitrary equality and in-
equality linear constraints; and third, we account for estimation risk.

This article is organized as follows. In Section 2 we lay in full generality the theoretical
foundations of dynamic portfolio management in the presence of multi-period views. This
entails adapting to the present dynamic, multi-period context the ten steps of quantitative
portfolio management in [Meucci, 2011].

In Section 3 we introduce Dynamic Entropy Pooling: a tractable, yet flexible and general
set of modeling assumptions, which make it possible to implement in practice the general
approach to dynamic portfolio management in the presence of multi-period discretionary
views and constraints, as laid out in the previous section.

In Section 4 we present the simplest solution of the Dynamic Entropy Pooling framework,
namely when there is no market impact. In this case we obtain the optimal policy via a series
of simple mean-variance optimizations, each reflecting a different set of multi-horizon views.

In Section 5 we include market impact in the Dynamic Entropy Pooling framework. To
determine the optimal policy in this scenario, we solve analytically a sequence of Bellman
equations with time-dependent coeffi cients, where the coeffi cients follow from a backward
recursion.

In Section 6 we consider the most general case of Dynamic Entropy Pooling: market impact,
constraints, and estimation updating. To maximize the multiperiod objective function in this
context, we use a heuristic approach, solving for the optimal deterministic policy via calculus
of variations, only preserving the first step of the policy, and then repeating the process at
each step. As it turns out, this last solution to Dynamic Entropy Pooling nests the analytical
solutions in the simpler frameworks of Sections 4 and 5. We also tested complex linear
policies such as those in [Brandt et al., 2009] and [Moallemi and Sağlam, 2012], which can be
computed via second-order cone programming. However, the repeated deterministic policy
provides the same results as the repeated linear policy.

In Section 7 we show two simple low-dimensional case studies, to further our understanding
of the Dynamic Entropy Pooling approach.

Section 8 concludes. A technical appendix contains results that can be skipped at first
reading. Fully documented code is available at http://www.symmys.com/node/831.

2 Theory: a general framework for discretionary multi-period
portfolio management

In this section we introduce in full generality a framework for multi-period portfolio man-
agement, which we summarize in the table below, adapting the general ten-step approach to
portfolio management in [Meucci, 2011] to the present multi-period environment
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Step Computation
1-2-3 Market dynamics
2̃-3̃ Discretionary views
4-5-6 Profit-and-Loss
7 Ex-ante evaluation
8 Portfolio construction
9 Execution
10 Performance analysis

Table 2: Framework for discretionary multi-period portfolio management

To facilitate the understanding of the general framework, we illustrate each concept with
an oversimplified example. In Section 3 we discuss Dynamic Entropy Pooling, which is a
realistic, flexible model to implement the general framework laid out here.

2.1 Market dynamics (1: Quest for Invariance; 2: Estimation; 3: Projec-
tion)

The randomness in the market is driven by a set of n̄ risk drivers whose values at time t are
collected in the vector Xt ≡ (X1,t, . . . , Xn̄,t)

′, such as interest-rate term-structures, implied
volatilities surfaces, etc. The first ingredient is the process followed by the key risk-drivers,
which we collect in a single vector

Xt t̄|it ≡
(

Xt
Xt+1
·
X t̄

)
|it ∼ fXt t̄|it , (1)

where it is the information available at time t. The process of the risk drivers is monitored
at discrete unit steps t, t+ 1, . . . , t̄, where the last point t̄ is arbitrarily far in the future, and
where the time unit corresponds to the rebalancing frequency for a given investment style.

Example 1 Consider a trivial market of n̄ stocks and a cash account with zero interest rates.
The risk drivers X for the stocks can be set as the stock prices. Assume that the stocks are
traded at most once a day, and thus time is measured in days. A simplistic baseline process
could be a random walk with normal shocks with expected value µ and covariance matrix σ2

(multivariate Brownian motion). The process Xt t̄|it follows the distribution:(
Xt
Xt+1
·
X t̄

)
|it ∼ N

(( xt
xt+µ
·

xt+(t̄−t)µ

)
,

(
0σ2 0 · ·
0 1σ2 0 ·
· · · ·
· · · (t̄−t)σ2

))
, (2)

where the variance is a block diagonal matrix. Note that the first diagonal block is zero. This
is just a compact notation to indicate that the marginal distribution of Xt is a Dirac delta
about xt, as at time t the risk drivers Xt have already realized. And we can think of the delta
distribution as the limit of a Gaussian density, as the variance approaches zero.
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2.2 Exposures and P&L (4: Pricing; 5: Aggregation; 6: Attribution)

The second ingredient is bt ≡ (b1,t, . . . , bn̄,t)
′, the n̄-dimensional vector of exposures to the

risk drivers at time t, and we collect the exposures at different times in a unique vector:

bt t̄ ≡
(

bt
bt+1
·
bt̄

)
. (3)

The exposures are control variables, which steer the portfolio profit and loss (P&L) through
time. More precisely, the P&L (without market impact) Πs+1 over the unit period from time
s to s+ 1, for any future time s ≥ t, depends on the path of the risk drivers over the period
and the exposures at the beginning of the period

Πs+1 = p&l(Xs s+1, bs), (4)

where p&l is a suitable deterministic function.

Example 2 In our example the exposures bs are the number of shares at time s. Then the
generic P&L between time s and s+ 1 reads

Πs+1 = b′s∆Xs+1, (5)

where ∆Xs+1 = Xs+1 −Xs is the increment on the trading interval; and where the capital
necessary to rebalance the exposures b comes from a cash account, which does not contribute
to the P&L.

Given the sequence of the exposures, the distribution of the risk drivers determine the
distribution of the path of the profits and losses Πt t̄, conditioned on current information:

(bt t̄, fXt t̄|it) 7→ Πt t̄|it ≡
(

Πt+1

Πt+2
·

Πt̄

)
|it ∼ fΠt t̄|it . (6)

Example 3 In our example, the distribution of the profit and loss sequence, given the se-
quence of the exposures, as defined in (3), comes from the distribution of the process of the
risk drivers (2):

Πt t̄|it ≡
(

Πt+1

Πt+2
·

Πt̄

)
|it ∼ N

 b′tµ
b′t+1µ
·

b′t̄−1µ

 ,

 b′tσ
2bt 0 · ·

0 b′t+1σ
2bt+1

· ·
· b′t̄−1σ

2bt̄−1

 . (7)
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2.3 Ex-ante Evaluation (7)

For each generic time t there is an index of satisfaction St that depends on the distribution
of the future P&L Πt t̄|it. Since the P&L depends on the exposures and the process of the
risk drivers as in (6), then the index of satisfaction St must be a function St of the exposures
and the distribution of the risk drivers

St{Πt t̄|it} = St(bt t̄, fXt t̄|it). (8)

Example 4 In our example, let us choose a myopic (one-period) mean-variance trade-off:

St{Πt+1,Πt+2, . . . ,Πt̄|it} = Et{Πt+1} − γ Vt{Πt+1}, (9)

where Et{·} and Vt{·} are respectively the expectation and the variance operator conditioned
to the information it, and γ is the risk aversion parameter. Then satisfaction depends on the
number of shares and the stock process (2), as follows

St(bt t̄, fXt t̄|it) = btµ− γb′tσ2bt. (10)

2.4 Portfolio Construction (8)

When constructing a portfolio at the generic time t, we process the information available at
time t and decide on a set of exposures that we deem optimal.

More precisely, at time t, the future exposures {bs}s≥t must be specified as the output of
a policy. A policy is a set of functions calibrated at time t, which we denote by ps(is), which
map the information is available at time s into a vector of exposures bs, for any s ≥ t

bs = ps(is), for any s ≥ t. (11)

Therefore, the portfolio is fully specified by a policy:

pt t̄ :


it
it+1

·
it̄

 7→


pt (it)
pt+1 (it+1)

·
pt̄ (it̄)

 . (12)

Then, with minor abuse of notation

St{Πt t̄|it} = St(pt t̄, fXt t̄|it), (13)

where the function St depends on the information it. This setting is fully general: it includes
one-period optimization, as well as multi-period targets and dynamic rebalancing (see e.g.
[Merton, 1992]).
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Example 5 In our example, where the satisfaction is given by the one-period mean-variance
trade-off (9), only the first term pt(it) of the policy function plays a role. Therefore from
(10):

St(pt t̄, fXt t̄|it) = [pt(it)]
′µ− γ[pt(it)]

′σ2[pt(it)]. (14)

The optimization framework yields the optimal policy calibrated at time t

p∗t t̄ = argmaxpt t̄∈Ct St(pt t̄, fXt t̄|it), (15)

where Ct is a set of potential additional constraints.

