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ABSTRACT 15 

An extensive literature review has been conducted to observe the statistical correlation of the 16 

plasticity index, PI, with the liquid limit, LL, of smectite and kaolinite. Fifty-nine data for 17 

smectite and fifty-one for kaolinite have been plotted and compared to each other. The results 18 

show that PI is related to LL with equations PI = 0.97 x LL - 37.6 for smectite and PI = 19 

5.94e0.023⋅LL for kaolinite. An independent data set was used for the validation of the proposed 20 

relationships. Besides, it was possible to identify a confidence interval for PI, relative to a 21 

certain interval for LL values, to confirm the robustness of the relations given above. The 22 

findings of this research show that the relation between the Atterberg limits is clearly 23 

controlled by the clay mineralogy and that there is no unique way to get PI from LL if the 24 

clay mineralogy is not considered. 25 
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NOTATION LIST 27 

PI  Plasticity index (%) 28 

LL  Liquid limit (%) 29 

PL  Plastic limit (%) 30 

R2  Regression coefficient 31 

k   Number of the available experimental points 32 

m    Mean values of m (linear regression equation) 33 

n   Mean value of n (linear regression equation) 34 

2%, −ntη  Parameter t of Student, relative to a confidence level of η% and a degree of 35 

freedom of k-2 36 

𝜎  Standard deviation 37 

38 
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INTRODUCTION 39 

Liquid (LL) and plastic limits (PL) are the basic geotechnical index parameters for the 40 

qualitative assessment of the physical properties of fine-grained soils. Atterberg (1911), who 41 

described first these parameters, stated that “the liquid limit represents the state at which two 42 

small pieces of clay placed in a bowl no longer flow together when a bowl is struck violently 43 

and repeatedly on the hand” (Haigh, 2012), and it physically describes the water content at 44 

the transition from the liquid to the pulpy state of a soil. Soils at LL have small shear strength, 45 

which is in the range between 0.5–5.6kPa (e.g. Wasti & Bezirci, 1986; Sridharan & Prakash, 46 

1998). PL represents the water content at the transition from the rigid to the semi-solid state 47 

of a soil (DIN, 1997). Currently, there are two methods for obtaining LL: the Casagrande 48 

(1932) standardized cup method, which is a procedure currently defined in DIN 18122 part 1 49 

(1997), AASHTO T89-07 (2007) and ASTM D4318-10 (2010), and the fall-cone-based 50 

method, standardized by the ISO/TS 17892-12 (2004) (Spagnoli, 2012). Regarding PL, the 51 

geotechnical standard procedure is given by the rolling test method. 52 

Two different clay types have been investigated which represent the two extreme types of 53 

clay minerals: kaolinite (2-layered clay minerals) and smectite (3-layer clay minerals). 54 

The latter has a 2:1 silica:alumina structure, with very weak van der Waals’ forces (Sridharan, 55 

2014), and repulsive forces between clay platelets which govern swelling (Taylor and Smith, 56 

1986), mainly for Na-smectite (Olson and Mesri, 1970).  57 

For kaolinite, positive cation exchange capacity was measured under low pH conditions when 58 

edges are positively charged indicates that some isomorphous substitution must exist 59 

(Mitchell and Soga, 2005) which was also shown by Brady et al. (1996) and Israelachvili 60 

(2011). 61 

As stated by Sridharan and Venkatappa Rao (1975), as these clays represent the extreme 62 

types of clay minerals, any natural clay is likely to behave, from the geotechnical point of 63 
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view, in between these two. It is important to observe how the Atterberg limits will change 64 

depending on the clay mineralogy. Several authors tried already to assess the behavior of 65 

clays regarding their basic geotechnical properties (e.g.: White, 1949; Seed et al., 1964; 66 

Dusseault and Scafe, 1979; Nagaraj and Jayadeva, 1983; Sivapullaiah and Sridharan, 1985; 67 

Sridharan et al., 1988; Panadian & Nagaraj, 1990; Mitchell and Soga, 2005; Polidori, 2007; 68 

Dolinar & Škrabl, 2013), however no unique correlation was given. White (1949) found that 69 

