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Abstract In this paper, we aim at ranking a set of nursing homes based
on their ability in maintaining their residents’ physical conditions as good as
possible. In this respect, we propose a nursing home performance indicator,
which is essentially a probability to avoid resident health status worsening.
Specifically, latent Markov models with covariates and normally distributed
continuous random effects are fitted to produce standardised six-month ahead
transition matrices, upon which the aforementioned index is based. Nursing
home effects on these transition matrices are modelled through fixed as well
as random effects. The performance index is used to build two distinct rank-
ings, one of which also accounts for the variability induced by the estimation
process. In this framework, several rankings can be obtained by combining the
model specification (fixed versus random effects), the kind of ranking and the
number of latent states, which is the typical sensitivity parameter of latent
Markov models. Our methodological approach is applied to a dataset which
was gathered from a health protocol implemented in Umbria (Italy). Results
for this data show a rather high degree of robustness, in the sense that the
obtained rankings are almost the same.

.

Keywords Latent Markov models · Nursing homes · Performance assess-
ment · Ranking construction

1 Introduction

In many countries, the public health system relies on the services provided by
public and private structures, within a regulated framework. Clearly, proper
tools to evaluate the performance of these structures are essential to policy
makers to pursue efficiency, effectiveness and quality of health care services.
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Nursing home (NH) care, which is one of the main services (Makai et al,
2014) together with the hospital system, is not an exception to this scheme.
In this respect, in the United States it is a common practice to collect data for
NH comparison and to rank the facilities according to the quality of resident
care. Such comparisons are generally based on quality indicators derived from
a single assessment of patients’ health, like the presence or the absence of
certain conditions. These indicators are then aggregated to the facility, regional
and national level, and expressed as prevalence or incidence rates; see for
example Arling et al (2005, 2007); Castle and Ferguson (2010); Phillips et al
(1997) and references therein. Care quality evaluations are offered to interested
people for a conscious choice and for stimulating the improvement of NH
performances.

The above approach is also common in the evaluation of hospitals with
respect to the outcome of patient treatments. However, in the case of NH care
there are two aspects characterising the offered service. First, NH care is a long
term facility, meaning that it is common for an elderly person entering an NH
to spend there a considerable amount of time (rather often the rest of their
life). Therefore, NH evaluation can be also carried out assuming a longitudinal
perspective and developing some indicators of the ability to preserve resident
health status as good as possibile over time. Second, the outcome of interest,
that is, resident health status, is an unobservable variable which is typically
surveyed by a set of indicators. In this perspective, statistical NH evaluation
methods dealing with both longitudinal data and the presence of unmeasured
traits are of interest.

In this respect, latent Markov (LM) models (Wiggins, 1973; Bartolucci
et al, 2013) are an appropriate tool. Indeed, LM models study an unobserved
stochastic process which is assumed to evolve like a first-order Markov chain
with a finite number of states. Though such a process is not directly observable,
some proxies of it are assumed to be available. These proxies are typically
referred to as the outcome variables, since they are manifestations of a common
latent phenomenon. Specifically, in the application we consider, these outcome
variables are the items of a suitable questionnaire.

The most relevant extensions of the basic LM model allow to include unit-
level covariates either in the measurement model or in the latent model (Bar-
tolucci et al, 2013; Vermunt et al, 1999). Applications of these models to the
health care evaluation framework exist. For example, the former has been put
forward to evaluate hospital efficiency (Pennoni and Vittadini, 2013). Con-
versely, the latter has been proposed to assess NH effects on patient health
status, which can in principle be estimated by indicator variables representing
group membership (Bartolucci et al, 2009; Montanari and Pandolfi, 2018). In
the following, we refer to this second model as to the fixed effect LM model.

Alternative model specifications have been proposed which rely on random
instead of fixed effects. Random effects have been introduced in various ways
in the class of LM or hidden Markov models (Altman, 2007; Maruotti, 2011;
Maruotti and Rocci, 2012). In this work, we limit our attention to the case
where random effects aim at modelling the presence of some kind of clustering
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in the data affecting the latent process, assuming a multilevel perspective.
The literature about this specific model, which we call the random effect LM
model, is quite limited: applications of it exist for medical (Koukounari et al,
2013) or educational datasets (Bartolucci et al, 2011) but not, to the best of
our knowledge, in the context of health care evaluation.

In this work, we consider the NH care system of Umbria, a region of central
Italy, and propose a methodology to evaluate the NH care quality by measuring
the capability of each NH to keep their residents in good health conditions over
time. Such a methodology is based on both fixed and random effect LM models
and relies on data collected at the resident level. In particular, we extend
results from previous works (Montanari et al, 2017a,b,c) and propose an NH
performance index which can be interpreted as an overall probability to avoid
the worsening of resident physical limitations. Such an index allows to compare
and rank the NHs. Furthermore, we investigate the robustness of our rankings
through a comparison between fixed and random effect LM models and two
different ranking procedures. Such a robustness test is relevant in evaluation
processes, as remarked also by other authors (see, for example, Gnaldi and
Ranalli (2010, 2016) for a related discussion in the context of the evaluation
of universities).

The paper is structured as follows. A brief description of the dataset we
use is reported in Section 2, while the two competing models we consider, that
is, the fixed effect and the random effect latent Markov model, are presented
in Sections 3.1 and 3.2 respectively. Maximum likelihood estimation of the two
models is discussed in Section 3.3, whereas in Section 3.4 we describe how the
rankings we propose are built. Model results and NH rankings for the data at
hand are shown in Section 4, while in Section 5 some final remarks are given.

2 The LTCF dataset

Our analysis is based on data collected under the Long Term Care Facilities
Protocol (LTCF), which has been implemented by the regional government
of Umbria since 2010. Data are gathered by administering NH residents, ap-
proximately every six months, a questionnaire belonging to an internationally
validated tool termed Suite interRAI instruments (Hirdes et al, 2008; Kim
et al, 2015).

The interRAI questionnaire in use is formed by several items referring to
different domains of the health status (cognitive conditions, physical limita-
tions, auditory and view fields, incontinence, etc.). In this work, we only focus
on the section concerning the physical limitations, which are measured by 10
items referring to the so-called Activities of Daily Living (ADL) as in Mon-
tanari et al (2017a). Items in this section quantify residents’ difficulties in
every-day activities like washing, getting dressed, walking, eating, using the
WC, maintaining personal hygiene, etc. The higher the response level, the
higher the difficulty in the activity and the dependence on the assistance pro-
vided by other people because of the lack of autonomy. Specifically, an ordinal
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scale with 6 levels (labelled from 1=“independent” to 6=“totally dependent”)
is adopted.

