Range-Free Localization Algorithm

Using a Customary Drone: Towards a Realistic Scenario ™

Francesco Betti Sorbelli*P, Cristina M. Pinotti®, Vlady Ravelomanana®

“Dept. of Computer Science and Math., University of Florence, Italy
*Dept. of Computer Science and Math., University of Perugia, Italy
“Dept. of Computer Science, University of Denis Diderot, Paris, France

Abstract

The localization of devices is a key ingredient of Internet of Things (IoT) which may require
extra cost for deploying anchor nodes aware of their position. In this work, we propose a range-
free localization algorithm, called DRONE RANGE-FREE (briefly, DRF), that replaces the anchor
nodes with an off-the-shelf drone. When the radio communications are isotropic, our algorithm
localizes the IoT devices ensuring the level of precision required by the final user. However, since
an isotropic antenna that propagates its signal in a perfect sphere does not exist in reality, we face
a more realistic scenario by proposing an enhanced version of our localization algorithm, called
DRONE RANGE-FREE ENHANCED (briefly, DRFE), that well tolerates high degrees of irregularity
of the antenna signal. Under the anisotropic model, DRF and DRFE exceed in precision all the
computational-light previous known range-free localization algorithms based on a mobile rover.
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1. Introduction

Localization is a substantial obstacle in the soon to come deployment of Internet of Things
smart devices [I]. Due to limitations in form factor, cost per unit, and energy budget, not all the
individual devices are expected to be GPS-enabled [2]. Also, the deployment of few anchor nodes
aware of their position to train the remaining devices may be an unsatisfactory solution for the
time and the cost that it requires [3]. Thus, a localization solution could involve a mobile rover
to be reused for different deployments. However, a rover requires to be in advance aware of the
terrain conditions: for example, it is not easy for a rover to overtake a river. Recently, Unmanned
Aerial Vehicles (UAVs), have received increasing attention from research and industry community
[4, 5]. In this work, we explore the possibility of using a customary drone in order to localize the
IoT devices/sensors exploiting a range-free technique that relies only on radio communications,
which may be irregular.
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1.1. Related Works

A localization algorithm could be categorized into two different classes, i.e., range-free and
range-based localization algorithms [I], [6]. In the former, the sensor’s position estimation is done
without using any type of measurement, but only using information between the sensors/anchors.
In the latter, the estimations are done exploiting several properties of the communication signals,
e.g., Received Signal Strength Indicator (RSSI) or Time of Arrival (ToA). A typical range-based
approach has a higher localization accuracy, but it requires additional hardware because it needs
to take distance or angle measurements. On the other hand, a range-free approach is preferable to
keep lightweight the cost of the infrastructure, but implies a lack of precision.

In this section, we first survey the range-based localization algorithms proposed in the literature
that use a drone to localize the IoT devices/sensors. Then, we survey the range-free localization
algorithms presented in the literature that use a mobile anchor, such as a rover or a patrol. At
the best of our knowledge, except a preliminary version of this work presented in [7], there are no
range-free localization algorithms that use a drone as a mobile anchor.

The range-based OMNI algorithm discussed in [8, [0l [10] equips both the sensors and the drone
with an Ultra Wide Band (UWB) omnidirectional antenna able to take measurements. A detailed
analysis of the measurement errors (instrumental, rolling, altitude) that can affect the slant mea-
surements taken by a drone has been proposed in [I1]. Moreover, in [12] 9], the range-based Dir
algorithm proposes an improved version of OMNI that uses directional antennas. In [I3], three
path planning algorithms that allow a drone to, respectively, localize, verify, and verify with a
guaranteed precision a set of positions in a secure manner have been presented. The security has
a higher cost in terms of processing time: for example, several instances of TSP must be solved.

Xiao et al. propose in [I4] a range-free localization algorithm, that we call X1A0SP (X1A0
STATIC PATH), which uses a rover. The mobile ground vehicle follows a predefined static path and
broadcasts its current GPS position at regular intervals of time. They aim to build a constraint
area that bounds the actual sensor’s position, assuming that all the nodes know the communication
range 7 of the mobile anchor and the distance between two consecutive beacons. Each sensor traces
four circumferences of radius r centered at the first and the last beacon that the sensor hears, and
at two beacons that precede and follow the two heard beacons. The resulting intersections create
a constraint area where the sensor could reside. Depending on the shape of the constraint area,
the sensor performs different strategies for determining its current position’s estimation.