LL of kaolinite increased with decreasing particle size, whilst Seed et al. (1964) obtained a 70 

linear correlation between LL and percentage of clay size for washed sand with kaolinite. 71 

Nagaraj & Jayadeva (1983) found a relationship, where the plasticity index, PI, was 0.74 x 72 

(LL-8), based on statistical approaches, critical state concepts and on the Gouy-Chapman 73 

theory of double layer. However, as stated by Sridharan (2014), since kaolinite and smectite 74 

behave quite differently from each other, the mechanisms governing the Atterberg limits, and 75 

in turn LL, of kaolinite and smectite are different. The present study summarizes the results 76 

of forty-four published data, where the Atterberg limits for almost pure clays were given. 77 

From the statistical point of view the confidence interval for confidence levels of 95 and 99% 78 

for both smectite and kaolinite has been assessed.  79 

METHODOLOGY 80 

Data from literature about LL and PL for smectite and kaolinite (or well-known natural clays 81 

with a predominant clay mineralogy) were carefully analyzed. Only Atterberg limits obtained 82 

with the Casagrande cup and the rolling method were used. Regarding smectitic clays, where 83 

possible, the main cation was indicated. However, according to Bain (1971), it is possible to 84 

roughly distinguish between Na-smectite and Ca-smectite considering their PI values. Clay 85 

fraction less than 2µm were also indicated. Only Foreman and Daniel (1986), indicated the 86 

clay faction corresponding to 5µm. 87 
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Forty-four different published data were used to obtain the Atterberg limits for pure clays, i.e. 88 

smectitite and kaolinite mixed with water. Tab. 1 and 2 summarize the values used for the 89 

interpretation of the Atterberg limits for natural clays mixed with water. LL values are 90 

obtained with the Casagrande cup. Fifty-nine data were used for the interpretation for the 91 