Focusing on a single section of the questionnaire is a limitation of our ap-
proach, since other relevant domains of the health status are ignored. In our
specific case - where attention is confined to the ADL section - one has thus to
bear in mind that the latent trait being modelled is narrowed to residents’ phys-
ical limitations. However, this approach allows to deal with a one-dimensional
latent variable, which can be reasonably assumed to have an ordinal nature.
This setting allows us to rank the NHs with respect to their ability in pre-
serving resident physical autonomy. Clearly, similar rankings can be built for
other health domains.

In the LTCF dataset, some individual covariates are also available. Specifi-
cally, age and gender are measured at every time occasion, while the temporal
distance (in days) from the previous measurement is present, clearly, from the
second occasion onwards. Age is obviously correlated to the worsening of phys-
ical limitations, and so is gender (Montanari et al, 2017a). Temporal distance
between observations is relevant since the data show some variability in the
time intervals between occasions, which is likely to depend on resident health
status. Typically, observations are anticipated with respect to the canonical
six-month distance in the presence of a significant change in residents’ condi-
tions. Conversely, delayed observations occur in the case of stable conditions.

The longitudinal dataset we consider refers to the years 2012 and 2013,
and contains 3924 observations for 1292 residents distributed in 47 NHs. Ta-
ble 1 contains means and standard deviations for the labels of the ADL item
categories and for the individual covariates, across the whole set of observa-
tions, as well as some summary statistics for the distributions of the 47 NHs
according to their number of patients and observations.

As already mentioned, the interRAI questionnaire is administered roughly
every six months. Since our dataset covers two years, ideally each of the 1292
residents should have four measurement occasions. However, the dataset at
hand comprises only 3924 rather than 5168 observations due to intermit-
tent missingness (that is, missing observations before the last available) and
dropout. The former is relatively rare and has unknown causes. Therefore, it is
assumed to occur at random. Conversely, dropout has several causes, the most
relevant of which is resident death. Clearly, a probabilistic dependence exists
between dropout due to death and the outcome variables (i.e., the ADL indica-
tors). Indeed, the former is likely to be associated to a worsening in the values
of the latter. Therefore, such a missing data mechanism is non-ignorable, and
has to be somehow modelled in order to avoid biased estimates. An account on
how dropout due to death is handled is given in Section 3. On the other hand,
dropout due to other reasons - such as discharge, transfer to other structures
or similar - is far less frequent and, like intermittent missingness, is assumed
to occur at random, since a clear connection with the ADL values cannot be
established.
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ADL items & covariates

description mean std. dev.
Y1 Use of the shower stall/bath tub 4.78 1.44
Y2 Personal hygiene 4.53 1.63
Y3 Dressing the upper part of the body 4.38 1.77
Y4 Dressing the lower part of the body 4.62 1.68
Y5 Walking 4.08 2.06
Y6 Locomotion 3.99 2.09
Y7 Transfer to the WC 4.19 1.99
Y8 WC use 4.38 1.91
Y9 Bed mobility 3.56 2.04
Y10 Eating 2.76 2.02

X1 age (years) 82.30 10.37
X2 gender (1=female) 0.72 0.45
X3 distance from previous obs. (days) 187.05 48.65

nursing homes

min 1Q median mean 3Q max
# of patients 1.00 9.50 19.00 27.49 39.00 96.00
# of obs. 1.00 27.50 62.00 83.49 114.50 309.00

Table 1 Summary statistics for the LTCF data: means and standard deviations for the
ADL items and the individual covariates; range, mean and quartiles of the number of pa-
tients/observations across NHs.

3 Latent Markov models and ranking construction

3.1 Fixed effect model

In this section, we present the fixed effect LM model developed for the data
at hand to evaluate NH performances. Assume we have n independent sample

units, i = 1, . . . , n, that in our case are the 1292 NH residents. Let Y
(t)
i ,

X
(t)
i , and Z

(t)
i respectively denote the item response vector, the individual

covariate vector and the NH membership indicator vector of unit i at occasion

t = 1, . . . , Ti. Specifically, the vector Y
(t)
i = (Y

(t)
i1 , . . . , Y

(t)
iJ ) collects J = 10

univariate categorical items. As stated in Section 2, here each item has a
constant number c = 6 of response categories, labelled from 1 to 6, though
in principle such a number can be different for every item. Further, the set of

individual covariates in X
(t)
i can vary across time; see Section 2. Finally, Z

(t)
i

contains H = 47 indicator variables. The one corresponding to the NH unit
i belongs to is set equal to one, while all the others are set to zero. Despite

this general notation, in our application Z
(t)
i is indeed time-invariant, since

for our purposes the few residents that leave the NH hosting them in the first
occasion are treated as dropouts. Each sample unit has its own number of
measurement occasions Ti ≤ T = 4, and individual vectors can be collected

across time in the vectors Yi = (Y
(1)
i , . . . ,Y

(Ti)
i ), Xi = (X

(1)
i , . . . ,X

(Ti)
i ) and

Zi = (Z
(1)
i , . . . ,Z

(Ti)
i ).
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We assume that, at occasion t, Y
(t)
i depends on an unobserved discrete

latent variable V
(t)
i - which in our application reflects resident i’s level of

physical limitations - with k levels. We recall that in this context these levels
are ordered, from no limitation at all (level 1) to the most severe limitations
(level k). A first-order Markov chain is assumed to govern the whole latent

process Vi = (V
(1)
i , . . . , V

(Ti)
i ).