In [I5], a range-free algorithm has been presented by Lee et al., that we denote LEERP (LEE
RANDOM PATH), which uses a rover. The rover follows a random path, and regularly broadcasts a
beacon that consists of its GPS position, the communication radius r, and the beacon interval d.
Like X1A0SP, this algorithm focuses on creating a constraint area where the sensor could reside.
After the rover crosses the sensor’s receiving disk, the sensor traces one circumference of radius r
and another one of radius r» — d centered at the two GPS positions broadcast with the first and the
last heard beacons. These circumferences, which create two annuli, intersect in two distinct and
symmetrical intersection areas. The sensor uses the third beacon to find out in which intersection
area it resides. Finally, the sensor estimates its position at the center of such an area, using easy
geometrical rules.

Moreover, Ou et al. propose in [16] a range-free 2D localization algorithm, that we call OURP
(Ou RanDOM PATH). Although the behavior of this algorithm is very similar to that in [15], the
sensors exploit a completely different argument to localize themselves. Namely, OURP exploits
the fact that if a sensor detects a chord in its receiving disk, delimited by the first and the last



consecutive heard beacons, the sensor must reside on the perpendicular bisector of such chord.
Thus, if a sensor detects two non-parallel chords, it knows that its position is at the intersection
of the two bisectors. Since the mobile anchor follows a random path, there is no guarantee that
all the nodes will be localized. To improve on this aspect, in [I7], another range-free localization
algorithm has been presented by Ou et al., that we call OuSP (Ou STATIC PATH), in which the
trajectory is defined by a series of vertical and horizontal scans. OUSP improves over OURP
because it guarantees that all the sensors are localized at the end of the algorithm.

Recently, another range-free algorithm has been presented in [I8]. Here, the mobile anchor
designs a random path, and each sensor collects all the beacons that it can hear. Among all the
collected beacons, the sensor selects the three beacon points which form the triangle with the
largest perimeter to obtain the first constraint area where the sensor could reside. After that,
the constraint area is iteratively narrowed down by successive approximations and optimizations
exploiting new generated random points. This scheme cannot be considered a light localization
algorithm at the sensor’s side due to the high computation of multiple intersections. Therefore,
in Sec. p| we will compare DRF and DRFE algorithms only with the light range-free algorithms
presented in OUSP, X1A0SP, and LEERP.

1.2. Our Contributions

In this work, we present a new range-free localization algorithm, called DRONE RANGE-FREE
(DRF), that uses a drone as the mobile anchor. We show that DRF can guarantee any user-defined
localization precision by varying the interval between two consecutive beacons. We also present a
new enhanced version, called DRONE RANGE-FREE ENHANCED (DRFE), which alleviates some of
the most frequent problems that may occur applying the localization algorithm in an anisotropic
scenario. To estimate the performances of our new algorithms, we conduct extensive simulations.
We compare the average and maximum localization error as well as the path length of DRF and
DRFE to those of OuSp, XiA0SP, and LEERP. In the isotropic model, DRF outperforms the
precision of all the other algorithms but LEERP which, however, traverses a very long path. In the
anisotropic model, DRFE localizes all the sensors and exceeds in precision over all the algorithms.

The rest of this paper is so organized: Sec. [2] explains the communication model and the
localization method when a drone is used. Sec. |3| presents the new localization algorithm, called
DRF, under the isotropic model. In Sec.[d] we move towards a more realistic scenario by considering
radio signals affect by the Degree Of Irregularity (DOI), and we present an enhanced version of
DRrrF, called DRFE, to cope with the radio irregularity. An extensive set of simulations for both
the isotropic and anisotropic models is proposed in Sec. [f] Sec. [6] offers conclusions.

2. The Framework

In this section, we introduce the communication model with a flying anchor, the adopted range-
free localization method, and the problems raised in the localization process by a mobile anchor.