smectite, and fifty-one for the kaolinite. 92 
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No. Reference < 2µm (%) LL (%) PL (%) PI (%) Cation  
1 Seed et al. (1964) 95.5 521.5 48 473.5 not specified 
2 Andrews et al. (1967)  506 55 451 Na 
3 Mesri and Olson (1971) 97 675 39 636 not specified 
4 Sridharan et al. (1973) - 305 44 261 not specified 
5 Sridharan and Venkatappa Rao (1975) - 306 44 262 not specified 
6 Samarasinghe et al. (1982) - 118 46 72 Ca 
7 Sridharan et al. (1986a) 100 495 49.2 445.8 Na 
8 Sridharan et al. (1986a) 100 233 57.8 175.2 K 
9 Sridharan et al. (1986a) 100 125 40.6 84.4 Ca 
10 Sridharan et al. (1986a) 100 675 49.1 625.9 Li 
11 Sridharan et al. (1986b) 37 84 42 42 Ca 
12 Sridharan et al. (1986b) 31 100 45.2 54.8 Ca 
13 Sridharan et al. (1986b) 42 106.4 44.1 62.3 Ca 
14 Sridharan et al. (1986b) 39 124.2 23.2 101 Ca 
15 Wasti and Bezirci (1986) 88 526 38 488 not specified 
16 Sivapullaiah et al. (1987) - 337 55.6 281.4 not specified 
17 Rao et al. (1989) 100 348 43.9 304.1 not specified 
18 Acar and Olivieri (1989) 12 88 54 34 Ca 
19 Acar and Olivieri (1989) 80 425 58 367 Na 
20 Abdul et al. (1990) - 470 45 425 Na 
21 Di Maio and Fenelli (1994) 100 330.6 55.2 275.4 not specified 
22 Abu-Hassanein et al. (1996) 85 608 43 565 Na 
23 Abu-Hassanein et al. (1996) 94 516 51 465 Na 
24 Di Maio (1996) 80 400 80 320 Na 
25 Gleason et al. (1997) - 603 36 567 Na 
26 Gleason et al. (1997) - 590 37 553 Na 
27 Gleason et al. (1997) - 124 26 98 Ca 
28 Gleason et al. (1997) - 123 38 85 Ca 
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29 Sridharan et al. (1997) 38 74.7 20 54.7 not specified 
30 Petrov et al. (1997) - 530 50 480 Na 
31 Robinson and Allam (1998) 98 321 58 263 Na 
32 Hettiaratchi et al. (1999) - 407 105 302 Na 
33 Hettiaratchi et al. (1999) - 98 61 37 Ca 
34 Sridharan and Nagaraj (1999) 100 320 56.6 263.4 Na 
35 Kayabal and Bulus (2000) - 320 50 270 Na 
36 Karunaratne et al. (2001) 78 465 41 424 not specified 
37 Tuncan et al. (2003) 88 447 60 387 Na 
38 Mesri and Cepeda-Diaz (1986)/Polidori (2003) 100 205 35 170 not specified 
39 Mesri and Cepeda-Diaz (1986)/Polidori (2003) 90 184.5 31.5 153 not specified 
40 Mesri and Cepeda-Diaz (1986)/Polidori (2003) 80 164 28 136 not specified 
41 Mesri and Cepeda-Diaz (1986)/Polidori (2003) 70 143.5 24.5 119 not specified 
42 Mesri and Cepeda-Diaz (1986)/Polidori (2003) 60 123 21 102 not specified 
43 Mesri and Cepeda-Diaz (1986)/Polidori (2003) 50 102.5 17.5 85 not specified 
44 Young Jo et al. (2004) 88 504 39 465 Na 
45 Sivapullaiah and Lakshmikantha (2004) - 310 49 261 Na 
46 Kaya and Fang (2005) - 440 70 370 Na 
47 Mishra et al. (2005) 61.4 310.5 54.1 256.4 not specified 
48 Spagnoli et al. (2010) 85 455 70 385 Na 
49 Shariatmadari et al. (2011) - 199.4 41.5 157.9 not specified 
50 Younus and Sreedeep (2012) 49 224 31 193 not specified 
51 Kumar Pal and Ghosh (2013) 64 159 37 122 not specified 
52 Tiwari and Ajmera (2014) - 148 49 99 not specified 
53 Mir and Sridharan (2014) 63 84 25 59 Na 
54 Ghazi (2015) - 310 56 254 Na 
55 Rageena and Rani (2015) 73 245 46 199 Ca 
56 Ghadyani et al. (2016) 65 238 66 172 Na 
58 Jang and Santamarina (2016) - 276 44 232 not specified 
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57 Fan et al. (2017) - 331.4 88.2 243.2 Ca 
59 Deka and Sekharan (2017) 64 300 53 247 not specified 