Like in every LM model, the parameters of interest can be divided into three
groups: i) conditional response probabilities, ii) initial probabilities, and iii)
transition probabilities. The first are the probabilities of observing specific item
categories from a unit in a given latent state. The second are the probabilities
of being in a latent state at the first measurement occasion, whereas the third
are the probabilities of moving towards a latent state given one was in a
specific latent state at the previous measurement occasion. Although covariates
may affect each group of parameters (Bartolucci et al, 2017), here they are
assumed to affect parameters in the second and third group only. In fact, in our
application, while age and gender are clearly predictors of health status, their
effect on the measurement model is questionable. Furthermore, our purpose is
to identify groups of elders whose physical limitations are stable or improve
over time. It follows that conditional response probabilities are assumed to be
constant across time and to depend on unit i only through its latent state v.
Therefore, we set

P (Y
(t)
ij = y|V (t)

i = v) = φjyv

(j = 1, . . . , J, y = 1, . . . , c, v = 1, . . . , k, i = 1, . . . , n, t = 1, . . . , Ti). Further-

more, we assume that, conditionally on V
(t)
i , each item Y

(t)
ij is independent of

any other variable in the model.
Conditional response probabilities can be parametrised in many different

ways in order to reduce the number of free parameters that have to be esti-
mated. Because of the ordinal nature of the response items and of the latent
trait, a global logit parametrisation (see Bartolucci et al., 2013; p. 30)

log
φjm+1v + · · ·+ φjcv
φj1v + · · ·+ φjmv

= τjm + δv (1)

(j = 1, . . . , J ; m = 1, . . . , c − 1; v = 1, . . . , k) can be set. In detail, the pa-
rameters τjm form J sequences of thresholds such that τj1 > · · · > τjc−1 for
j = 1, . . . , J , whereas the parameters δv are increasing with the latent state,
that is, δ1 < · · · < δk, with δ1 set to 0 for model identifiability.

The latent model is specified by the conditional initial probabilities

π
(1)
i (v) = P (V

(1)
i = v|X(1)

i = x
(1)
i ,Z

(1)
i = z

(1)
i )

(v = 1, . . . , k; i = 1, . . . , n) and by the conditional transition probabilities

π
(t)
i (v|v̄) = P (V

(t)
i = v|V (t−1)

i = v̄,X
(t)
i = x

(t)
i ,Z

(t)
i = z

(t)
i )

(v̄, v = 1, . . . , k; i = 1, . . . , n; t = 2, . . . , Ti). Contrary to conditional re-
sponse probabilities, these quantities are indexed by i and t as they depend
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on individual-specific covariates. However, the dependence on x
(t)
i and z

(t)
i

(t = 1, . . . , Ti) is suppressed in π
(1)
i (v) and π

(t)
i (v|v̄) to ease notation. Again,

since latent states are ordered, a global logit link for the regression equations
of these probabilities is assumed, that is

log
π

(1)
i (v + 1) + · · ·+ π

(1)
i (k)

π
(1)
i (1) + · · ·+ π

(1)
i (v)

= ξv + x
(1)
i β0 + z

(1)
i β1 (2)

(v = 1, . . . , k − 1; i = 1, . . . , n), and

log
π

(t)
i (v + 1|v̄) + · · ·+ π

(t)
i (k|v̄)

π
(t)
i (1|v̄) + · · ·+ π

(t)
i (v|v̄)

= ψv̄ + ωv + x
(t)
i γ0 + z

(t)
i γ1 (3)

(v̄ = 1, . . . , k; v = 1, . . . , k − 1; i = 1, . . . , n; t = 2, . . . , Ti). Like in (1),
in (2) and (3) there are sequences of ordered thresholds. Specifically, we have
ξ1 > · · · > ξk−1 and ω1 > · · · > ωk−1. On the contrary, the sequence ψv̄
(v̄ = 1, . . . , k) does not need to be ordered, though the constraint ψ1 = 0 must
be imposed for model identifiability. The column vectors β0 and β1 measure,
respectively, the individual covariate effects and the NH effects on the ini-
tial probabilities, whereas γ0 and γ1 measure the analogous effects on the
transition probabilities. All these effect vectors do not change across the logit
equations. To ensure model identification, a corner point parametrisation is
adopted for β1 and γ1: the first NH is taken as reference and its coefficients
are set to zero, so that all other coefficients have to be interpreted as effect
differences from this reference NH (given the values of individual covariates)
on the linear predictor scale.

The NH effects in β1 account for the heterogeneity unexplained by age
and gender in the initial probabilities of the latent states. As such, they can
be reasonably imputed to the different admission policies of residents in the
NHs. Similarly, the NH effects in γ1 account for the heterogeneity not ex-
plained by age, gender and temporal distance between observations in the
transition probability matrices of residents. A positive/negative value means
that, conditional on the latent state at time t− 1 and other covariates at time
t, the probability of a transition toward a higher latent state (i.e., more serious
physical limitations) at time t is higher/lower than the same probability for
the reference NH. In this sense, these effects can be taken as indicators of the
quality of the care provided by the NHs.

To tackle the presence of non-ignorable dropout as described in Section 2,
the model is extended as follows. For each outcome variable, we define an
additional response category c + 1, and we augment the data trajectories for

residents who die after the t-th occasion, letting Y
(s)
hij = c+1 for s = t+1, . . . , T .

In our application, the augmented dataset we obtain after this procedure has
4746 observations. Furthermore, we introduce an additional absorbing latent
state k+ 1 corresponding to death. As a consequence, a number of additional
initial, transition and conditional response probabilities are introduced, and
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some of these have to be set to specific values. In detail, for j = 1, . . . , J ,
v = 1, . . . , k and t = 2, . . . , T , we set:

i) π
(1)
i (k + 1) = 0 (i = 1, . . . , n): no one can be in the latent state associated

to death in the first occasion;

ii) π
(t)
i (k + 1|k + 1) = 1 (i = 1, . . . , n): no one can revert to other states from

death (that is, death is an absorbing state);
iii) φj(c+1)v = 0: the additional response category cannot be observed if one is
not dead.
Notice that constraints i) and ii) have a conceptual nature, whereas iii) is linked

to the data expansion we performed. Overall, π
(t)
i (k+1|1), . . . , π

(t)
i (k+1|k) are

the only new probabilities that have to be estimated to account for dropout
due to death. These are the probabilities that a resident in a generic latent
state v (v = 1, . . . , k) at occasion t− 1 will be dead at occasion t. It is worth
to remark that this additional model feature implies the estimation of a single
additional free parameter - that is, the threshold ωk - that has to satisfy the
previously mentioned inequality constraint for transition probabilities, i.e.,
ω1 > · · · > ωk−1 > ωk.