We assume to have sensors uniformly and randomly deployed in a limited area. Each IoT device,
or sensor p, is equipped with an isotropic antenna and can establish communications in a circular
sphere around it of radius r,. W.l.o.g., we use the term isotropic when we refer to the antenna
radiation pattern on the 3D space, and the term omnidirectional when we consider a spherical cap
projected in the 2D space. We want to localize the sensors using a drone D that acts as a mobile
anchor node. We aim to avoid the cost of setting a fixed infrastructure for the localization process.
The drone flies at a given altitude h above the ground and it is in turn equipped with an isotropic
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antenna which transmits in a circular sphere of radius 74, centered at the current position of the
drone. From now on, r = min{r,, rq} will be denoted as the communication radius.
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Figure 1: The drone and the sensor p.

Fig. 1] shows the drone that is flying at an altitude h and its beacon can be heard by any sensor
p on the ground such that the slant distance from the drone and p is s < r. The radius of the
omnidirectional antenna on the ground when the drone is at an altitude A is dyax = V72 — h2. So,
a sensor can hear a message sent by the drone if and only if it is positioned at a ground distance
d < dmax = V72 — h? from the projection of the drone on the ground. Therefore, we consider that
each sensor has an effective omnidirectional receiving disk on the ground of radius dpax, inner to
its transmission circle of radius r. The radius of the receiving disk decreases when h increases.

The drone is equipped with a GPS module. The drone is able to convert its GPS coordinates
into the (z,y, z) coordinates of a predefined 3D-Cartesian system. Regularly, the drone broadcasts
a message called beacon. The beacon consists of the drone’s 2D position (z,y), i.e., the projection on
the ground of its current 3D position (z,y, z). From now on, we call waypoint the ground position
(z,y) of the drone. Each sensor on the ground that can hear a beacon stores the waypoint in its
register. A localized sensor knows its position with respect to the reference Cartesian coordinate
system with origin at HOME in (0,0). The drone sends the beacon at regular instants of time. Let
the inter-waypoint distance I, be the distance between the waypoints into two consecutive beacons.
We assume that I, is an input parameter of our algorithm and it is fixed for each mission.

In the following, we explain the range-free localization mechanism, known in the literature (see
[16, 17]), that we adopt in DRF and DRFE. A sensor to be localized has to detect two chords in its
receiving disk. Then, the sensor learns to be at the intersection of the two perpendicular bisectors
associated with such two chords. This mechanism is explained in Fig.

(a) Two chords and the intersection. (b) The estimation O using two quasi-chords.

Figure 2: The range-free localization method.

The first chord is identified by the points A; and A, of the circle centered in O where the
sensor resides. The perpendicular bisector of the chord A;As is the line b;. The second chord is
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identified by the circle’s points B; and By and its perpendicular bisector is the line by. Then, the
intersection point of the two different perpendicular bisectors by and by coincides with the center O.
This localization method fails when the two chords are parallel: in such a case, b; and by coincide
and there are infinite intersections, and therefore infinite positions where the sensor may reside.

2.1. The Quasi-Chord Problem

The localization is exact when the two detected waypoints exactly fall on the circumference
of the receiving disk. Unfortunately, since the mobile anchor node sends the message beacons at
discrete time instants, the last waypoint of a chord that the sensor records may indeed fall inside
the disk. This situation is illustrated in Fig. for the endpoint As. From now on, we call
quasi-chord the segment detected by the sensor listening to the drone to highlight the fact that
the endpoints of the chord may be internal to the disk. In Fig. both A;As and AsAs are
quasi-chords. Because the point A, does not belong to the circumference, the bisectors b; and by of
the quasi-chords do not pass through the center O, and their intersection point O’ does not match
the sensor’s position O. The distance OO’ represents the localization error and it is due to the fact
that, since the beacons are sent at discrete intervals, the length of the chord may not be exact. As
we will see in Sec. [4], this problem is even more serious in the anisotropic model.

3. The Isotropic Model

In this section we describe in detail the new algorithm DRONE RANGE-FREE, or briefly DRF.

3.1. DRF: The Drone’s Algorithm

We consider a network of n sensors deployed in a rectangular and flat area @ of size @, x Q.
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Figure 3: The drone’s trajectory II of algorithm DRF.