Table 1 Atterberg limits for smectitic clays with water as fluid 93 

94 
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 95 

No. Reference < 2µm (%) LL (%) PL (%) PI (%) 
1 Andrews et al. (1967) - 62 33 29 
2 Mesri and Olson (1971) 47 45 29 16 
3 Sridharan et al. (1973) 54 49 29 20 
4 Sridharan and Venkatappa Rao (1975) - 49 29 20 
5 Littleton (1976) - 83 30 53 
6 Genevois (1977) 67 65 36 29 
7 Genevois (1977) 67 73 44 29 
8 Genevois (1977) 67 70 42 28 
9 Genevois (1977) 67 69 39 30 
10 Genevois (1977) 67 60 38 22 
11 Genevois (1977) 67 61 39 22 
12 Genevois (1977) 67 58 38 20 
13 Genevois (1977) 67 64 44 20 
14 Genevois (1977) 67 63 38 25 
15 Genevois (1977) 67 58 37 21 
16 Genevois (1977) 67 72 42 30 
17 Genevois (1977) 67 122 63 59 
18 Rao and Sridharan (1985) 54 49 29 20 
19 Mesri and Cepeda-Diaz (1986)/Polidori (2003) 100 45 29 16 
20 Mesri and Cepeda-Diaz (1986)/Polidori (2003) 90 40.5 26.1 14.4 
21 Mesri and Cepeda-Diaz (1986)/Polidori (2003) 80 36 23.2 12.8 
22 Mesri and Cepeda-Diaz (1986)/Polidori (2003) 70 31.5 20.3 11.2 
23 Mesri and Cepeda-Diaz (1986)/Polidori (2003) 60 27 17.4 9.6 
24 Mesri and Cepeda-Diaz (1986)/Polidori (2003) 50 22.5 14.5 8 
25 Foreman and Daniel (1986) 98 54 31 23 
26 Bowders and Daniel (1987) - 58 34 24 
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27 Sivapullaiah et al. (1987) - 51 34 17 
28 Sridharan et al. (1988) 25 25 13.8 11.2 
29 Sridharan et al. (1988) 27 38 15.3 22.7 
30 Acar and Olivieri (1989) 90 64 34 30 
31 Abdul et al. (1990) - 61 37 24 
32 Meegoda and Ratnaweera (1994) 84 48 36 12 
33 Di Maio and Fenelli (1994) 100 57.5 37.8 19.7 
34 Robinson and Allam (1998) - 53 32 21 
35 Sridharan and Nagaraj (1999) 11.5 58.7 45.2 13.5 
36 Sridharan and Nagaraj (1999) 32 55 31.4 23.6 
37 Kumar and Muir Wood (1999) 95 80 39 41 
38 Lemos and Vaughan (2000) 82 69 38 31 
39 Karunaratne et al. (2001) 87 74 34 40 
40 Kaya and Fang (2005) - 42 29 13 
41 Sentenac et al. (2006) - 54 31 23 
42 Polidori (2007) 97 62 36 26 
43 Di Matteo et al. (2011) 34 56.51 34 22.51 
44 Spagnoli et al. (2012) 48 57 35 22 
45 Khosravi et al. (2013) 20 45 26 19 
46 Estabragh et al. (2014) 25 47 20 27 
47 Tiwari and Ajmera (2014) - 65 36 29 
48 Tiwari and Ajmera (2014) - 70 30 40 
49 Ghadyani et al. (2016) 30 32 22 10 
50 Jang and Santamarina (2016) - 67 31 36 
51 Fan et al. (2016) - 29.1 19.5 9.6 

Table. 2 Atterberg limits for kaolinitic clays with water as fluid 96 
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RESULTS AND DISCUSSION 97 

Correlations found 98 

As LL value of clays depends on the type of clay mineral with associated cations (Mitchell 99 

and Soga, 2005), smectite and kaolinite have been analyzed separately. Fig. 1 shows the 100 

relation PI vs LL for smectitic clays. A linear correlation shows that PI = 0.97 x LL - 37.6, 101 

with a very good correlation coefficient of R2 = 0.99. The correlation PI vs LL for smectite is 102 

statistical significant as p-value is <0.05 (i.e. 5.18·10-61). The correlation matches very well 103 

with that found by Seed et al. (1964), where PI = 0.98 x LL - 27.5, who investigated artificial 104 

kaolinite-quartz mixtures in different amounts. The correlation found by Nagaraj & Jayadeva 105 

(1983) was PI = 0.74 x LL-8; however, this was based on natural clays coming from different 106 

depths with inhomogeneous mineralogy. Regarding the kaolinite data, an exponential 107 

correlation between LL and PI was found (Fig. 2). The equation was in this case PI = 108 

5.94e0.023⋅LL and was characterized by a correlation coefficient of R2 = 0.80. With respect to 109 

the data for the smectite, the results are more scattered. However, the correlation PI vs LL for 110 

kaolinite is also statistical significant as p value <0.05 (i.e. 1.74·10-19). 111 
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 112 

Fig. 1 PI vs LL for smectitic clays. 113 
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 114 

Fig. 2 PI vs LL for kaolinitic clays 115 

Bearing in mind these findings, and considering the coefficient of correlations observed for 116 

smectite (R2 = 0.99) and kaolinite (R2 = 0.80), a comparison between experimental PI, which 117 

were derived from another published data shown in Tab. 3 and predicted PI values (obtained 118 

from the equations mentioned above) has been shown in Fig 3A & 3B. As for Tabs. 1 and 2, 119 

for the values showed in Tab. 3 only data where Atterberg limit for the Casagrande cup on 120 

pure kaolinite and smectite were selected. Smectitic soils show a linear relation with a very 121 

good R2 value (0.99), where PIpredicted=1.04xPIexperimental. 122 

For kaolinitic soils the predicted PI tends to overestimate the lab. PI up to 20%. From this 123 

point forward the predicted PI values underestimate the lab PI. The relation has the form of 124 