Example 6 In our example, leaving the problem unconstrained, we obtain

p∗t t̄ =

(
1

2γ
(σ2)−1µ

pt+1(it+1)
·

)
= argmaxpt t̄{p

′
t(it)µ− γp′t(it)σ2pt(it)}, (16)

where we emphasize how the subsequent policy functions pt+1, pt+2... are left undetermined,
as the objective function is a myopic one-period function. Then the optimal allocation for the
next period is the standard mean-variance trade-off

t→ b∗t =
1

2γ
(σ2)−1µ. (17)

2.5 Further steps (9: Execution; 10: Performance Analysis)

We decide the strategy to achieve the next-step optimal exposure b∗t in such a way to minimize
market impact. Then, we evaluate ex-post the performance achieved by our process. These
last two steps are beyond the scope of the present article.

2.6 Embedding the views (2̃: Estimation; 3̃: Projection)

Views are statements on the potential outcomes of the risk drivers. For instance, the classi-
cal views a-la Black-Litterman are statements on expectations of linear combinations of the
process. Similarly, one can express statements on correlations, volatilities, tails. As sketched
in the process map in Table 2, in order to embed views in the allocation process, we need to
revisit the very beginning of the process, namely the formulation of the process for the risk
drivers, Steps 2-3.

More formally, the views are a set of statements V on the distribution of the process
fXt t̄|it followed by the risk drivers Xt t̄|it. We denote the distribution of a process that
satisfies the views as follows

fXt t̄|it ∈ Vt. (18)
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The above notation highlights that the views act as a constraint on the set of processes that the
risk drivers can follow. Notice that since we are considering the whole process for the drivers
Xt→t̄|it, the views include calender statements on different features of the process at different
times, such as expectations on growth of a driver, or stress-testing of autocorrelations.

Example 7 Suppose that we have a view that the return of the n-th stock over the next period
is twice the forecast in the base-case process (2)

Et{∆Xn,t+1} = 2µn. (19)

We easily obtain a process that satisfies the views by shifting all the future expectations of the
n-th stock in the original Brownian motion (2), as follows:

Et{Xn,s} = xn,t + (s− t+ 1)µn for any s = t+ 1, . . . , t̄. (20)

To embed the views in the investment process, we start from a base-case risk model, i.e.
a model for the joint distribution of the process of the risk drivers fXt t̄|it , as in (1). In
the terminology of [Black and Litterman, 1990], this is the "prior" distribution, which in the
original Black-Litterman framework is set in terms of CAPM-like equilibrium arguments.

Then, we need a mechanism that replaces the process for the risk drivers with a new
process that satisfies the views

fXt t̄|it /∈ Vt → f̄Xt t̄|it ∈ Vt. (21)

Then, simply by following all the subsequent steps in Table 2, we automatically ensure an
allocation for the next period consistent with the views

f̄Xt t̄|it ∈ Vt
(Table 2)−→ b∗t . (22)

Example 8 In our example, let us suppose that the revised process (20) is the most natural
perturbation of the original Brownian motion. Then we obtain the revised optimal allocation

b∗t =
1

γ
(σ2)−1

( µ1
·

2µn
·
µn̄

)
. (23)

As expected, the optimal allocation provides a larger exposure to the n-th stock, given the
bullish view on it (19).

3 Practice: Dynamic Entropy Pooling

In this section we present Dynamic Entropy Pooling, a practical implementation of all the
steps for dynamic portfolio management and for views processing, which was laid out in full
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generality in Section 2. Unlike in the toy examples in Section 2, Dynamic Entropy Pooling is
both flexible and able to realistically model a wide variety of real-life investment scenarios.

3.1 Market dynamics (1: Quest for Invariance; 2: Estimation; 3: Projec-
tion)

The first ingredient is a prior model for the evolution of the risk drivers, as prescribed by the
general theoretical framework (1). The univariate Brownian motion in the toy example (2) is
not suffi cient to model general market dynamics. Instead, we model the n̄ risk drivers Xt as
a multivariate Ornstein-Uhlenbeck process

dXt = (−θXt + µ)dt+ σdW t, (24)

following [Meucci, 2009], where the reader can find all the proofs of the statements to follow.
In this expression θ is the n̄ × n̄ transition matrix, namely a square matrix that defines

the deterministic portion of the evolution of the process; µ is a fully generic n̄ × 1 vector,
which represents the unconditional expectation when this is defined; σ is the n̄ × n̄ scatter
generator, namely a full-rank square matrix that induces the dispersion of the process;W t is
an n̄× 1 vector of independent Brownian motions.

Note that θ is fully generic, and that the process (24) is mean reverting only if the eigen-
values of θ have positive real part. In this case θ−1µ represents the long term expectations
of the factors. If θ has eigenvalues whose real part is null or negative, then it means that a
combination of factors has an explosive behavior, respectively like a random-walk or expo-
nentially explosive. If θ has some eigenvalues whose real part is positive, then there exists
cointegration.

Note that σ is only required to be full rank. Furthermore, we assume without loss of
generality that σ is also symmetric. Indeed, if we start with a fully arbitrary σ, we can
then replace it with the Riccati root of the matrix σσ′, i.e. the matrix z that solves the two
equations z2 = σσ′ and z = z′.

To estimate the parameters (θ,µ,σ) of the multivariate Ornstein-Uhlenbeck process (24)
we rely on standard econometric analysis. In the process, we superimpose a generalized risk-
parity condition, similar in spirit to the equilibrium condition in [Black and Litterman, 1990],
to ensure that we do not obtain unwieldy corner solutions for the optimal portfolios

µn ∝
√

[σ2]n,n, n = 1, . . . , n̄. (25)

Then the prior distribution fXt t̄|it followed by the market process is jointly normal:

Xt t̄|it ∼ N (µt t̄,σ
2
t t̄). (26)

For the expectation in (26) we have:

µt t̄ ≡

 e−0θxt+(In̄−e−0θ)θ−1µ

e−1θxt+(In̄−e−1θ)θ−1µ
·

e−(t̄−t)θxt+(In̄−e−(t̄−t)θ)θ−1µ

 , (27)

where In̄ is the n̄× n̄ identity matrix. If θ is singular, θ−1 means limε→0 θ
−1
ε ,where θε is any

invertible perturbation of θ, see Appendix A.1.
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As for the covariance in (26), we first define the square matrix σ2
τ , for a generic τ ≥ 0 in

terms of its stacked columns

vec(σ2
τ ) ≡ (θ ⊕ θ)−1 (In̄2 − e−(θ⊕θ)τ )vec(σ2), (28)

where ⊕ is the Kronecker sum, and In̄2 is the n̄2× n̄2 identity matrix. Notice that θ⊕θ is in-
vertible if and only if θ is invertible. If θ is not invertible then (θ ⊕ θ)−1 ≡ limε→0 (θε ⊕ θε)−1,
where θε is an invertible perturbation of θ, see Appendix A.1 for more details. Then

σ2
t t̄ ≡


σ2

0 σ2
0e
−θ′ σ2

0e
−2θ′ · σ2

0e
−(t̄−t)θ′

e−θσ2
0 σ2

1 σ2
1e
−θ′ · σ2

1e
−(t̄−t−1)θ′

e−2θσ2
0 e−θσ2

1 σ2
2· ·

e−(t̄−t)θσ2
0 σ2

t̄−t

 . (29)

As in the example (2), the zero matrix σ2
0 reflects the fact that at time t the risk drivers have

already realized Xt = xt, and therefore the distribution of Xt conditioned on information at
time t, is normal with variance that tends to zero. This is a compact notation for degenerate
deterministic variables, which we treat as normal with a small variance that we set to zero at
the end of the process.

The multivariate Ornstein-Uhlenbeck process generalizes the toy example (2) in several
directions: it includes the Brownian motion as a special case, it is suitable to model diffusion
(random walk), mean-reversion and cointegration. Furthermore, through suitable transforma-
tions of the risk drivers, it models a variety of additional dynamics, such as for instance the
multivariate geometric Brownian motion.

3.2 Embedding the views (2̃: Estimation - 3̃: Projection)

Now we need a mechanism to embed the views in the allocation process, as prescribed by the
general theoretical framework (21).

In the toy example (20) we used a heuristic to embed the views in the market process. In
this section, we apply the Entropy Pooling approach in [Meucci, 2008] to stochastic processes,
viewed as (large dimensional) random variables.

We recall that relative entropy minimization is widely applied in physics and statistics
([Cover and Thomas, 2006]), that it generalizes Bayesian updating ([Caticha and Giffi n, 2006]),
and that it has already found other applications to economics and finance ([Avellaneda, 1999],
[Hansen and Sargent, 2007], [Breuer and Csiszar, 2013], [Glasserman and Xu, 2014]).

More precisely, starting from a prior distribution fXt t̄|it for the process of the risk drivers
Xt t̄|it conditioned on currently available information, the posterior distribution is a new
distribution for the whole process f̄Xt t̄|it 6= fXt t̄|it that should be as close as possible
to the prior model fXt t̄|it , and at the same time satisfy the views, without adding any
unnecessary additional structure.