3.2 Random effect model

In the model of the above section, β1 and γ1 represent the NH fixed effects
on the initial and transition probabilities. In this section, we introduce the
random effect LM model, which, as stated in Section 1, can be essentially seen
as a multilevel model. Although the overall model structure is similar to that
of the fixed effect LM model, there are some notable distinctions. The major
difference is that group membership is no more accounted for by introducing
indicator covariates reflecting NH membership (i.e., the indicator variables in
Zi), but it is an intrinsic feature of the model structure. Specifically, since
each of the n sample units belongs to a cluster (an NH), the double index
hi is used to identify units, with h denoting clusters (h = 1, . . . ,H) and i
denoting units within clusters (i = 1, . . . , nh), where nh is the sample size of

the h-th cluster and
∑H
h=1 nh = n. Apart from this difference, the notation for

the outcome variables, the covariates and the latent process is the same as in
Section 3.1. Clearly, one has to bear in mind that another level of aggregation
for random vectors is possible: for example, Xh = (Xh1, . . . ,Xhnh

) denotes
the collection of all individual covariate vectors of units in cluster h (with Yh
and Vh meaning the same for the outcome variables and the latent process,
respectively).

As typical in multilevel models, different clusters are assumed marginally
independent, whereas units in the same cluster are not. Here, we assume that
within-cluster independence holds conditionally on a cluster-specific vector of
random effects Uh = (Rh, Sh), where Rh affects the initial probabilities and
Sh affects the transition probabilities. Therefore, letting

π
(1)
hi (v) = P (V

(1)
hi = v|X(1)

hi = x
(1)
hi , Rh = rh)
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(v = 1, . . . , k; h = 1, . . . ,H; i = 1, . . . , nh) and

π
(t)
hi (v|v̄) = P (V

(t)
hi = v|V (t−1)

hi = v̄,X
(t)
hi = x

(t)
hi , Sh = sh)

(v, v̄ = 1, . . . , k; h = 1, . . . ,H; i = 1, . . . , nh; t = 2, . . . , Thi), the equivalent of
Equations (2) and (3) for the random effect LM model is given by

log
π

(1)
hi (v + 1) + · · ·+ π

(1)
hi (k)

π
(1)
hi (1) + · · ·+ π

(1)
hi (v)

= ξ̃v + x
(1)
hi β̃0 + σrrh (4)

(v = 1, . . . , k − 1; h = 1, . . . ,H; i = 1, . . . , nh) and

log
π

(t)
hi (v + 1|v̄) + · · ·+ π

(t)
hi (k|v̄)

π
(t)
hi (1|v̄) + · · ·+ π

(t)
hi (v|v̄)

= ψ̃v̄ + ω̃v + x
(t)
hi γ̃0 + σssh (5)

(v = 1, . . . , k − 1; v̄ = 1, . . . , k; h = 1, . . . ,H; i = 1, . . . , nh; t = 2, . . . , Thi),
where the symbol ∼ is added above the parameters (ξv, ψv̄, ωv,β0,γ0) to dis-
tinguish them from the respective parameters in the fixed effect model, al-
though their interpretation remains unchanged. The NH effects in β1 and γ1

of the fixed effect model are replaced by the random effects σrrh and σssh,
respectively.

To complete the model specification, a distribution needs to be assigned to
the random vector Uh. Specifically, we assume it to follow a standard bivariate
normal distribution and denote by ρ the correlation coefficient of this distribu-
tion. Thus, the coefficients σr and σs in (4) and (5) can be interpreted as the
standard deviations of the overall NH effects σrRh and σsSh. Normality is by
far the most popular choice for random effects within this class of models, the
main reason lying in the fact that normal integrals can be efficiently approxi-
mated by quadrature methods; see Section 3.3. Although in principle it might
be questioned, such an assumption does not seem unrealistic in the application
at hand. Indeed, NH effects on both initial and transition probabilities can be
thought of as average effects summarising a number of distinct components,
so that normality is justified overall.

Under this formulation, the expected posterior random effects σsE(Sh|Yh)
allow to rank the NHs according to their probabilities of transition toward
higher degrees of physical limitations. Indeed, these probabilities are monotone
functions of the random effects. This is how the longitudinal structure of the
available data is exploited, albeit with some provisos discussed in Section 4, for
evaluation purposes. Similar approaches, though in a cross-sectional setting,
are quite popular within the evaluation framework in many fields, ranging from
hospitals (Vittadini and Minotti, 2005) to educational institutions (Grilli and
Rampichini, 2009; Rampichini et al, 2004).

3.3 Maximum likelihood estimation

Maximum likelihood estimation is performed for both models. However, two
different procedures are adopted which are briefly described in this section. In



10 ,

what follows, the vectors of all model parameters for the fixed and the random
effect models are denoted respectively by θf and θr, whereas their maximum

likelihood estimates by θ̂f and θ̂r. Specifically, letting p be the total number

of elements of β̃0 and γ̃0, θr contains 4k + p + J(c − 1) parameters, whereas
θf has 2(H − 1)− 3 additional parameters since both β1 and γ1 have H − 1
components, while the random effect model accounts for NH effects by means
of three parameters only.

For the fixed effect LM model, the Expectation-Maximisation (EM) al-
gorithm (Dempster et al, 1977) is implemented to maximise the model log-
likelihood

`(θf ) =

n∑
i=1

logP (Yi = yi|Xi = xi,Zi = zi). (6)

The EM algorithm is the most popular estimation tool for LM models in
their classical formulation; see Bartolucci et al (2013) for a detailed overview.
Such a method consists in iteratively alternating two steps. Starting from a
random guess for θf , in the first step (E-step) the conditional expectation of
the complete data log-likelihood

`∗(θf ) =
n∑
i=1

logP (Yi = yi,Vi = vi|Xi = xi,Zi = zi) (7)

given the data is computed. Then, this conditional expected complete data
log-likelihood is maximised to update the parameter vector estimate of θf
(M-step). This scheme is repeated until convergence to obtain the final esti-

mate θ̂f . Given our model parametrisation, the M-step involves a constrained
maximisation procedure in order to obtain the ordered threshold sequences
as described in Section 3.1. Specific R code was developed to implement the
whole algorithm, with a Fortran interface to speed computation as much as
possible.