The drone’s algorithm is shown in Algorithm[I] We assume that the origin (0, 0) of the Cartesian
coordinate system is at the bottom-left corner of the deployment area, called HOME. The trajectory
IT starts and finishes at HOME and it consists of vertical scans connected by horizontal scans
of length H, as depicted in Fig. Let the inter-scan distance, i.e., the distance between two
consecutive vertical scans, be H. Each vertical scan continues beyond the top and bottom borders
for a segment of length dmax. The last vertical scan falls at distance at most H beyond the right
border of the deployment area. Completed the last vertical scan, the drone returns to HOME.



Algorithm 1 DRF: Drone behavior

Input: Q = Qa X Qy; H, I,, HOME =(0,0)
Output: Trajectory II

1: v« [%-‘ > number of vertical scans
2: i+ 0

3: zF + 0,yF + —dmax > starting point
4: MOVEFROMTO(Home, F)

5. Tp < TF,Yp < YF

6: V + Qy + 2dmax > length of a vertical scan
7: while i < v do

8 if ¢mod 2 =0 then

9: Tpr <— Tp,Yp’ pr-f—v
10: else

11: Tpr <+ xp,yYypr —yp —V
12: end if

13: SENDBEACONFROMTO(P, P/, I,;)
14: if i <v —1 then

15: Tprn < xpr + H,ypn < ypr
16: MOVEFrROMTO(P’, P")

17: end if

18: P+« P”

19: 141+ 1
20: end while
21: moveFroMTO(P, Home)

3.2. DRF: The Sensor’s Algorithm

The sensor’s algorithm during the localization is shown in Algorithm [2] Each sensor listens to
its radio until it has received three waypoints, not all three on the same vertical scan. DRF selects
for each sensor the segment of the first vertical scan that crosses its receiving disk that is longer
than I, as the first quasi-chord. So the first quasi-chord is a vertical quasi-chord of length > I,,.
Then, the sensor accepts any subsequent waypoint that it hears and builds the second quasi-chord
using one of the two endpoints belonging to the first quasi-chord and the third heard waypoint.

3.8. Analysis

In this section, we show how to select a proper value of the inter-scan distance H and we study
the localization precision of our solution.

3.3.1. Choice of H
The choice of H is crucial for the correctness as we prove in Lemmas (1] and

Lemma 1. The inter-scan distance H = \/dpqa® — 12 guarantees that each sensor detects at least
two quasi-chords, and at least one of them has length L.

Proof. First observe that a sensor may reside at the border of @): in such a case only half of its
receiving disk falls in the area. Since our algorithm needs three waypoints taken from two different
scans, we must guarantee in the worst case that there are two vertical scans in half of the receiving
disk of the sensor. Thus, H < dyax. Moreover, we must select H in such a way that there is at least
one scan that intersects the receiving disk with a segment of length > 21, to satisfy the constraint
that any vertical quasi-chord selected by the algorithm is at least of length I,,. Recalling that the
length of a chord at distance ¢ from the center of the disk is 2v/dmax? — 2, to have a chord of length
at least 21, at least one scan must crosses the sensor disk at most at distance \/dmax? — I2. So,
the value of H that minimizes the length of the drone’s trajectory is \/dmax> — I3 O
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Algorithm 2 DRF: Sensor behavior
1: heard < 0,7+ 0

2: Cp[1:3]+0,Bp[1:2] 0

3: while i < 3 do

4 M <+ WAITANDPARSEBEACON()

5 if M # (0 then > timeout
6 if heard =0 then

T heard < 1,Bp[1] < M,i < i+1

8: Cpli] + M

9: else

10 By2] + M

1 end if

12: else > timeout expired
13: if (heard =1 & Bp[2] = 0) then > discard
14: Cp[l] «+ 0,i«+ 0

15: end if

16: if (heard =1 & Bp[2] # 0) then > 1st chord
17: P4 i+1

18: Cpli] + Bp[2]

19: end if

20: heard < 0

21: end if

22: end while
23: return cOMPUTELOCATION(C))

Lemma 2. Using an inter-scan distance H = \/dpmq.® — 12, if a sensor discards a single waypoint,
it can still hear two quasi-chords.