PIpredicted=0.48xPIexperimental+10.26. 125 
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This is likely due to the smaller R2 values for the PI vs LL correlation with respect to the one 126 

obtained for smectite. However, the regression coefficient, R2, gives a value of 0.94. Besides, 127 

both p-values for Figs 3A & 3B show also a statistical significance (p<0.05) between the 128 

predicted vs lab PI values, with 3.60·10-10 and 3.46·10-06 for smectite and kaolinite 129 

respectively. 130 

No. Source LL (%) PI (%) Clay type 

1 Stadtbäumer (1976) 269 222 Smectite 

2 Egashira and Ohtsubo (1982) 114 63 Smectite 

3 Bell (1994) 114 47 Smectite 

4 Stavridakis (1999) 111 68 Smectite 

5 Sivapullaiah et al. (2003) 310 261 Smectite 

6 Eisazadeh et al. (2012) 301 260 Smectite 

7 Fatahi et al. (2013) 

 

340 290 Smectite 

8 Prakash and Sridharan (2013) 100.8 19 Smectite 

9 Kolay and Ramesh (2016) 

 

603 508 Smectite 

10 Basmenj et al. (2017) 470 395 Smectite 

     

11 Stadtbäumer (1976) 63 36 Kaolinite 

12 Stavridakis (1999) 34 29 Kaolinite 

13 Sridharan and Prakash (2001) 48 35 Kaolinite 

14 Sridharan and Prakash (2001) 44 25 Kaolinite 

15 Sridharan and Nagaraj (2005) 48 35 Kaolinite 
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16 Sridharan and Nagaraj (2005) 55 31 Kaolinite 

17 Park et al. (2006) 47 29 Kaolinite 

18 Sachan et al. (2013) 65 30 Kaolinite 

19 Pulat et al. (2014) 34 27 Kaolinite 

20 Kolay and Ramesh (2016) 76 28 Kaolinite 

Table. 3 Atterberg limits for smectitic and kaolinitic clays used for the validation of the 131 

predicted IP shown in Figs. 1 and 2 132 
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 133 

Fig. 3 Predicted PI vs experimental PI for smectitic clays (A); predicted PI vs 134 

experimental PI for kaolinitic clays (B). The experimental PI values refer to Tab. 3. 135 
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No significant correlation between LL and the percentage of clay size fraction was found for 136 

both smectite and kaolinite. This agrees with the findings of Sridharan et al. (1988), whereas 137 

disagrees with the statement of Seed et al. (1964) and Polidori (2007), who presented a linear 138 

variation of LL with the percentage of clay size fraction for quartz and pure clay mixtures. 139 

However, it is worth mentioning that the data of the literature reviewed used in this research 140 

refer to pure clays, which are normally characterized by a wider particle size distribution.  141 

Fig. 4 (A and B) shows the relation PL vs LL as from Tab. 1 and 2 for both pure clays. The 142 

purpose of the diagram is not to find out a relation; it is rather to show how the parameters 143 

change with respect to each other. Smectitic clays (Fig. 4A) show a bell-shaped behavior, 144 

where the highest PL value does not correspond to the highest LL value. The increases in PL 145 

values follow increases in LL values up to a certain point, after which LL values increases 146 

but PL values decreases. While LL values are directly proportional to the water content and 147 

to the main cation involved, PL values show considerable variations (Bain, 1971). According 148 

to Haigh et al. (2013), PL relates to the capillary suction at which the water phase ceases to 149 

act as a continuum.  150 

It is interesting to note that some Ca-smectites have PL values higher than the Na-smectite 151 

samples. PL variations might be due to the difficulties of the thread-rolling tests and also 152 

because due to the different drying (shrinkage) characteristics of the smectitic clays (Bain, 153 

1971), where the shrinkage is directly proportional to the PI (Taylor and Smith, 1986). 154 