For the continuous random effect LM model, EM estimation is much more
cumbersome. Therefore the log-likelihood

`(θr) =

H∑
h=1

logP (Yh = yh|Xh = xh) (8)

is maximised directly. Given the model assumptions, each cluster-specific com-
ponent P (Yh = yh|Xh = xh) in (8) can be written as∫

R2

[
nh∏
i=1

P (Yhi = yhi|Xhi = xhi,Uh = uh)

]
φρ(uh)duh, (9)

where φρ(uh) denotes the density function at uh of a standard bivariate nor-
mal distribution with correlation ρ, which is the correlation between the two
components of Uh. In practice, the integral in (9) is approximated by a Gauss-
Hermite quadrature method, and direct maximisation is performed by using
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the BFGS algorithm (Fletcher, 1987), an iterative optimisation algorithm read-
ily available in R. We highlight that the explicit computation of the gradient
of (8) is needed to run the BFGS algorithm. Again, a combination of R and
Fortran routines is used to calculate such a gradient vector as well as the log-
likelihood in (8) itself. Suitable parameter transformations are introduced to
ensure the estimated standard deviations σ̂r and σ̂s be positive and ρ̂ lie be-
tween -1 and 1. Conversely, threshold orderings are met in the final estimate θ̂r
without imposing any constraint, since a sensible starting value for the BFGS
algorithm is chosen to ease convergence (see Montanari et al (2017a) for the
details).

For both models, Hessian matrices are needed to obtain variance-covariance
matrices (and standard errors) of θ̂f and θ̂r. For the random effect model, the
Hessian matrix is directly returned by the BFGS algorithm, whereas for the
fixed effect model the equivalence between the derivative of (6) and that of
the expected complete log-likelihood is exploited (Oakes, 1999). In detail, the

latter is first computed by implementing an E-step from the solution θ̂f and
then further derived to obtain the Hessian matrix.

Finally, it is worth to discuss computational times in relation to the ap-
plication considered in this work. To this end, we recall that the dataset at
hand consists of 4746 observations referring to 1292 units, which are divided
in 47 clusters. Further, there are 10 outcome variables with 6 categories each
and 3 covariates; see Section 2. For this data burden, computational times
are reasonable for the EM algorithm, while the BFGS algorithm takes, on a
standard machine, more than one day for each model. Clearly, in any case the
computational complexity increases with the number of latent states k.

3.4 The NH performance indicator and the rankings

Service performance evaluation is a standing field of research, which may have
many different objects. Here, interest lies in NH care quality evaluation, where
- as mentioned in Section 1 - most methods are typically based on indicators
computed using cross-sectional data (Castle and Ferguson, 2010). A similar
strategy has been pervading also other areas, where multilevel cross-sectional
models have become a widely employed tool (Vittadini and Minotti, 2005;
Rampichini et al, 2004). Attempts to evaluate services on the basis of the
longitudinal evolution of the outcomes have also been made; see for exam-
ple Pennoni and Vittadini (2013) and Colombi et al (2017) in the field of
hospital efficiency. However, these approaches rely on data at the hospital
level. Conversely, we aim at evaluating health services from a patient-based
standpoint, so methods tailored to longitudinal resident-level data sources are
needed.

Motivated by these considerations, we now show how output from the
fixed effect and random effect (multilevel) LM models is employed to assess
NH contributions to changes in resident physical health status. Specifically, our
approach is based upon the idea that smaller probabilities of transition toward
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a higher level of physical limitations are associated to a better overall quality
of care in terms of assistance, prevention of traumatic events and provided
treatment of chronic diseases. Therefore, a plausible performance indicator can
be based on the transition matrices estimated via the aforementioned models.
Because 180 days is the canonical distance that approximately separates two
consecutive measurements for each resident (see Section 3.1), the transitions
matrices we deal with refer to this time interval. Further, it is reasonable
to assume that 180 days represent a time interval wide enough to allow NH
practices to be evaluated.

As age and gender also affect the latent state transitions, 180-day ahead
transition matrices are individual-specific. Therefore, an aggregation method
has to be implemented in order to come up with a single overall transition ma-
trix for each NH. Taking the simple average of the matrices of residents in the
same NH would not be appropriate. Indeed, NHs have different compositions
with respect to age and gender, so NH comparisons based on such average
matrices would be also affected by these differences. To overcome this issue,
we rely on the standard population method (Kitagawa, 1964), which is widely
used in demography. In our context, such a method implies each NH-specific
overall transition matrix be obtained by averaging across the same set of units
(specifically, the whole set of residents). In detail, for each NH a fictitious
dataset is constructed as if all residents belonged to that NH. In the fixed
effect model, this is done by suitably modifying the Zi vectors, whereas in the
random effect model the same can be achieved by assigning every resident the
estimated posterior expected effect σ̂sE(Sh|Yh) for NH h.

The procedure described above produces NH-specific standard transition
matrices depending on the estimated NH effect only. Clearly, these matrices
can be used to obtain a performance-based ranking of the NHs. While fixed
effect models have already been proposed to a similar end (Bartolucci et al,
2009; Montanari and Pandolfi, 2018), the adoption of the multilevel LM model
for ranking purposes is rather innovative. This is due to the fact that previously
fitted multilevel LM models include random effects with a discrete distribu-
tion (Bartolucci et al, 2011; Koukounari et al, 2013), which can provide at
most a clustering rather than a ranking of second level units. In this sense,
the introduction of continuous random effects plays a key role in the whole
evaluating framework.

For a k-state model, the estimated 180-day ahead standard transition ma-
trix for the h-th NH takes the form

Π̂h =


π̂h(1|1) . . . π̂h(k|1) π̂h(k + 1|1)

...
. . .

...
...

π̂h(1|k) . . . π̂h(k|k) π̂h(k + 1|k)
0 0 0 1

 ,

where all the rows sum to one and the last row refers to the additional latent
state introduced to handle dropout due to death, as detailed in Section 3.
Since the latent states 1, . . . , k are ordered - from the least to the most serious
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physical limitations - a summary measure of the NH capability to avoid the
worsening of resident physical limitations can be given by

p̂h =
1

k

k∑
v̄=1

v̄∑
v=1

π̂h(v|v̄). (10)

This quantity corresponds to the average of the cumulative row probabilities,
up to the main diagonal of Π̂h, excluding the last row, and it can be interpreted
as the probability that a randomly selected resident, once assigned to NH h,
does not worsen the physical limitations within 180 days. Clearly, higher values
of p̂h are associated to better NH performances in terms of quality of the care
provided.

Using the performance index p̂h, we introduce two ranking methods. The
first method simply ranks the NHs according to the value of p̂h, from the high-
est to the lowest. However, such a procedure ignores the uncertainty deriving
from the estimation process.