Proof. We must consider three cases.

a) at distance greater than H from the vertical borders of Q. A quasi-chord is discarded if it has
length < I,,. Hence, the vertical scan crosses the left side of the receiving disk of the sensor at a
distance \/dpax? — I2 = H < t < dpax from the center. So the next scan will be at distance t — H
from the sensor. The chord on such vertical scan has length 2v/dyax? — t2 > 21I,,. Both the first
two scans, the one discarded and the subsequent, are at the left of the sensor. So, since the radius
of the disk is always greater than H, we are sure that a third quasi-chord will fall in the disk.

b) the sensor is at distance at most H from the right border of Q. If the scan is exactly on the
right border, the sensor never discards the first quasi-chord. Otherwise, the first quasi-chord on
the left may be discarded. If this happens, the sensor selects the first quasi-chord longer than I,
on the last scan inside ), and the third waypoint on the last scan, which is outside Q.

c) the sensor is at distance at most H from the left border of Q. It never discards a chord. It
always selects the first two waypoints on the first scan which passes on the left border of ) and
the third waypoint is on the subsequent scan. ]

3.8.2. Worst Case Localization Error

Now we prove the localization precision of our solution. Let p be the sensor that we want
to localize. To better describe the behavior of the localization error, in our discussion, we use
a Cartesian coordinate system with origin in the actual position O of p. The circular area from
which the sensor can hear the drone is delimited by the circumference I'g. We select the first two
waypoints C' and B on the leftmost scan o (see Fig. . Since we use a vertical quasi-chord and
since the distance between any two beacon-points is I,,, we are guaranteed that whichever vertical
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Figure 4: The representation of the worst case during localization.

quasi-chord we pick, the perpendicular bisector of that quasi-chord is not more than of I, /2 from
the parallel line passing through O. In addition to the two waypoints C' and B on the leftmost
scan o, we select a third waypoint A on the next scan ¢/, as illustrated in Fig. The sensor p
estimates its position at the intersection P of the bisectors of the two quasi-chords C'B and BA,
which are clearly not parallel. The distance PO is the localization error (see Fig. 4)). Note that,
with respect to O, either B and A belong to I U II quadrants, or B and A belong to III U IV
quadrants (see Fig. ). The first case occurs only if the drone traverses bottom-up the o scan, and
top-down the ¢’ scan. Viceversa, the second case occurs only if the drone traverses top-down the
o scan, and bottom-up the ¢’ scan. Since the two cases are symmetric, we limit our analysis to
the first case in which y4 > 0 and yg > 0.

The maximum error on the position of the bisector of the vertical quasi-chord happens if the
quasi-chord has one extreme on I'p and the other on the scan o, at distance I, from I'g. So to
maximize the error due to the vertical quasi-chord, we fix B € I'p and C on ¢ and at distance
I, from the intersection of ¢ and I'g. The z-coordinate of A is uniquely determined once that of
B has been fixed, while y4 is the only variable. Specifically, we study the error PO when: i) B
lies at the intersection between o and I'g and the coordinate zp varies between —H to 0, ii) C
lies on o and it is at distance I, from T'p, iii) A resides on the scan ¢’ with z,» = xp + H and
ya > 0, and A is at distance 0 < t4 < I, from the point given by the intersection of ¢’ and I'¢.
We have evaluated PO using Maple when ¢4 varies, and we have found that, when I,, < dpax, the
maximum error occurs for ¢4 = I,,. Precisely,

Lemma 3. When I, < dpa, the mazimum error occurs for: i) B = (—H,\/dpa® — H?) =
(—H,I,), 11) C = (—H,\dma?> — H?> — I,) = (—H,0), and iii) A = (0, dmaz — Lw)-

Proof. The Maple computation has been reported in the Appendix. O

Assuming that the endpoints of the quasi-chords are the points A, B, and C derived in Lemma/[3]
that leads to the maximum error, the following result can be stated:

Theorem 1. When I, < dmaz, the mazimum localization error for DRF is:

QI 5dmax - 4Iw

PO = w "
2 dma$+Iw

(1)

Proof. Recalling that P is at the intersection of the line that represents the maximum vertical error
Yy = %‘“ and Lpa that passes through the midpoint M = (xps,yar) of the points A and B given
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(—)2 where the slope m = #4745,