Recent work shows the electrochemical forces play role in shrinkage processes (Lu and Dong, 155 

2017). In that case, PL is also dependent on the electrochemical forces similar to the LL. 156 

Regarding the correlation PL vs LL for kaolinitic clays (Fig. 4B), the trend is similar as 157 

observed in Fig. 2, i.e. an exponential function links in an acceptable way the two parameters 158 

(R2 = 0.70). However, the correlations shown in Fig. 4 are not meant to be statistically 159 

relevant.  160 
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Fig. 4 Correlation PL vs LL for smectitic (A) and kaolinitic clays (B). The correlating 162 

lines are dotted because they are not meant to give a statistical reference. Note that the 163 

legend is the same as per Figs. 1 and 2. 164 

Estimation of the statistical variability of the PI vs LL correlation 165 

In order to use the correlations obtained on the experimental measurements of Fig. 1 and 2 166 

for smectite and kaolinite, an accurate probabilistic analysis is required. Since the collected 167 

data show some variability regarding the estimation of PI from LL, the estimation that can be 168 

made on PI leads to a probable range of variability rather than a simple deterministic value.  169 

The confidence interval indicates the range that, with a certain probability (the confidence 170 

level), gives the true value of the parameter (Spagnoli et al. 2017). 171 

A probabilistic analysis has been assessed for the validation of correlations PI vs LL shown 172 

in Fig. 1 & 2. A straight line, nxmy +⋅= , better approximates the data (xi and yi) shown in 173 

Tab. 1 and 2 and Fig. 1 and 2. The coefficients m and n were determined with Cramer's 174 

method, which is useful for solving a system of linear equations using the determinant, in 175 

case the system has exactly one solution. It is assumed that the error in the determination of 176 

the parameter x is much smaller than one would have in the estimation of the parameter y, 177 

and that the error in the determination of each yi is constant. 178 

The uncertainty (standard deviation) 𝜎y on the parameters yi is given by the following 179 

equation (Bacon, 1953): 180 
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m and n and are obtained using the equations of the linear regression on the available data. 183 

Applying the theory of propagation of errors, the uncertainties of the regression coefficients 184 

are obtained: 185 



21 
 

( )

( ) ( ) 2

11

2

1

2

22 ⎟
⎠

⎞
⎜
⎝

⎛
⋅

−
−⎟
⎠

⎞
⎜
⎝

⎛
⋅−

−⋅−
⋅=

∑∑

∑

==

=

k

i
i

k

i
i

k

i
ii

m

x
k
kxk

nxmy
σ       (2) 186 

( )

( ) ( )
2

11

2

1

2

1

2

22 ⎟
⎠

⎞
⎜
⎝

⎛
⋅−−⎟

⎠

⎞
⎜
⎝

⎛
⋅−⋅

−⋅−⋅⎟
⎠

⎞
⎜
⎝

⎛

=

∑∑

∑∑

==

==

k

i
i

k

i
i

k

i
ii

k

i
i

n

xkxkk

nxmyx
σ       (3) 187 

The best estimation of the parameters m and n in relation to a certain level of confidence 188 

(expressed in percentage) is obtained through the confidence intervals: 189 

mktmm ση ⋅±= −2%,          (4a) 190 

nktnn ση ⋅±= −2%,          (4b) 191 

where 2%, −ktη  is the parameter t of Student, relative to a confidence level of η% and a degree 192 

of freedom of k-2. Student's t-distribution is a distribution of continuous probability 193 

governing the relationship between two random variables, the first with normal distribution, 194 

while, the second follows a squared distribution. 195 

Based on the discussion above, it is possible to predict the value y0 and its uncertainty, 𝜎y0, for 196 

a value of x0. In fact: 197 

nxmy +⋅= 00           (5) 198 

Applying, then, the theory of propagation of errors to the equation 5, the standard deviation 199 

of y0 is obtained by: 200 
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The confidence interval for y0 will be given, then, by the following expression, for a 202 

confidence level of η%: 203 

02%,00 yktyy ση ⋅±= −           (7) 204 

That means: 205 
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In this way, it will be possible to identify a range of variability of y, relative to a certain 208 

desired confidence level, corresponding to the parameter x0 indicated. 209 

Considering the data of this research for smectite (Fig. 1), the relation LL (x axis) vs PI (y 210 

axis) is shown. The linear regression analysis allowed to identify the line that best 211 

approximates the experimental points available (PI =0.97 x LL - 37.6). The standard 212 

deviation on the slope "m" is σm = 0.012; the standard deviation on constant term "n" is σn = 213 