To take into account the uncertainty in the estimates, hence the uncertainty
in the NH rank, we propose a second procedure where the variability of p̂h
is also relevant. From a conceptual standpoint, this approach is similar to
others relying on Monte Carlo methods (Marozzi and Bolzan, 2016a,b). The
construction of the second ranking involves three steps:
i) the computation of the estimated variances of p̂h, for h = 1, . . . ,H;
ii) the computation of the 95% overlap intervals (OIs), under the normality
assumption for p̂h, for multiple comparison (Goldstein and Healy, 1995; Af-
shartous and Preston, 2010);
iii) the construction of a synthetic index based on the OIs to obtain the rank-
ing.

The first step entails to compute the approximate standard errors of the
elements of Π̂h, which can be obtained via the delta method starting from the
standard errors of θ̂f and θ̂r. Computing these standard errors is rather com-

plex. Here, we make the simplifying assumption that the elements of Π̂h are
uncorrelated. Under this assumption, the estimated variance of p̂h is computed
as

V̂ (p̂h) =
1

k2

k∑
v̄=1

v̄∑
v=1

V̂ (π̂h(v|v̄)), (11)

with V̂ (π̂h(v|v̄)) denoting the estimated variance of π̂h(v|v̄).
Once the variances of the p̂h estimates are calculated, pairwise compar-

isons can be performed to assess whether statistically significant differences
exist among the values of p̂h. In the second step, in order to operate multiple
comparisons at the right level of significance, we follow the approach of Gold-
stein and Healy (1995) and compute 95% OIs setting the critical level of each
95% OI equal to the average of the critical levels of all pairwise comparisons.

Then, for any given couple of NHs, say h and h′, we say that h is signifi-
cantly better than h′ when the lower OI limit of h is greater than the upper
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OI limit of h′; conversely, when the upper OI limit of h is smaller than the
lower OI limit of h′, we say that h is significantly worse than h′.

Finally, the synthetic index for the h-th NH is computed as

ih =
1

2

(
Wh −Bh
H − 1

+ 1

)
,

where Wh is the number of NHs performing significantly worse than NH h, and
Bh is the number of NHs performing significantly better than NH h. Like p̂h,
the ih index ranges between 0 and 1, with higher values associated to better
performances. Note that two o more NHs might have the same value of ih: as
typical, in the ranking such ties are handled by assigning the average position
among those into play. It is also worth to remark that in this second ranking
procedure the position of an NH depends on the value of both p̂h and V̂ (p̂h).
If the latter is high, then the rank is uncertain and Wh and Bh might be very
small, even zero. In such a case the NH would be classified approximately in
the middle of the ranking.

4 Results for the LTCF dataset

In this section, we give details about the estimated LM models for the LTCF
data. Specifically, we first highlight how model selection is performed. Then,
we briefly discuss the main results for the final models and implement the
ranking procedures proposed in the previous section. Prior to this discussion,
it is important to clarify that the comparison between the fixed and random
effects models cannot involve all the 47 NHs observed in the LTCF dataset.
Specifically, for the fixed effect model, estimates for only 41 NHs are available.
This is due to a drawback of the EM algorithm, in which estimation of some NH
effects might be highly unstable, if not completely unfeasible, when just a few
units carry information about them. To overcome this issue, we have removed
the six NHs with less than ten observations. Conversely, for the random effect
model, the BFGS algorithm does not suffer from this problem, so results for
all the 47 NHs are available. However, in order to compare the two models,
we focus only on the 41 largest NHs. Henceforth, we set H = 41 and use the
subscript h = 1, . . . , 41 to index the NHs in this restricted set.

For both models, model selection is essentially concerned with the choice
of the number of latent states k. To this end, a sensitivity analysis is per-
formed where a number of different values for k are specified. In detail, for the
fixed effect model we let k range between 2 and 10, whereas for the random
effect model we set k ∈ {2, . . . , 7}, since higher values result in prohibitive
computational times (see Section 3.3). Formal indices based on the penalised
log-likelihood like the Bayesian Information Criterion (Schwarz, 1978) are ini-
tially adopted as a selection strategy. However, since it is known that these
indices often tend to select models with too many latent states (Bacci et al,
2014), we take also alternative model selection criteria into account (Pohle
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RE model FE model

k ` #par BIC ` #par BIC

2 -46,017.8 63 92,487.0 -46,206.8 142 92,875.4
3 -40,704.1 67 81,888.2 -40,911,8 146 82,277.9
4 -38,460.7 71 77,430,1 -38,675,6 150 77,818.0
5 -37,736.6 75 76,010.5 -37,961.4 154 76,401.8
6 -37,413.8 79 75,393.6 -37,646.2 158 75,784.0
7 -37,165.0 83 74,924.5 -37,407.0 162 75,318.0

Table 2 Log-likelihood, number of parameters and BIC values for random (RE) and fixed
(FE) effects LM fitted models.

et al, 2017). Specifically, we consider the overall interpretability of the la-
tent states, and how sharply each model classifies a posteriori sample units in
these latent states. Overall, for both the random and the fixed effect model,
the one with k = 5 latent states is selected as the final one; see Montanari et al
(2017a,b,c) for further details. Here, in Table 2 we report the log-likelihood,
the number of parameters and the BIC index for the fixed effects and the
random effects multilevel LM fitted models.

The analysis of normal ordinary pseudo-residuals (Zucchini and MacDon-
ald, 2009, Ch. 6) does not raise concerns related to model fitting for any item.
However, to prevent model misspecification we also investigate the presence of
a quadratic effect of age in the latent model. Such an effect does not prove to
be significant and is therefore removed.

The latent states identified by the two models are essentially the same. In
Table 3, we report the latent state profiles in terms of estimated conditional
mean values of the ADL items listed in Section 2. These refer to the fixed effect
model, with those of the random effect model being almost identical. We recall
that, due to the ordinal nature of the latent trait, these states are ordered, with
the first one including residents in the best physical conditions. In summary,
residents in the first latent state show some difficulties in a specific set of
activities which includes taking a shower, maintaining the personal hygiene and
getting dressed. Members of the second state experience the same difficulties,
though to a greater extent, together with some initial problems in walking and
using the WC. Residents in latent state 3 require rather intensive assistance for
all the actions but eating and moving in and out the bed, which is instead more
problematic for residents in the fourth state. Finally, the last state contains
residents who are almost totally unable to carry out the surveyed ADLs.