2
(—H,0), and A = (0, dmax — L),

in Lemma we know that PO = \/(—m (% — yM) + :UM)2 +
Given that the maximum error occurs when B = (—-H, I,,), C
we obtain the claimed result as follows:

P70_ 7dmax_2Iw'Iw_dmax7£ 2+ 1711) 2_ dmax2+2jz2u_3lwdmax_H27£ 2
a H 2 2 2) 2H 2

(312 — 3Lydmax \” LI ORI — 2 + de®) | TE V2, [5dmax — 4L
N 2H 4 4(dpax? — I2) 4 27" dmax + Lo
A good bound of Eq. when [, < dpmayx iS:
— V2 5dmax — 4L, /10
PO = £Iw e 2 1y (2)
2 dunax + Lo 2

Using the simple relationship between I,, and the error in Eq. , if a precision €7, (i.e., the
maximum obtainable localization error) is required by the final user of the localization process, it
is possible to derive the particular value of I, that guarantees such a precision. Therefore, when
I, < dmax, DRF guarantees the required precision ey, if:

I, = €r (3)

o

4. The Anisotropic Model

The ideal isotropic model, in which the drone’s antenna radiates the radio signal in a sphere
of radius r is impossible in the real world. In a real scenario, the antenna pattern is anisotropic.
We model the antenna pattern using the Degree of Irregularity (DOI) parameter defined in [19]
as the mazximum path loss percentage variation per unit degree change in the direction of radio
propagation. A zero-value of DOI indicates a perfect sphere, while positive values indicate some
irregularity. DOI is able to reflect the two main properties of radio irregularity, i.e., anisotropy
and continuous variation. Fixed the signal wavelength A, the Received Signal Strength (RSS) is:

RSS = P, — FSPL(d) = Pr, — 20log;, (47;d> (4)

In the isotropic model, fixed a sensitivity value RSS = X, the signal is heard at distance d
if ¥ > Pr, — FSPL(d). So the communication radius r is the largest value of d that satisfies
¥ = Pp, — FSPL(r) = Pp, — 20logy, (%57).

The DOI model varies the distance up to which the signal is heard in function of the direction

1 between the transmitting and the receiving antennas. In presence of DOI, Eq. is rewritten,
according to [19], as RSS = Pr, —20log;, (%) - K; where X depends on the radio frequency and:

for 0 < i < 360, where |Ko — K359| < DOI and Ky = 1. Thus, in presence of DOI, fixed the same
sensitivity X, the signal is heard up to the largest distance 7} such that ¥ > Prx — FSPL(r}) - K;.



Finally, to bring back the 3D distance on the ground, we compute:

di = \/r!* — b2 (6)

for 0 <14 < 360. Note that when the relative direction is ¢ = 0, it holds r(, = r and dj; = dmax-

An example of the antenna pattern projected on the ground using different values for DOI is
depicted in Fig. |5l Here dpax = V72 — h? = 100m is drawn by the black dashed line, while the red
line represents the maximum 3D radius, projected on the ground and different in each direction,
for various values of the DOI parameter.
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Figure 5: Examples of irregular antenna pattern on the ground.

4.1. Impact of DOI and Problems with Chords

In Sec. 2.1} the chords were built assuming a perfect circle as the receiving disk of the sensor.
The quasi-chords were just affected by the inter-waypoint distance I,,. In the realistic model, as
shown in Fig. [5] the resulting radio pattern could be fairly different from the original ideal circle
centered at the origin of the sensor. In this general case, it is quite easy to see that the chords
are afflicted by two indicators: the inter-waypoint distance I, and the irregularity of the radiation
pattern. An example is shown in Fig. [ Here the expected communication radius is depicted by a
thin dashed line, while the effective irregular radiation pattern is the solid filled one. According to
the DRF algorithm, the sensor detects the first chord using the endpoints A; and As: A; is placed
outside the dashed line because the sensor can hear the beacon at a distance greater than dp,x,
while Aj falls inside the disk due to the inter-waypoint distance I,,. The localization error in Fig. [6]
is the distance between O and P.

Figure 6: DOI = 0.003.