Let us define the (pseudo) distance E between a generic distribution gXt t̄|it for the process
of the risk drivers and the prior distribution fXt t̄|it in terms of the relative entropy

E(g, f) ≡
∫
g(xt, . . . ,xt̄) ln

g(xt, . . . ,xt̄)

f(xt, . . . ,xt̄)
dxt · · ·xt̄, (30)
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where for ease of notation we wrote the pdf’s as f instead of fXt t̄|it . Then the posterior
distribution is defined as the closest distribution to the prior fXt t̄|it that yet satisfies the
views Vt

f̄Xt t̄|it ≡ argmin
g∈Vt

E{(g, fXt t̄|it)}. (31)

In Dynamic Entropy Pooling, for the prior, we use the multivariate Ornstein-Uhlenbeck
process (24).

For the views, we consider statements on expectations and covariances of arbitrary linear
combinations of the process at arbitrary times

Vt :

{
Egt {vµ,tXt t̄} ≡ µview ;t

Cvgt {vσ,tXt t̄} ≡ σ2
view ;t.

, (32)

where Cvgt {·} is the conditional covariance and E
g
t {·} is the conditional expectation with

respect the yet-to-be defined distribution g.
In this expression, the "view" matrices vµ,t and vσ,t define arbitrary linear combinations

of the process at the monitoring times for the views, and the conformable vector µview ;t

and square, positive definite matrix σ2
view ;t define the extent of the views/stress tests as

stated at time t. If n̄µ is the number of views on expectation and n̄σ is the number of
views on covariance, then vµ,t is a n̄µ × n̄(t̄ − t + 1) matrix, µview ;t is a n̄µ × 1 vector,
vσ,t is a n̄σ × n̄(t̄ − t + 1) matrix, and σ2

view ;t is a n̄σ × n̄σ symmetric and positive definite
matrix. For instance, a single view that the spread between second-period first entry and
next-period second entry is 1%, i.e. Egt {X1,t+2}−Egt {X2,t+1} = 0.01 corresponds to a one-row
vµ,t = (0, . . . 0; 0,−1, 0, . . . , 0; 1, 0, . . . , 0; 0, . . .) and to a view scalar µview ;t =0.01.

Note that the views can be, and in general are, updated as time goes by. Therefore all
the matrices defining the views are in general time dependent. Also, the views expire as time
passes. Then, the number of views n̄µ and n̄σ are time dependent but we did not indicate
such a dependence explicitly for ease of notation.

The full-confidence posterior (31) of Dynamic Entropy Pooling then follows as in [Meucci, 2008]:

Xt t̄|it ∼ N (µ̄t t̄, σ̄
2
t t̄), (33)

where we now proceed to re-write the analytical expressions for µ̄t t̄ and σ̄
2
t t̄ in [Meucci, 2008]

in terms of complementary projectors.
More precisely, let us define the n̄(t̄− t+ 1)× n̄µ pseudo-inverse matrix of vµ,t2:

v+
µ,t ≡ σ2

t t̄v
′
µ,t(vµ,tσ

2
t t̄v

′
µ,t)
−1, (34)

and the two complementary projectors

Pµ,t ≡ (In̄(t̄−t+1) − v+
µ,tvµ,t) , (35)

P⊥µ,t ≡ v+
µ,tvµ,t , (36)

then the Dynamic Entropy Pooling posterior expected path in (33) reads:

µ̄t t̄ ≡ Pµ,tµt t̄ + P⊥µ,t(v
+
µ,tµview ;t). (37)

2This is a pseudo-inverse as vµ,tv+
µ,t = In̄µ , but v

+
µ,tvµ,t 6= In̄(t̄−t+1).
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The posterior expectation (37) is the sum of i) the projected prior expectation µt t̄ defined
in (27); ii) the complementary projection of v+

µ,tµview ;t, where the matrix v
+
µ,t percolates the

effect of the vector of views µview ;t across all the n̄(t̄− t+ 1) entries of the path expectations
Et{Xt t̄}.

It is easy to see that the posterior expected path (37) satisfies the view (32), as vµ,tPµ,t = 0
and vµ,tP⊥µ,t = vµ,t.

Also the Dynamic Entropy Pooling posterior covariance in (33) can be written in terms
of complementary projectors

Pσ,t ≡ In̄(t̄−t+1) − v+
σ,tvσ,t , (38)

P⊥σ,t ≡ v+
σ,tvσ,t , (39)

and reads
σ̄2
t t̄ ≡ Pσ,tσ

2
t t̄P

′
σ,t + P⊥σ,t(v

+
σ,tσ

2
view ;t(v

+
σ,t)
′)(P⊥σ,t)′, (40)

where v+
σ,t is the n̄(t̄− t+ 1)× n̄σ pseudo-inverse matrix of vσ,t

v+
σ,t ≡ σ2

t t̄v
′
σ,t(vσ,tσ

2
t t̄v

′
σ,t)
−1. (41)

The matrix v+
σ,t percolates the n̄σ × n̄σ matrix of views σ2

view ;t across all the n̄(t̄ − t + 1) ×
n̄(t̄− t+1) entries of the path covariance Cvt{Xt t̄}. As in the case of the posterior expected
values, the properties of the projectors Pσ,t and P⊥σ,t ensure that the posterior covariance
matrix defined in Equation (40) satisfies the view (32).

We can add one last step: the posterior (33) follows by assuming full confidence in the
views. If the confidence is less than full, we mix the prior (26) and the full-confidence posterior
(33). To generalize the simple mixture to a multi-manager context, where confidence can be
linked to the track record, and to a multi-confidence framework, see [Meucci, 2008].

Note that we resorted to Dynamic Entropy Pooling, rather than attempting to adapt
[Black and Litterman, 1990], because it is not possible to adapt the original BL methodology
to the present multi-period context in a straightforward manner. Indeed Black-Litterman
sets views on the market parameters, which in this case are the parameters (θ,µ,σ) of the
multivariate Ornstein-Uhlenbeck process (24). Hence, first of all, we would need to express
statements on complex functions of (θ,µ,σ); second, we would have to set prior distributions
on such parameters that are analytically tractable. Neither step appears straightforward to
us.

3.3 Exposures and P&L (4: Pricing; 5: Aggregation; 6: Attribution)

Next, we need to model how the P&L depends on a set of control variables, as prescribed
by the general theoretical framework (4). To this purpose, we model the P&L generated by
a portfolio over a generic time step as the sum of two terms: a "constant-exposure" P&L Π,
and a "market impact" term MI that ensues from rebalancing the exposures.

The constant-exposure P&L is assumed linear in the exposures and in the increments of
the risk drivers

Πt+1 = b′t∆Xt+1. (42)

The form given in Equation (42) is quite general and accurately models a variety of practical
situations.
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For instance, suppose that the n-th position is an equity share, or an index. Then the
risk-driver is the log-value Xn,t = lnVn,t and the P&L of a position with hn,t shares is Πn,t+1 =
hn,t(Vn,t+1 − Vn,t). Then the portfolio P&L becomes

Πt+1 =
∑

nhn,tVn,t × (
Vn,t+1

Vn,t
− 1) ≈

∑
nbn,t∆Xn,t+1, (43)

where bn,t = hn,tVn,t is the money exposure to the equity, and where we used the approxima-
tion Vn,t+1/Vn,t − 1 ≈ ln(Vn,t+1/Vn,t).

More in general, if the manger invests in equity shares, we can express the P&L in terms
of a linear factor model such as market, value, momentum, size in [Carhart, 1997], or more
general "alpha" ("style") or "beta" ("risk") factors [Fung and Hsieh, 1997]:

Πt+1 =
∑

kb
style
k,t ∆Xstyle

k,t+1. (44)

Similarly, suppose that the n-th position is a fixed-income instrument, such as a govern-
ment bond futures. Let us denote by Yk,t the key-rates on the relevant term structure, such
as the par yield curve, or the swap curve. Let us denote by dv01n,k,t the dollar-sensitivity per
unit notional of the n-th instrument to the k-th key rate at time t. Then at first order

Πn,t+1 ≈ −
∑

kdv01n,k,t∆Yk,t+1, (45)

In order to account for low-rate regimes and high-rate regimes, we can define as risk drivers the
shadow rates, i.e. the inverse-call transform of the rates proposed in [Meucci and Loregian, 2013]

Xt,k ≡ c−1 (Yt,k) . (46)

Then the rates satisfy ∆Yt+1,k ≈ ϕk,t∆Xt+1,k, where ϕk,t ≡ dc
dx |x=Xt,k . Hence the P&L due

to a set of government bond futures can be written as in (42) as follows

Πt+1 ≈
∑

k(−
∑

nhn,tdv01n,k,tϕk,t)︸ ︷︷ ︸
bk,t

∆Xk,t+1. (47)