An important point that has to be discussed before showing the values of
the index p̂h and the rankings based on it concerns the correlation between the
NH effects on initial and transition probabilities. Indeed, the former reflects
NHs’ tendency to admit residents in better or worse conditions. Therefore,
to prevent any form of adverse selection in the resident admission process, a
proper evaluation scheme is required to produce results not affected by the
case-mix, that is, the different complexity each NH has to deal with at the
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latent state v

item description 1 2 3 4 5

Y1 Use of the shower stall/bath tub 2.18 3.38 4.34 5.38 5.96
Y2 Personal hygiene 1.62 3.10 4.11 5.17 5.94
Y3 Dressing the upper part of the body 1.32 2.70 3.85 5.05 5.93
Y4 Dressing the lower part of the body 1.50 3.10 4.24 5.35 5.96
Y5 Walking 1.04 1.65 3.22 4.94 5.93
Y6 Locomotion 1.03 1.53 3.05 4.83 5.92
Y7 Transfer to the WC 1.06 1.95 3.54 5.03 5.93
Y8 WC use 1.12 2.36 3.93 5.25 5.95
Y9 Bed mobility 1.01 1.26 2.44 4.10 5.74
Y10 Eating 1.00 1.03 1.32 2.52 5.24

Table 3 Estimated mean values of the ADL items, conditional on latent states, for the
fixed effect model with k = 5.

beginning of the evaluation process. This requirement implies that the afore-
mentioned correlation should be negligible.

The way the correlation between NH effects is represented differs in the
two LM models. In the random effect model, the single parameter ρ specifies
it, whereas in the fixed effect model we have one correlation coefficient for
every pair of elements sharing the same position in the vectors β1 and γ1.
In our five-state models, we have ρ̂ = −0.118 with a standard error equal to
0.221, while the maximum estimated absolute correlation between elements
of β̂1 and γ̂1 is lower than 0.05. Similar results are obtained for other values
of k. Therefore, we can conclude that in the LTCF data, NH effects on the
initial and transition probabilities are uncorrelated, and the proposed ranking
procedures can be safely adopted.

In Table 4, the two rankings for the fixed and random effect LM models
with k = 5, together with the values of p̂h and ih, are reported. This table
shows that for both models the ih indicator is generally more spread on the
0-1 interval than p̂h. However, the four rankings are quite similar, although
some noteworthy discrepancies exist, especially for NHs with a small number
of residents (see for instance NH number 30). These are likely due to the
shrinkage effect of the random effect model.

To better understand the second ranking procedure, we also depict the
caterpillar plot of p̂h for the fixed effect model with k = 5 (see Figure 1).
In such a plot, the dots are pinpointed at the values of p̂h, while the bars
represent the associated OIs. NHs are sorted according to the value of p̂h,
from the lowest to the highest. As an illustration, we consider the NH labelled
by number 4 in Table 4, whose standardised 180-day ahead transition matrix
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p̂h-based ranking ih-based ranking

RE model FE model RE model FE model

NH (h) nh p̂h rank p̂h rank ih rank ih rank

1 96 0.508 41.0 0.445 41.0 0.0 41.0 0.013 41.0
2 8 0.729 32.0 0.708 31.0 0.375 32.0 0.425 30.0
3 21 0.762 16.0 0.774 17.0 0.588 15.5 0.550 16.0
4 7 0.724 34.0 0.693 33.0 0.312 34.0 0.412 33.0
5 73 0.735 28.0 0.739 26.0 0.425 29.5 0.438 26.5
6 23 0.763 14.0 0.783 13.0 0.588 15.5 0.588 13.0
7 80 0.758 19.0 0.768 20.0 0.550 20.0 0.525 20.5
8 89 0.756 22.0 0.763 21.0 0.525 22.0 0.512 22.5
9 38 0.733 30.0 0.729 29.0 0.425 29.5 0.425 30.0
10 45 0.612 40.0 0.526 39.0 0.062 40.0 0.075 39.0
11 49 0.792 4.0 0.803 8.0 0.788 4.5 0.725 7.5
12 10 0.725 33.0 0.663 34.0 0.325 33.0 0.262 34.0
13 63 0.741 26.0 0.735 27.0 0.450 26.0 0.438 26.5
14 10 0.680 36.0 0.574 36.0 0.100 36.0 0.112 36.0
15 17 0.758 21.0 0.770 18.0 0.550 20.0 0.550 16.0
16 19 0.792 5.0 0.823 5.0 0.788 4.5 0.788 5.0
17 36 0.767 13.0 0.775 15.0 0.650 13.0 0.550 16.0
18 39 0.736 27.0 0.727 30.0 0.438 27.0 0.425 30.0
19 72 0.758 20.0 0.761 22.0 0.550 20.0 0.512 22.5
20 9 0.775 11.0 0.806 7.0 0.675 11.0 0.712 9.0
21 64 0.735 29.0 0.732 28.0 0.425 29.5 0.425 30.0
22 12 0.812 2.0 0.854 3.0 0.888 2.0 0.912 1.5
23 21 0.745 24.0 0.741 25.0 0.475 24.5 0.475 25.0
24 17 0.781 8.0 0.801 9.0 0.725 7.5 0.725 7.5
25 8 0.732 31.0 0.703 32.0 0.425 29.5 0.425 30.0
26 8 0.797 3.0 0.860 2.0 0.850 3.0 0.900 3.0
27 29 0.790 6.0 0.813 6.0 0.750 6.0 0.775 6.0
28 39 0.762 15.0 0.770 19.0 0.588 15.5 0.538 19.0
29 19 0.772 12.0 0.793 10.0 0.662 12.0 0.662 10.5
30 5 0.777 9.0 0.883 1.0 0.712 9.0 0.875 4.0
31 12 0.664 37.0 0.555 37.0 0.088 37.5 0.100 37.0
32 15 0.746 23.0 0.754 23.0 0.488 23.0 0.525 20.5
33 27 0.776 10.0 0.790 11.0 0.688 10.0 0.662 10.5
34 45 0.783 7.0 0.789 12.0 0.725 7.5 0.650 12.0
35 20 0.652 38.0 0.494 40.0 0.088 37.5 0.062 40.0
36 18 0.761 17.0 0.780 14.0 0.588 15.5 0.550 16.0
37 26 0.635 39.0 0.548 38.0 0.075 39.0 0.088 38.0
38 20 0.745 25.0 0.743 24.0 0.475 24.5 0.488 24.0
39 39 0.825 1.0 0.848 4.0 0.938 1.0 0.912 1.5
40 15 0.760 18.0 0.774 16.0 0.575 18.0 0.550 16.0
41 15 0.690 35.0 0.634 35.0 0.112 35.0 0.162 35.0

Table 4 Indices p̂h and ih and respective rankings for the fixed effect (FE) and the random
effect (RE) models with k = 5. The sample size nh of each NH is also included.
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according to the fixed effect model is

Π̂4 =


0.872 0.126 0.002 0.000 0.000 0.000
0.037 0.675 0.275 0.012 0.001 0.000
0.001 0.062 0.604 0.303 0.028 0.002
0.000 0.003 0.075 0.488 0.386 0.048
0.000 0.000 0.007 0.100 0.539 0.354
0.000 0.000 0.000 0.000 0.000 1.000

 .