In the following, we introduce an enhanced version of DRF, called DRFE, that restrains the
effect of the irregularity on the localization precision.
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4.2. The Enhanced Algorithm

In this section, we propose a new enhanced version of the DRF algorithm, called DRFE, explic-
itly designed to deal with the aberrations of the anisotropic model. We have taken into account
the following enhancements: 1) set a threshold on the chord length, 2) merge broken (collinear)
chords on the same scan, and 3) redefine the inter-scan value.

(d) Minimum chord length ppin. (e) Collinear chords merged. (f) Smaller inter-scan H' < H.

Figure 7: The three enhancements of DRFE.

1) Threshold Chord Length. Figs. and give a useful hint of the anomalies due to the
strong impact of DOI. In this particular case, the scan intersects the radiation pattern in a narrow
edge located in the bottom-left side: the sensor hears the first endpoint A; and, starting from
Ao, it does not hear anymore. The detected vertical quasi-chord leads to a very large error: the
y-coordinates of both P and O are quite apart (see Fig. . We propose to limit the effect of such
pattern shrinkage by accepting only quasi-chords longer than a certain threshold pmin. As shown
in Fig. discarding the current quasi-chord and taking a longer quasi-chord on the subsequent
scan, the error may decrease. Clearly, to increase the chances to find a longer vertical chord, the
inter-scan distance must decrease so as the receiving disk is intercepted by more than three scans.
Similarly, whenever the quasi-chord is longer than pmax = 2dmax, wWe are sure that the scan
intersects an irregular disk. Since we have no evidence in which direction the signal overflows the
regular disk, we can just discard the chord. Hence, increasing the number of scans that intersect
the receiving disk of a sensor gives more chances to find enough chords to localize each sensor.

2) Merging Collinear Chords. Sometimes the pattern shape could generate lobes (see Figs.
and . Consider for example Fig. According DRF, the sensor detects the first quasi-chord
A1As. The sensor waits until it hears the successive beacon sent by the drone. So, when the
sensors registers As, it can start the localization procedure. It is easy to see that in this case we
have collinearity with respect to the three selected endpoints, and hence the bisectors of the two
chords are parallel and they do not intersect. This anomaly can be easily resolved by adding, to
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the beacon message, the identifier of the current vertical scan o. When the sensor stops to hear the
beacons (in Aj) for the current scan o, it remains pending for any possible beacon which contains
the same o value. Therefore, as depicted in Fig. the sensor merges the two quasi-chords A A,
and AsAy into a new longer chord (A4;A,), and discards the internal endpoints Ay and As.

3) Redefining Inter-scan Value. In the isotropic model, H has been chosen with the goal to guar-
antee that each sensor detects at least two quasi-chords, out of which one of length at least I,,.
For this reason, the inter-scan value was set to H = \/dpnax? — I2. Now, we do not have a perfect
receiving disk but rather an irregular shape whose radius d; in direction i, according to Eq. @,
with 0 < ¢ < 360. We consider the largest inscribed circle, centered at the sensor position:

Amax = mln{d;} < dmax (7)

)

Repeating the same reasoning we did in the isotropic model, in order to cross the shape at least
two times and to have at least one chord of length ppin, the new value of H' is:

H = dmax2 — Pmin2 (8)

Figs. and explain the aforementioned enhancement. The black dashed line represents the
isotropic radius dmax, and the red line depicts the largest inscribed circle of radius dmax. Using
H = \/dmax? — I2, we may not be able to guarantee at least two quasi-chords, as shown in Fig.|7(c)
Instead, using a smaller value for the inter-scan (Fig. , the sensor can hear a sufficient number
of scans. This enhancement, however, leads to longer localization paths for the drone.

4.2.1. The DRFE Algorithm

In this section we present the pseudo-code of DRFE, the enhanced version of DRF.

The drone’s algorithm in DRFE is almost the same as that one seen in DRF. In Algorithm
Line |3, the drone computes the static path with respect to the smaller inter-scan value H' applying
Eq. (8)). Moreover, now the drone sends the current vertical scan o (Linel5|) along with the waypoint
(z,y) to allow the merging of the collinear chords.