Similarly, consider a portfolio of stock options, then its risk drivers are the log-value of
the respective underlyings, as in (43), and the respective implied volatilities. Denoting the
value of the underlying by Vt = eXt and the implied volatility by Σimpl , the P&L of the option
reads at first order

Πn,t+1 ≈ δn,tVn,t∆Xn,t+1 + vn,t∆Σimpln,t+1, (48)

where δn,t and vn,t are the delta and vega of the option and Σimpln,t+1 is the implied volatility.
Then for a portfolio with hn,t holdings in the n-th option, the P&L is of the form (42)

Πt+1 ≈
∑

nhn,tδn,tVn,t︸ ︷︷ ︸
bδn,t

∆Xn,t+1 +
∑

nhn,tvn,t︸ ︷︷ ︸
bσn,t

∆Σimpln,t+1. (49)

In reality, in a large portfolio of stock options, the underlyings are summarized by a style/risk
factor model as in (44), and the VIX index is used as a proxy for the implied volatilities.
Then

Πt+1 ≈
∑

kb
style
k,t ∆Xstyle

k,t+1 + bVIXt ∆VIX t+1. (50)
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It is important to note that the set of n̄ risk drivers Xt may include external factors, such
as inflation or other macro economic variables, that are not directly investable, but that have
an indirect statistical effect on the k̄ exposures bt via the correlations of the investable risk
drivers. To this purpose, we assume that the investable risk drivers are the first k̄ among the
n̄ in Xt. Then we generalize the linear expression for the P&L (42) to include a k̄× n̄ matrix
ω ≡ (Ik̄|0k̄×(n̄−k̄)), as follows

Πt+1 = b′tω∆Xt+1. (51)

As far as the market impact term is concerned, standard models for the market im-
pact of transactions assume a super-linear relation with the variation of the holdings (see
[Almgren and Chriss, 2000], [Almgren et al., 2005] and [Gatheral, 2010]). For computational
purposes we use a quadratic dependence, similar to [Gârleanu and Pedersen, 2013] or [Grinold, 2006].

MI t = a2 + (bt − bt−)′c2(bt − bt−) = a2 + ∆b′tc
2∆bt, (52)

where a2 is the average cost of maintaining constant exposures; c2 is a symmetric positive
definite matrix; and where we used the shift operator∆bt ≡ bt−bt−1 and the observation that,
in our discrete-time model, bt− = bt−1. Furthermore, in the practical implementation, we set
c2 proportional to the variance of the risk-drivers returns as in [Gârleanu and Pedersen, 2013],
although the specification of c2 is completely flexible.

Note that a portfolio with fully general exposure rebalancing bt → bt+1 appears to violate
the self-financing condition. However, self-financing is ensured, as long as we assume access
to a pool of cash as part of the assets under management, which does not affect the P&L
computation. Such cash is always present in fund management in practice.

3.4 Ex-ante Evaluation (7)

At this point we need an index of satisfaction to evaluate a potential investment, as prescribed
by the general theoretical framework (8).

A myopic single-period mean-variance trade-offas in the toy example (9) is not satisfactory
because the portfolio manager cares about all the stream of future performance.

Similar to [Gârleanu and Pedersen, 2013], in Dynamic Entropy Pooling we model satis-
faction as the discounted expected stream of the constant-exposure P&L, penalized with a
quadratic term that accounts for risk aversion and with a further term that accounts for
market impact

S(γ,η)
t ≡ Et{

∑∞
s=te

−λ(s−t) (Es{Πs+1} − γ
2Vs{Πs+1} − η

2Es{MI s}
)
}. (53)

In the above expression, λ is the discount rate, γ is the risk aversion penalty parameter and
η is the market impact penalty parameter.

The index of satisfaction (53) is the practical objective function of a manager who is
compensated on the basis of the performances on each period. A different approach, used
mostly in the consumption/investment problem, would be to maximize the expected utility
of the final wealth, as in [Karatzas et al., 1987].

To express the satisfaction (53) as a function of the exposures as in the general framework
(8), we express the P&L as a linear function of the exposures (51). Leaving aside constant
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terms, which are irrelevant, we obtain

S(γ,η)
t = Et{

∑∞
s=te

−λ(s−t) (B′sωEs{∆Xs+1} (54)

−γ
2B
′
sωCvs{∆Xs+1}ω′Bs − η

2∆B′sc
2∆Bs

)
}.

Note that at the current time t the future exposures Bs for any time s > t can be stochastic,
if they are decided at time s, which is why we used the upper case notation. Also note that
the satisfaction (54) depends on bt−1, the current "legacy" portfolio before trading at time t,
due to the first market impact term in the sum.

The upper-bar notation in the index of satisfaction (53) and (54) emphasizes that we use
the posterior distribution of the market (33), which embeds the discretionary views (32). If
there are no views, the market follows the prior equilibrium (multivariate Ornstein-Uhlenbeck)
process (26).

3.5 Portfolio construction (8)

To construct the Dynamic Entropy Pooling portfolio, we seek to maximize the index of sat-
isfaction (54) via an optimal policy, as in the general theoretical framework (11)

{b∗s = p∗s(is)}s≥t, where
{p∗s}s≥t = argmax{ps}s≥t∈C Et{

∑∞
s=te

−λ(s−t) (ps(Is)′ω Es{∆Xs+1} (55)

−γ
2ps(Is)

′ωCvs{∆Xs+1}ω′ps(Is)− η
2 ∆ps(Is)

′c2∆ps(Is)
)
}

where p ∈ C denotes that the policy can be required to satisfy additional constraints and
where Is is the information set that which will become available at time s ≥ t (and thus it
consists of random variables, this is why we used the capital letter notation).

To solve the general portfolio construction problem (55), we consider increasingly complex
situations, where the more complex includes the simpler as a special case. We purposely show
this progression, instead of jumping directly to solving the most complex scenario, because
the intermediate steps and the respective techniques we use to solve them, are of practical
relevance and allow for a deeper understanding of the problem at hand.

We summarize below the progression of the cases we consider, their definition, how we
solve such problems, and in which section

Views Constr. Estim How Where
X × × Mean-variance Section 4
× × × Dyn prog (analyt) GP (2013)
X × × Dyn prog (semi-analyt) Section 5
X X X Calc of variations (QP) Section 6

(56)

3.6 Further steps (9: Execution; 10: Performance Analysis)

Once we have computed the optimal future path of exposures (55), and in particular the
optimal current exposure b∗t , we need to implement this exposure by buying or selling specific
instruments, with holdings h∗t .
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As discussed in Section 3.3, the exposures are linearly related to the holdings through an
equation of the kind

bt = dtht, (57)

where dt is a matrix that depends on the information available at time t. In general, dt is
not full-rank matrix, because the number of assets considered for investment is greater than
the number of the risk drivers.

The strategy to achieve the optimal exposures b∗t at time t is decided by minimizing the
transaction costs at that point in time. Then optimal holdings read

h∗t = argmin
b∗t=dtht

TC (ht). (58)

To summarize, at each trading time t, we compute the optimal exposure b∗t , we update dt
on the basis of the current information, and we solve (58) in order to determine the optimal
holdings h∗t . Once the allocation has been implemented, we can evaluate the performance
ex-post via standard performance attribution techniques.

4 Nomarket impact, no constraints, no estimation risk: mean-
variance

In this section we discuss a practical solution for the Dynamic Entropy Pooling framework
introduced in Section 3. Such solution is viable for liquid products such as futures. The
solution is analytical, and thus it allows us to understand in depth the role played by the
views at different horizons in the Dynamic Entropy Pooling framework.

Accordingly, in the general portfolio construction problem (55) we set the market impact
penalty to zero, and we do not constrain the problem

η ≡ 0, C ≡ ∅. (59)

We also assume that the parameters (θ,µ,σ) of the multivariate Ornstein-Uhlenbeck process
(24) have been properly estimated once and for all.

Then, the general Dynamic Entropy Pooling portfolio construction problem (55) becomes

{b∗s = p∗s(is)}s≥t, where
{p∗s}s≥t = argmax{ps}s≥t Et{

∑∞
s=te

−λ(s−t) (ps(Is)′ω Es{∆Xs+1} (60)

−γ
2ps(Is)

′ωCvs{∆Xs+1}ω′ps(Is)
)
}

The objective function (60) is simply the expected sum of disentangled discounted mean-
variance trade-offs

max
{ps}s≥t

Et{
∑∞

s=te
−λ(s−t)ps(Is)

′ω Es{∆Xs+1} − γ
2ps(Is)

′ωCvs{∆Xs+1}ω′ps(Is)} (61)

=
∑∞

s=te
−λ(s−t)Et{maxps [ps(Is)

′ω Es{∆Xs+1} − γ
2ps(Is)

′ωCvs{∆Xs+1}ω′ps(Is)]}.