4.157. Moreover, we have: 59=k , ( ) 13417
1

2 =−⋅−∑
=

k

i
ii nxmy , 18302

1
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i
ix , 214 

7381520
1

2 =⎟
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⎞
⎜
⎝

⎛
∑
=

k

i
i
x . If, for example, the confidence interval for PI with a confidence level of 215 

95%, corresponding to a LL equal to 350% is requested, then PI = 301.38÷302.48. The same 216 

PI confidence interval for a greater confidence level of 99%, would be PI = 301.20÷302.66. 217 

In the case of kaolinite, the relation PI -LL is exponential, as it can be seen from Fig. 2. 218 

Considering the same approach explained before, it is possible to analyze the relationship 219 

ln(PI)-LL for the available experimental data. In this case, it is possible to apply the linear 220 

regression and obtain, then, the line that best approximates the experimental data available. 221 

This line takes the form: ln(PI)= 0.026⋅LL + 1.61. 222 
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The standard deviation on the slope "m" is σm = 0.0012; the standard deviation on the 223 

constant term "n" is σn = 0.0998. Besides, we observe: 51=k , ( ) 52.1
1

2 =−⋅−∑
=

k

i
ii nxmy , 224 

31.2725
1
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∑
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k

i
ix , 158641

1

2 =⎟
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⎞
⎜
⎝

⎛
∑
=

k

i
i
x . If, for example, the confidence interval for PI with a 225 

confidence level of 95%, corresponding to a LL equal to 50% is requested, then 226 

ln(PI)=2.91÷2.93 and therefore PI=18.48÷18.75. The same PI confidence interval for a 227 

greater confidence level of 99%, would be PI=18.44÷18.80. 228 

Both probabilistic assessments clearly confirm the robustness of the regression functions 229 

obtained for this research if the data shown in Fig. 1 and 2 are considered.  230 

CONCLUSIONS 231 

In this paper, results obtained from 44 technical papers for smectitic and kaolinitic clays 232 

respectively, published from different countries and authored by several authors over a period 233 

of 50 years have been analyzed with respect to Atterberg limits and some useful conclusions 234 

have been drawn. Good correlations have been obtained between liquid limit (LL) and 235 

plasticity index (PI) for both smectite and kaolinite. The range of LL varied up to 680% for 236 

smectitic and 85% for kaolinitic clays. It can be shown that the correlation of LL with PI for 237 

smectitic clays varies marginally with different ranges of LL. The predicted PI values haven 238 

been verified against another independent set of data, giving very good R2 values, namely 239 

0.99 and 0.94 for smectite and kaolinite respectively, although the predicted PI values 240 

compared with the lab PI values for kaolinite are not as precise as for smectite. The validity 241 

of the relation PI vs LL for both clay types has been also verified by a probabilistic analysis. 242 

Besides, for smectitic clays it has been seen that PL increases along with LL up to a certain 243 

value and then it tends to decrease while LL still increases. Whereas, for kaolinitic clays, PL 244 

constantly increases with increasing LL values.  245 
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FIGURE CAPTIONS 488 

Fig. 1 PI vs LL for smectitic clays. 489 

Fig. 2 PI vs LL for kaolinitic clays 490 

Fig. 3 Predicted PI vs experimental PI for smectitic clays (A); predicted PI vs experimental PI 491 

for kaolinitic clays (B). The experimental PI values refer to Tab. 3. 492 

Fig. 4 Correlation PL vs LL for smectitic (A) and kaolinitic clays (B). The correlating lines 493 

are dotted because they are not meant to give a statistical reference. Note that the legend is 494 

the same as per Figs. 1 and 2. 495 