For this model, it is straightforward to compute p̂4 = 0.693 from the matrix
above. This means that in NH 4 there is an overall probability of 0.693 that a
resident will not incur a worsening of his/her physical limitations in a 180-day-
long period of time. Also, in the caterpillar plot of Figure 1 two dashed lines
are drawn to extend the bounds of the OI of this NH. In this way, it is easier to
identify the NHs with a significantly better or worse performance. Specifically,
there are B4 = 12 better-performing NHs and W4 = 5 worse-performing NHs,
so that i4 = 0.412. Interestingly, Figure 1 shows that the growth rate of p̂h is
rather high for the ten worst-performing NHs, while it considerably decreases
for the subsequent NHs. The same dynamic seems to occur with respect to the
width of the OIs, with the exception of the best and the worst NH. Similar
patterns are observed in the caterpillar plot derived from the random effect
model with the same number of classes (not shown).

In order to evaluate the appropriateness of the proposed ranking proce-
dures, it is important to bear in mind that the ih-based ranking relies on the
assumption of normality for p̂h; see Section 3.4. In this regard, we argue that
p̂h could also be interpreted as the estimated proportion of patients not wors-
ening their physical health status, had all n = 1292 patients been treated by
the h-th NH. As such, the normal approximation for its sampling distribution
seems plausible given the sample size at hand. In any case, 95% OIs are always
included in the 0-1 interval, since none of the estimated p̂h is too close to the
boundaries. This is also the case for 95% confidence intervals, which are always
wider than the associated OIs.

To check the robustness of our ranking procedure to a further extent, we
have built the same set of rankings as in Table 4 for some akin models, that is,
for models with a similar number of latent states. Specifically, we considered
k = 4 and k = 6. For these models, results in terms of covariate effects as well as
of interpretability of the latent states are very close to those of the models with
k = 5. The Spearman correlation coefficient of any pair of rankings obtained
with k = 4, 5, 6 is never lower than 0.95. This finding denotes a remarkable
level of robustness across the model specification (fixed versus random effects),
the index defining the ranking (p̂h versus ih), and the number of latent states
(k = 4, 5, 6).

Finally, it is worth to remark that NH effects could also be measured on the
linear predictor scale (i.e., by γ̂1 for the fixed effect model and by σ̂sE(Sh|Yh)
for the random effect model) rather than on the probability scale. Because
of the parametrisation of Equations (3) and (5), the rankings produced by
these parameters are identical to those defined by the respective performance
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Fig. 1 Caterpillar plot of p̂h for the fixed-effect model with k = 5. NHs are ordered accord-
ing to the value of p̂h (dots).

indicators p̂h, whereas discrepancies may arise in the rankings based on the
ih index. For the sake of completeness, we have built also these alternative
ih-based rankings, but no substantially different results occur. However, we
argue that the p̂h indicator has an undoubtedly clearer interpretation than
the effects on the linear predictor scale have.

5 Conclusions

In this paper, we consider the problem of ranking a set of nursing homes (NHs)
according to their capability to improve or keep stable over time the physical
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limitations status of their residents. Given the latent nature of the trait of
interest (physical limitation in the ADLs) and the longitudinal perspective in
measuring care quality, we rely on latent Markov (LM) models with individual
as well as NH group effects on the unobservable variable. The proposed LM
model also accounts for dropout due to resident death. This approach enables
us to define an NH performance index based on properly standardised 180
day-ahead transition matrices. Two ranking procedures are then proposed. The
first is solely based on the performance index, whereas the second also accounts
for uncertainty due to its estimation, in a multiple comparison perspective.
An application to a longitudinal dataset coming from the Long Term Care
Facilities (LTCF) Programme of Regione Umbria (Italy) is carried out. This
dataset contains information on the health status of elderly residents in the
Umbrian NHs.

Two competing LM models are analysed. Specifically, NH effects are mod-
elled as fixed or random effects, respectively. Random effect models are gen-
erally preferable since they provide more reliable estimates for NHs for which
just a few observations are available. Conversely, estimation of fixed effect LM
models might fail or be highly unstable in these settings. In such a case, small
structures with few residents have to be discarded and, as a consequence, they
cannot be ranked. This kind of problem occurs for the LTCF data examined
in this paper. Moreover, random effect models are characterised by a lower
estimation variability for relevant parameters. However, the computational
burden is typically greater for random effect models. Furthermore, compared
to fixed effect models, they involve an additional assumption regarding the
distribution of the random effects. Here, a bivariate normal distribution for
the NH random effects is assumed. Such an assumption seems suitable in this
context, since NH effects can be reasonably viewed as an average of several
different components. In this respect, note that further developments might be
also pursued extending the proposal of Bartolucci et al (2014) to the multilevel
case.

A sensitivity analysis is performed to determine the appropriate number
of latent states of the LM models in use. Although for both models five latent
states are finally selected, the rankings deriving from models with four and
six latent states are also considered. Thus, a robustness check of our rankings
can be performed with respect to three factors: model specification, number of
latent states and type of ranking. The Spearman rank correlation of any pair
of rankings obtained in this way was never lower than 0.95.

Though the overall robustness of our rankings is promising, it is worth to
remark that even with a high level of correlation between two rankings there
might be sensible differences in the ranks for some NHs. Therefore, like for any
other statistical tool, results from these procedures may help inform policy
makers owning subject matter knowledge, but they cannot just be blindly
applied for decisional purposes.

Finally, we recall that our rankings are based on a one-dimensional latent
trait, while health status is a multidimensional phenomenon. Clearly, similar
rankings can be built with respect to different health domains, one at a time.
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In this respect, further research is worthy to investigate how to obtain an
overall ranking from those related to the different health domains at hand.
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