Therefore optimizing the discounted sum (60) is equivalent to optimizing for all s’s the myopic
(= one-period) mean-variance problems

b∗s = p∗s(is) ≡ argmax
b
{b′ωEs{∆X ′s+1} − γ

2b
′
ωC̄vs{∆X ′s+1}ω′b}, s = t, t+ 1, . . . . (62)
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The solution of the mean-variance problem (62) is readily obtained analytically

b∗s = 1
γ (ωC̄vs{∆Xs+1}ω′)−1ωEs{∆Xs+1}, s = t, t+ 1, . . . ., (63)

where the upper bar notation emphasizes that we are using the Dynamic Entropy Pooling
posterior process in the expectations and covariances.

4.1 No views

First, let us look at the optimal exposures when there are no views, i.e. when the market X
follows the prior equilibrium (multivariate Ornstein-Uhlenbeck) process (26).

The expected returns according to the prior distribution follow from (27) and read

Es{∆Xs+1} =
(
In̄ − e−θ

) (
θ−1µ− xs

)
, s = t, t+ 1, . . . . (64)

The covariance matrix according to the prior distribution follows from (28)-(29) and reads

Cvs{∆Xs+1} = σ2
1, s = t, t+ 1, . . . . (65)

Then the optimal solution (63) reads

b∗s = 1
γ (ωσ2

1ω
′)−1ω(In̄ − e−θ)

(
θ−1µ− xs

)
, s = t, t+ 1, . . . . (66)

The optimal solution (66) is driven by the dislocation between the value xs of the risk drivers
observed at time s and θ−1µ, which is the vector of the long term expected levels (if the risk
drivers are mean reverting).

4.2 With views

Here we switch on the views (32), i.e. we assume that the market X follows the posterior
distribution (33). Then to compute the optimal policy {b∗s = p∗s(is)}s≥t in (63) we need the
posterior expectations and the posterior covariances.

Let us denote by t̄ the last time involving any of the views. The Dynamic Entropy Pooling
posterior expectations for the next-step increment at the generic time s before t̄ read

Es{∆Xs+1} ≡ (Pµ,s)s+1,·

(
In̄−e−0θ

In̄−e−1θ

·
In̄−e−(t̄−s)θ

)
(θ−1µ− xs)︸ ︷︷ ︸

∆µLongTerm
s t̄

(67)

+ (P⊥µ,s)s+1,·
(
v+
µ,sµview ;s −

(
xs·
xs

))
︸ ︷︷ ︸

∆µViewMean
s t̄

s ≤ t̄

where (Pµ,s)s+1,· and (P⊥µ,s)s+1,· are the sub-matrices corresponding to the rows relative to
time s+ 1 in the projector matrices Pµ,s and P⊥µ,s, defined in (35)-(36).

The posterior expected return is the sum of the projection of a term that is proportional
to the difference of the value xs of the risk drivers observed at time s from the long term
expected levels θ−1µ, and of a term that is the complementary projection of the difference
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between the levels of the view µview ;s, "percolated" all over the times and dimensions trough
the matrix v+

µ,s, and the value xs of the risk drivers observed at time s.
As for the Dynamic Entropy Pooling posterior covariance matrix, rearranging terms from

(40) we obtain for the generic time s before t̄

Cvs{∆Xs+1} ≡ σ̄2
s = σ2

1 + [v+
σ,s(σ

2
view ;s − vσ,sσ2

s t̄v
′
σ,s)(v

+
σ,s)
′]s+1,s+1, s ≤ t̄, (68)

where [·]s+1,s+1 is the (s+ 1, s+ 1) block sub-matrix.
Substituting the expectations (67) and the covariance matrix (68) in the optimal exposures

(63), we obtain the Dynamic Entropy Pooling optimal solution

b∗s = 1
γ (ωσ̄2

sω
′)−1ω(Pµ,s)s+1,·∆µ

LongTerm
s t̄︸ ︷︷ ︸

bLongTerms

+ 1
γ (ωσ̄2

sω
′)−1ω(P⊥µ,s)s+1,·∆µ

ViewMean
s t̄︸ ︷︷ ︸

bViewMeans

s ≤ t̄. (69)

Notice that when there are no views, vµ,s = vσ,s = ∅, and Pµ,s = In̄(t̄−s+1), P⊥µ,s = 0,
σ̄2
s = σ2

1, and thus the optimal exposures based on the posterior (69) become the optimal
exposures based on the prior (66). Hence, at the generic time s > t̄ the optimal policy is the
prior policy (66).

5 Market impact, no constraints, no estimation risk: dynamic
programming

In this section we add market impact to the Dynamic Entropy Pooling framework discussed
in Section 4, thereby providing a viable practical solution for illiquid markets. As it turns
out, the solution is an analytical recursion.

Accordingly, in the general portfolio construction problem (55) we leave the market impact
term, though we do not constrain the problem

η 6= 0, C ≡ ∅. (70)

Furthermore, as in the previous Section 4, we assume that the parameters (θ,µ,σ) of the
multivariate Ornstein-Uhlenbeck process (24) have been properly estimated once and for all.

Then, the general Dynamic Entropy Pooling portfolio construction problem (55) reads

{b∗s = p∗s(is)}s≥t, where
{p∗s}s≥t = argmax{ps}s≥t Et{

∑∞
s=te

−λ(s−t) (ps(Is)′ω Es{∆Xs+1} (71)

−γ
2ps(Is)

′ωCvs{∆Xs+1}ω′ps(Is)− η
2∆ps(Is)

′c2∆ps(Is)
)
}.

We solve the problem (71) by dynamic programming. The value function for the generic
period s ≥ t is a function vs(bs−1,xs) of the legacy exposures bs−1 and the value xs of the
risk drivers observed at time s. The value function satisfies the Bellman equation

vs(bs−1,xs) = maxb{b′ωEs{∆Xs+1} − γ
2b
′ωCvs{∆Xs+1}ω′b (72)

− η
2 (b− bs−1)′c2(b− bs−1) + e−λEs{vs+1(b,Xs+1)}}, s = t, t+ 1, . . .
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where the current information set is ⊃ {bs−1,xs} consists of deterministic variables at time
s, and thus they are in lower-case notation.

The conditional one-period covariance is a deterministic function Cvs{∆Xs+1} = σ̄2
s, see

(68). The conditional one-period expected returns are affi ne in the risk drivers

Es{∆Xs+1} = αs + βsxs, (73)

with coeffi cients that follow from (67)

αs ≡ (Pµ,s)s+1,·

(
In̄−e−0θ

In̄−e−1θ

·
In̄−e−(t̄−s)θ

)
θ−1µ+ (P⊥µ,s)s+1,·v

+
µ,sµview ;s (74)

βs ≡ (Pµ,s)s+1,·

(
e−0θ

e−1θ

·
e−(t̄−s)θ

)
− In̄. (75)

Substituting the conditional expectations (73) and covariance σ̄2
s in the Bellman equation

(72) we obtain

vs(bs−1,xs) = maxb{b′ω(αs + βsxs)− γ
2b
′ωσ̄2

sω
′b− η

2 (b− bs−1)′c2(b− bs−1)

+ e−λEs{vs+1(b,Xs+1)}}. (76)

We test a value function quadratic in bs and xs+1 with time-depending coeffi cients ψs ≡
{ψbb,s,ψbx,s,ψxx,s,ψb,s,ψx,s, ψ0,s}, as follows

vs+1(bs,xs+1) = −1
2b
′
sψbb,sbs+b

′
sψbx,sxs+1+ 1

2x
′
s+1ψxx,sxs+1+ψ′b,sbs+ψ

′
x,sxs+1+ψ0,s. (77)

To determine the coeffi cients ψs, we substitute the quadratic ansatz (77) in the Bellman
equation (76) and we impose that it is satisfied for each xs and bs−1. The result is a recursive
definition

ψs−1 = gs(ψs), (78)

where the explicit expression for the recursion function gs is provided in (117)-(122) in the
appendix.

Then, as we show in Appendix A.2, the optimal Dynamic Entropy Pooling policy is de-
termined by the coeffi cients ψs of the value function

b∗s = (γωσ̄2
sω
′ + ηc2 + e−λψbb,s)

−1[ ηc2bs−1︸ ︷︷ ︸
legacy exposures

(79)

+ (ωβs + e−λψbx,s(βs + In̄))xs︸ ︷︷ ︸
current risk drivers

+ (ω + e−λψbx,s)αs + e−λψb,s︸ ︷︷ ︸
(?) future views

], s = t, t+ 1, . . .

The optimal solution (79) at time s has three additive contributions. The first contribution is
linear in the legacy exposure bs−1. The second contribution is linear in the risk drivers’current
values xs. The third contribution is linear in the future views. More precisely, applying the
recursion (78) to ψb,s ((120) in the appendix), the last contribution in the exposures (79) can
be written as

(?) =
∑t̄

t=se
−(t−s)λds,t(ω + e−λψbx,t)αt︸ ︷︷ ︸
future views µview ;t (74)

+ e−(t̄−s+1)λds,t̄ψb,t̄︸ ︷︷ ︸
no views

, (80)
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where t̄ is far enough in the future that it is past the last view; and where ds,t ≡
∏t
u=s+1(ηc2q−1

u )
for t > s and ds,s ≡ Ik̄.

The first term in the sum (80) is proportional to αs, that is, from (74), it is proportional
to the extent of the views µview ;s at the current time s. More in general, the generic term
for t ≥ s in the sum (80) is proportional to αt, that is, it is proportional to the views µview ;t

that will be still alive at the future time t ≥ s. However the influence of the future views is
dampened by an exponential decaying factor.

To summarize, starting from a suitable initialization ψt̄, we compute the coeffi cients ψs
of the value function (77) and thus the optimal policy (79) at all times s ≤ t̄. We discuss
below how to properly initialize ψt̄.

It is simple to check that in the case of no market impact, replacing η = 0 in the expressions
(117)-(122) of the coeffi cients ψs, and then in the optimal exposure (79), we obtain, as
expected, the optimal mean-variance allocation (69).

5.1 No views

First, let us look at the optimal exposures when there are no views, i.e. when the market X
follows the prior equilibrium (multivariate Ornstein-Uhlenbeck) process (26).

When the market follows the prior process the recursion function (78) is time independent,
or gs = g, because all the coeffi cients that define gs are time independent αs = α , βs = β
from (74) and (75), and σ̄2

s = σ2
1 from (68). Hence, the value function (77) is also time-

independent. Therefore we can drop the time subscript from the value function coeffi cients
ψs = ψ. The recursion (78) then becomes an implicit equation that defines the coeffi cients ψ

ψ ≡ g(ψ). (81)

We show in Appendix A.2 the explicit analytical expression of the valuesψ ≡ {ψbb,ψbx,ψxx,ψb,ψx, ψ0}
that solve equation (81).

Then the optimal solution (79) becomes the same as [Gârleanu and Pedersen, 2013]. In-
deed, they also consider the infinite horizon objective (71) and a VAR(1) dynamics for the
markets.

5.2 Views, market impact

Here we switch on the views (32), i.e. we assume that the market X follows the posterior
distribution (33). Then to compute the optimal exposure b∗s in (63) we need the posterior
expectations and the posterior covariances.

When the views are switched on, we must initialize ψt̄ at a future time t̄. Accordingly, we
choose t̄ as the last horizon that involves any view. After t̄, there are no more active views,
and thus the optimal exposures must be the same as in the prior case discussed in Section 5.1.
Hence at time t̄ we set the coeffi cients ψt̄ to match the prior, time independent coeffi cients
(81), or

ψt̄ ≡ ψ. (82)

With the boundary condition (82) we can now compute analytically all the coeffi cients ψs
of the value function (77) for s ≤ t̄ using the recursion (78). Finally, with the coeffi cients ψs,
we compute the optimal policy (79).
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6 Market impact, constraints, estimation risk: calculus of vari-
ations

In this section we consider the most general Dynamic Entropy Pooling scenario, adding con-
straints to the framework in Section 5, and accounting for the issue of estimation risk. As
it turns out, the solution is numerical, and yet very effi cient. Indeed, the optimal exposures
follow from solving a sequence of quadratic programs.

First, in view of our numerical approach, we modify the general portfolio infinite-horizon
construction problem (55) to include a large, fixed, yet finite, number τ̄ of relevant future
steps at any point in time

{b∗s = p∗s(is)}s≥t, where
{p∗s}s≥t = argmax{ps}s≥t∈C Et{

∑t+τ̄
s=te

−λ(s−t) (ps(Is)′ωEs{∆Xs+1} (83)

−γ
2ps(Is)

′ωCvs{∆Xs+1}ω′ps(Is)− η
2∆ps(Is)

′c2∆ps(Is)
)
}.

In practice the number of future time steps τ̄ is such that the discount satisfies e−λτ̄ ≈ 10−2.
Second, we search for a "deterministic" policy, i.e. a set of decisions {bt,t, bt,t+1, . . . , bt,t+t+τ̄}

that disregards any information. In the above notation we emphasize that the policy is com-
puted at time t.

Third, we include linear equality or inequality constraints. Let us stack the path of
exposure into one vector as in (3):

bt,t t+τ̄ ≡
(

bt,t
bt,t+1
·

bt,t+τ̄

)
. (84)

Then, we formulate linear constraints as follows

bt,t t+τ̄ ∈ Ct ⇔
{
mtbt,t t+τ̄ = ut
m̃tbt,t t+τ̄ ≤ ũt

, (85)

where mt and m̃t are conformable matrices while ut and ũt are conformable vectors.
By including linear constraints, we can now assume exposures bt,s to all the risk driversXs,

regardless weather the drivers are investable. Indeed if a driver is not investable, we simply
constrain the respective exposure to zero. Hence, we can simplify the problem, dropping "ω"
from the objective (83).

Fourth and last, we assume that the parameters (θ,µ,σ) of the multivariate Ornstein-
Uhlenbeck process (24) are constantly re-estimated, and similarly for the market impact
parameters c, and thus we denote them by (θ̂t, µ̂t, σ̂t, ĉt).

With the above changes, the Dynamic Entropy Pooling portfolio construction problem
(83) at the generic time t becomes

b∗t,t t+τ̄ = argmaxbt,t t+τ̄∈Ct Et{
∑t+τ̄

s=te
−λ(s−t)(b′t,sEs{∆Xs+1|θ̂t, µ̂t, σ̂t} (86)

− γ
2b
′
t,sCvs{∆Xs+1|θ̂t, µ̂t, σ̂t}bt,s − η

2∆b′t,sĉ
2
t∆bt,s)}.

The optimization problem (86) is an instance of quadratic programming

b∗t,t t+τ̄ = argmin
bt t+τ̄

{b′t,t t+τ̄qtbt,t t+τ̄ − b′t,t t+τ̄ lt} (87)

such that
{
mtbt,t t+τ̄ = ut
m̃tbt,t t+τ̄ ≤ ũt

22



for a suitable positive definite matrix qt and vector lt.
In full generality, we can solve for the optimal path (87) numerically, using off-the-shelf

packages, such as CVX for MATLAB (see [Grant and Boyd, 2014]). If we only consider
equality constraints in (87), we can solve the problem analytically

b∗t,t t+τ̄ = 1
2Pm,t(q

−1
t lt) + P⊥m,t(m

+
t ut), (88)

where m+
t is the pseudo-inverse of mt

m+
t ≡ q−1

t m
′
t(mtq

−1
t m

′
t)
−1; (89)

Pm,t = I−m+
t mt and P⊥m,t = m+

t mt are two complementary projectors; and I is the identity
matrix of conformable dimension. The analytical solution (88) is useful in practice in a variety
of situations, most notably to set to zero the exposures to some macroeconomic risk drivers on
which the user can have views and that yet are not directly tradable, as explained in Section
3.3.

Since the construction problem (87) can be solved easily and effi ciently, we repeat the
process at each time step, with fresh estimates (θ̂t, µ̂t, σ̂t, ĉt) that account for possible regime
shifts. As a result, the optimal path of exposures becomes

{b∗s ≡ b∗s,s}s≥t. (90)

The solution (90) is the most general and flexible among the ones proposed so far. Indeed,
extensive numerical analysis showed that when the parameters (θ,µ,σ, c) are fixed, the rolling
cutoff horizon τ̄ is large enough, and there are no constraints other than possibly setting
to zero some exposures, the general optimal path of exposures (90) matches perfectly the
unconstrained solution with market impact and discretionary views (79). Hence (90) is the
optimal solution in the presence of views with no constraints, and at the same it can be
generalized to constrained problems.

7 Case studies

In this section we apply the optimal Dynamic Entropy Pooling path of exposures, derived
and analyzed in Sections 4-5-6, to two low-dimensional case studies in fixed-income portfolio
management.

7.1 One investable risk driver, one view

We consider the case of a single risk driver Xt corresponding to an investable asset (therefore
ω = 1 in Equation (51)) and a single view on its expected value at a given time t∗. We
emphasize that the time of the view t∗ is a fixed date (such as "September 13, 1999"), which
does not change as time t goes by. Similarly, the view quantification µview is fixed as time
passes. Hence, at a generic time s ≥ t the view is

Es{Xt∗} = µview , s = t, t+ 1, . . . . (91)
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Figure 1: The top-left plot shows the optimal prior solution (93), as well as the 10y rate with
its long term expectation on the right axis. The top-right plot shows the Dynamic Entropy
Pooling posterior solution (94), both without accounting for market impact and accounting
for market impact (smoother line). The bottom-left plot shows the long-term deviation con-
tribution bLongTermt in (94), and the bottom-right plot shows the view contribution bViewMeant

in (94), as well as the view µview .

The matrix vµ,t that qualifies the view at the generic time t as in (32) is a (t̄ − t + 1)-
dimensional row, where the end point t̄ is an arbitrary time in the future, such that t̄ > t∗

vµ,t = (0, 0, . . . , 1
↑

(t∗−t+1)-th

, . . . , 0, 0). (92)

The pseudo-inverse matrix v+
µ,t is given by the (t∗− t+ 1)—th column of (29) divided by σ2

t∗−t.
When the market impact is neglected, the prior solution is (66), which in our context

reads
b∗s = 2θ

γσ2
1

1+e−θ
(µθ − xs), s = t, t+ 1, . . . t̄. (93)

Similarly, when the market impact is neglected, the Dynamic Entropy Pooling posterior
solution that reflects the views follows from the general formulation in (69), which, in terms
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of the model parameters θ, µ, σ2, reads

b∗s = 2θ
γσ2

1
1+e−θ

(1− 1+eθ

1+eθ(t
∗−s) )(µθ − xs)︸ ︷︷ ︸

bLongTerms

(94)

+ 2θ
γσ2

eθ

eθ(t
∗−s)−e−θ(t∗−s) (µview − xs)︸ ︷︷ ︸

bViewMeans

, s = t, t+ 1, . . . , t̄.

We comment on the result in the case of a mean reverting process, corresponding to θ > 0.
The first contribution bLongTerms is proportional to the distance of the current value of

the risk driver xs from its long term expectation µ/θ. If the current value of the risk driver
is below (above) its long term mean, it is expected to increase (decrease) and therefore the
corresponding contribution to the exposure is positive (negative). Such term does not depend
on the kind of view (bullish or bearish for instance) but only on the time at which the view
refers.

The second contribution bViewMeans accounts for the view, depending on the difference
between the view µview and the current level of the risk driver xs. If such a difference is
positive (negative) the view is bullish (bearish) and the contribution is positive (negative).

For small values of the mean reversion parameter θ, that is, when the process is almost
a Brownian motion, the long-term component is small and the optimal posterior solution is
well approximated by the view term

θ ≈ 0⇒ b∗s ≈ bViewMeans ≈ 1
γσ2(t∗−s)(µview − xs). (95)

Also, when the view is very far in the future, the effect of the view vanishes and the posterior
solution is well approximated by the prior (93)

t∗ →∞⇒ b∗s ≈ 2θ
γσ2

1
1+e−θ

(µθ − xs). (96)

To compute the fully-fledged optimal path in the presence of market impact, we simply adapt
the general solution (79) to the present case.

Example 9 We consider a fixed-income portfolio where the risk driver is the 10y government
rate. To better model low-rate environments we use the 10y shadow rate obtained from the
inverse-call transform in [Meucci and Loregian, 2013]. We calibrate the Ornstein-Uhlenbeck
process for the shadow rate using 10 years of daily observations. We assume daily rebalancing
and we compute the optimal path exposure for a period of 6 months.
At time t = 0 the observed value of the rate is x0 =2.61%. The estimated parameters (on a
daily basis) are µ =0.0302×10-3, θ =1.2469×10-3, σ2 =0.2295×10-6. The long term expecta-
tion is θ−1µ =2.42%.
We model a view that the expected value of the 10-year rate will be µview ≡ x0−50 basis points
at t∗ =1 year from today. We set the risk aversion parameter as γ ≡10-2 and the trading
aversion parameter as η ≡0.5. We set the intertemporal discount parameter λ in such a way
that the half life of the discount factor is 1 month.
Figure 1 displays the results for a simulated path of the 10y rate.
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7.2 Two risk drivers (investable/non-investable), two views

In this case study, we consider n̄ = 2 risk drivers Xt ≡
(
X1,t

X2,t

)
, where X1,t is investable (such

as an interest rate, which is investable via futures, or via fixed-income indices and ETF’s),
and X2,t is not investable (such as an equity index for a fixed-income portfolio manager, or a
macroeconomic index, such as inflation). In this case ω = (1, 0) in (51).

Figure 2: Decomposition of the Dynamic Entropy Pooling posterior exposure to the 10 year
rate (101) for a simulated joint path of 10 year rate and 5 year TIP spread (top and middle
plots). Also, Dynamic Entropy Pooling posterior solution with and without accounting for
market impact (bottom-left). Comparison of Dynamic Entropy Pooling posterior solution
with the prior solution, and with the posterior obtained when only the view on the rate is
considered (bottom-right).

As in the previous case study we state a view on X1 at time t∗. Furthermore we consider
a second view on X2 at a prior time t∗∗ < t∗, as follows

Es{X1,t∗} = µview ;1, Es{X2,t∗∗} = µview ;2, s = t, t+ 1, . . . (97)

We emphasize that the times of views t∗∗ and t∗ and the views µview ;1 and µview ;2 are fixed
as time passes.
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Then the matrix vµ,t that qualifies the views as in (32) is a 2× 2(t̄− t+ 1) matrix that in
this context reads

vµ,t =

 0 . . . 0 . . . 0 . . . 1 . . . 0
0 . . . 1

↑
2(t∗∗−t+1)-th

. . . 0 . . . 0
↑

(2(t∗−t+1)−1)-th

. . . 0

 , (98)

where the end point t̄ is an arbitrary time in the future, such that t̄ > t∗.
We specialize on the situation where the parameter θ of the Ornstein-Uhlenbeck process

satisfies
θ =

(
θ1,1>0 θ1,2=0
θ2,1=0 θ2,2>0

)
. (99)

Hence, the processes of X1,t and X2,t are mean-reverting around their long term means µ1

θ1,1

and µ2

θ2,2
respectively.

If we disregard market impact, the prior solution for the exposure to the first investable
risk driver follows from (66) and reads as in the univariate case (93), which we report here,
adapted to the new bivariate notation

b∗1,s =
2θ1,1

γσ2
1,1

1

1 + e−θ1,1
(
µ1

θ1,1
− x1,s) , s = t, t+ 1, . . . t̄, (100)

where σ2
1,1 is the (1, 1) component of σ2.

The Dynamic Entropy Pooling posterior exposure in absence of market impact (69) can
be expressed in terms of four contributions, due to the long-term and view effect of the two
separate drivers

b∗1,s = bLongTerm,x1
1,s + bLongTerm,x2

1,s︸ ︷︷ ︸
bLongTerm1,s

+ bViewMean,x1
1,s + bViewMean,x2

1,s︸ ︷︷ ︸
bViewMean1,s

, s = t, t+ 1, . . . , t̄ (101)

where

bLongTerm,x1
1,s ≡ 2θ1,1

γσ2
1,1

1

1 + e−θ1,1
(1− δ1− e−θ1,1(t∗−s)

1− e−θ1,1
)(
µ1

θ1,1
− x1,s) (102)

bLongTerm,x2
1,s ≡ −% 2θ1,1

γσ2
1,1

1

1− e−2θ1,1
(1− e−θ2,2(t∗∗−s))(

µ2

θ2,2
− x2,s) (103)

bViewMean,x1
1,s ≡ δ 2θ1,1

γσ2
1,1

1

1− e−2θ1,1
(µview ;1 − x1,s), (104)

bViewMean,x2
1,s ≡ % 2θ1,1

γσ2
1,1

1

1− e−2θ1,1
(µview ;2 − x2,s). (105)

Notice how the second driver, which may or may not be investable, influences the exposure
to the first risk driver.

The coeffi cients δ and % in (102)-(105) depend on the model parameters as well as the
times involved in the problem and are defined as

δ(s, t∗∗, t∗;θ,σ) ≡ (σ̃2
3,7σ̃

2
6,6 − σ̃2

3,6σ̃
2
6,7)/(σ̃2

6,6σ̃
2
7,7 − (σ̃2

6,7)2) (106)

%(s, t∗∗, t∗;θ,σ) ≡ (σ̃2
3,6σ̃

2
7,7 − σ̃2

3,7σ̃
2
6,7)/(σ̃2

6,6σ̃
2
7,7 − (σ̃2

6,7)2), (107)

27



where σ̃2
i,j is a short notation to indicate the (i, j)-th entry of the 8× 8 sub-covariance matrix

of (29) corresponding to the four times {s, s+ 1, t∗∗, t∗} for the two risk drivers.
To compute the fully-fledged optimal path in the presence of market impact, we simply

adapt the general solution (79) to the present case.

Example 10 We consider the same framework as in Example 9, where the 10 years govern-
ment shadow rate is the investable risk driver X1, and where we add expected inflation, as
measured by the 5 year TIP spread, as a non-investable risk driver X2.
The 5 years expected inflation at time t =0 is x2,0 =1.93%. The estimated parameters of the
bivariate Ornstein-Uhlenbeck process are

µ = 10-3
( 0.0302
0.1894

)
θ = 10-3

( 1.2469 0
0 8.9692

)
σ2 = 10-6

(
0.2295 0.0594
0.0594 0.1262

)
. (108)

Note that no equilibrium condition (25) has been imposed, as the TIP spread is an external
risk driver. The long term level of the TIP spread is µ2/θ2,2 =2.11%. All the other parameters
are set as in Example 9. The additional view is that the expected value of the TIP spread will
be µview ;2 = x2,0+50 basis points at t∗∗ =0.75 years from today. Figure 2 displays the results.

8 Conclusions

We presented the Dynamic Entropy Pooling, a quantitative approach to discretionary port-
folio management, which allows the manager to process views and stress testing at multiple
horizons.

To preserve tractability and yet flexibility, we assume as the prior model for the risk drivers
a multivariate (not necessarily mean-reverting) Ornstein-Uhlenbeck process, and we model the
views as statements on expectations and covariances of arbitrary linear combinations of the
process, and at arbitrary times.

The ensuing optimal Dynamic Entropy Pooling policy is computed via dynamic program-
ming with time-varying coeffi cients, for unconstrained problems, or via a sequence of quadratic
programs, for more general constrained problems.
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A Appendix

In this appendix we discuss technical results that can be skipped at first reading.

A.1 Limit inversion

We consider here the case of a MVOU process (24) with a matrix θ that has some null
eigenvalues. In this case, the matrices θ and θ ⊕ θ are not invertible. Nevertheless the mean
and the variance matrix as defined in (27) and (28) are still well defined. In fact, both the
expressions (27) and (28) depend on a term that is

(
I− e−αt

)
α−1, where α = θ in (27),

α = θ ⊕ θ in (28) and I is the identity matrix with conformable dimension. If α is a n̄ × n̄
matrix, such an expression has to be computed as(

I− e−αt
)
α−1 ≡ lim

ρı̄→0
vDiag(1−e−ρ1t

ρ1
, . . . , 1−e−ρn̄t

ρn̄
)v−1, (109)
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where ρ1, . . . ρn̄ and v are respectively the eigenvalues and the matrix of the eigenvectors of
α, in such a way that α = vDiag(ρ1, . . . , ρn̄)v−1, and ı̄ labels the null eigenvalues.

A.2 The general Bellman equation

We first compute the expectation of the value function vs+1(bs,Xs+1) in (76)

E{vs+1(bs,Xs+1)|is} = −1
2b
′
sψbb,sbs + b′sψbx,s (αs + (βs + In̄)xs) +

1

2
tr(ψxx,sσ̄

2
s)

+
1

2
(αs + (βs + In̄)xs)

′ψxx,s (αs + (βs + In̄)xs) (110)

+ψ′b,sbs +ψ′x,s (αs + (βs + In̄)xs) + ψ0,s.

Then the Bellman equation (76) reads

vs(bs−1,xs) = max
bs
{−1

2b
′
sqsbs + b′sls + ds}, (111)

where

qs ≡ γωσ̄2
sω
′ + ηc2 + e−λψbb,s (112)

ls ≡ ωαs + e−λψbx,sαs + e−λψb,s + [ωβs + e−λψbx,s(βs + In̄)]xs + ηc2bs−1 (113)

ds ≡ −η
2b
′
s−1c

2bs−1 (114)

+ e−λ 1
2x
′
s(β
′
s + In̄)ψxx,s(βs + In̄)xs + e−λ(α′sψxx,s +ψ′x,s)(βs + In̄)xs

+ 1
2e
−λtr(ψxx,sσ̄

2
s) + 1

2e
−λα′sψxx,sαs + e−λψ′x,sαs + e−λψ0,s

The optimal solution of the right hand side of Equation (111) is

b∗s = q−1
s ls. (115)

that substituted in (111) gives

vs(bs−1,xs) = 1
2 l
′
sq
−1
s ls + ds . (116)

Using the quadratic expression for vs(bs−1,xs), and the definition of qs, ls and ds given
in Equations (112), (113) and (114) respectively, we impose that the above equation holds
for any xs and bs−1. This gives the following set of equations for the coeffi cients of the value
function

ψbb,s−1 = ηc2 − ηc2q−1
s ηc2 (117)

ψbx,s−1 = ηc2q−1
s (ωβs + e−λψbx,s(βs + In̄)) (118)

ψxx,s−1 = (ωβs + e−λψbx,s(βs + In̄))′q−1
s (ωβs + e−λψbx,s(βs + In̄)) (119)

+ e−λ(βs + In̄)′ψxx,s(βs + In̄)

ψb,s−1 = ηc2q−1
s (ωαs + e−λψbx,sαs + e−λψb,s) (120)

ψx,s−1 = (ωβs + e−λψbx,s(βs + In̄))′q−1
s (ωαs + e−λψbx,sαs + e−λψb,s) (121)

+ e−λ(βs + In̄)′(ψ′xx,sαs +ψx,s)

ψ0,s−1 = 1
2(ωαs + e−λψbx,sαs + e−λψb,s)

′q−1
s (ωαs + e−λψbx,sαs + e−λψb,s) (122)

+ 1
2e
−λtr(ψxx,sσ̄

2
s) + 1

2e
−λα′sψxx,sαs + e−λψ′x,sαs + e−λψ0,s.
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A.3 The value function coeffi cients for the prior case

As explained in Section 5.1, when the market follows the prior model (26), we can drop the
time subscript from the value function coeffi cients. Therefore equations (117)-(122) can be
solved analytically.

First we solve Equation (117), that using the definition (112) reads

ψbb = ηc2 − ηc2
(
γωσ2

1ω
′ + ηc2 + e−λψbb

)−1
ηc2. (123)

Then using the Woodbury identity

(a−1 + c−1)−1 = a− a(c+ a)−1a (124)

to manipulate the right hand side of (123), where a = (ηc2) and c =
(
γωσ2

1ω
′ + e−λψbb

)
,

Equation (123) becomes

ψ−1
bb = (ηc2)−1 +

(
γωσ2

1ω
′ + e−λψbb

)−1
. (125)

Multiplying (125) first by ψbb on the left and then by
(
γωσ2

1ω
′ + e−λψbb

)
on the right,

we obtain

ψbb(ηc
2)−1ψbb +ψbb

(
eλ(ηc2)−1(γωσ2

1ω
′) + (eλ − 1)Ik̄

)
− eλγωσ2

1ω
′ = 0 . (126)

Redefining

ψ̂bb ≡ (ηc2)−
1
2ψbb(ηc

2)−
1
2 (127)

σ̂2 ≡ eλ(ηc2)−
1
2 (γωσ2

1ω
′)(ηc2)−

1
2 (128)

Equation (126) becomes

ψ̂
2

bb + ψ̂bb

(
σ̂2 + Ik̄(e

λ − 1)
)
− σ̂2 = 0 , (129)

whose solution is

ψ̂bb =
(

1
4(σ̂2 + Ik̄(e

λ − 1))2 + σ̂2
)1

2 − 1
2(σ̂2 + Ik̄(e

λ − 1)) , (130)

where the positive determination is the only one for which ψ̂bb is positive definite. Finally,
ψbb is obtained by inverting (127).

Equation (118) can be solved by vectorizing it and then using the identity

vec(abc) = (c′ ⊗ a)vec(b) (131)

for any matrices a, b and c with the conformable dimensions. In vectorized form, (118) reads

vec(ψbx) = vec(ηc2q−1ωβ) + e−λ((β′ + In̄)⊗ ηc2q−1)vec(ψbx) , (132)

which yields to

vec(ψbx) = (Ik̄n̄ − e−λ((β′ + In̄)⊗ ηc2q−1))−1vec(ηc2q−1ωβ) . (133)
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Also Equation (119) is solved by vectorizing it and then using the identity (131). The
result is

vec(ψxx) = (In̄2 − e−λ(β′ + In̄)⊗ (β′ + In̄))−1 (134)

× vec
(

(ωβ + e−λψbx(β + In̄))′q−1(ωβ + e−λψbx(β + In̄))
)
.

Equation (120) is easily solved by collecting the terms in ψb

(Ik̄ − e−ληc2q−1)ψb = ηc2q−1
(
ωα+ e−λψbxα

)
. (135)

Hence the solution is

ψb = (q(ηc2)−1 − e−λIk̄)−1
(
ω + e−λψbx

)
α (136)

The solution of Equation (121) is

ψx = (In̄ − e−λ(β′ + In̄))−1 (137)

× [(ωβ + e−λψbx(β + In̄))′q−1(ωα+ e−λψbxα+ e−λψb) + e−λ(β′ + In̄)ψ′xxα] .

Finally the solution of (122) is

ψ0 = 1
1−e−λ

(
1
2(ωα+ e−λψbxα+ e−λψb)

′q−1(ωα+ e−λψbxα+ e−λψb) (138)

+1
2e
−λtr(ψxxσ̄

2) + 1
2e
−λα′ψxxα+ e−λψ′xα

)
.
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