On the sensor’s side, two enhancements are implemented. We set thresholds on the chord’s
length, and we merge the chords that belong to the same scan. In Algorithm [4] Line [5} if the sensor
detects a quasi-chord of length less than the threshold ppin or greater than 2dp.x, it discards the
current quasi-chord. Moreover, in Line [3] when the sensor hears the first beacon of the vertical
scan o, it waits until it hears the last beacon on ¢ before setting the final end-point of the chord.

Algorithm 3 DRFE: Drone behavior

Input: Q: area; DOI; Iy, pmin: min chord, Home

Output: Trajectory II

: SETPARAMETERS()

H' + COMPUTEINTER-SCANDISTANCE(DOI, ppin)

COMPUTESTATICPATH(H)

while MISSIONISNOTFINISHED() do
SENDBEACONFROMTO(P, P/, o, prmin)

end while

MOVEFROMTO(Home)

LAND()

12



Algorithm 4 DRFE: Sensor behavior

Input: pmin: min chord; pmax = 2dmax: max chord

1: SETPARAMETERS()

2: while TWOCHORDSARENOTEDETECTED() do

HEARSALLBEACONSALONGSCAN(0)

¢ <~ CHORDDETECTED()

if LEN(¢) < pmin Or LEN(c) > pmax then
DISCARDCHORD(c)

end if

8: end while

9: return coMPUTELOCATION(C))

5. Simulation evaluation

We have implemented both DRF and DRFE localization algorithms in MATLAB and we have
tested their performance, also in comparison with other algorithms presented in the literature.

5.1. Settings

We simulate a localization mission by deploying at random n nodes, with n = {50, 100, 200, 300}
on a 500 x 500 m? map. We generate 35 different random sensor deployments for each value of n.
In all the experiments, we set the 3D communication radius r» = {50,100, 150} m and the altitude
h = {15,30} m varying the inter-waypoint distance I,, = {1,5,10} m. In the anisotropic model, r
is then affected by the DOI = {0.003,0.005,0.01} parameter.

We define the ezperimental error as the distance between the actual sensor’s position and
the estimated position calculated. For each localization mission, we register the maximum and
average experimental errors, which are, respectively, the maximum and the average experimental
error measured over all the n sensors. We plot the results by averaging the maximum and average
experimental error on all the 35 deployments. The performance of all the algorithms is evaluated by
using two metrics: 1) localization error, and 2) path length. We do not explicitly and experimentally
evaluate the energy spent by the sensors because in all the studied algorithms the computational
burden is very light (few multiplication and additions). Moreover, we consider the path length
as an indicator of the energy spent by the drone. For example, in our setting, considering that
a typical mission of DRF has about 5km length, the drone can accomplish two distinct missions,
while the sensors can participate to at least 30 missions without recharging their battery.

For the isotropic model, in Sec. we experimentally confirm that it is possible to keep the
maximum experimental error below the user-required localization precision €; by varying the inter-
waypoint distance as claimed in Eq. . Moreover, we compare the performances of DRF with
that of OuSp, LEERP, and X1A0SP. For the anisotropic model, in Sec. we first compare
the performances of DRF with that of DRFE for different levels of DOI. In particular, we trace
the number of sensors that remain unlocalized after both algorithms. A sensor is unlocalized if
it cannot estimate its position. For example, a sensor remains unlocalized if it hears two parallel
quasi-chords, one on the extension of the other, or if it does not hear a sufficient number of beacons.
Finally, we compare the performances of the new algorithms with those of OUSP, LEERP, and
X1A0SP under different levels of irregularity.

5.2. Isotropic model

To adapt OuSpP, LEERP, and XTAOSP to drones, we select the report the communication radius
on the ground at dy.x = V72 — h2, instead of r.
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5.2.1. Localization error
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Figure 8: The localization error in DRF when r = 100, h = 15m.

()

the user-defined localization precision €. Precisely, fixed e, = {1,5,10} m, according to Eq. ,

DRF sets, respectively, I,, = {0.60,3.20,6.30} m. The experiments confirm that the maximum
experimental error is always below the user-defined precision e¢7. In general, the average error is

one-fifth of the user-defined precision €y,.

Fig. [9] compares the localization errors for DRF,

LeEeRP, X1A0SP and OUSP.
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Figure 9: The average and maximum error in DrRF, OUSP, LEERP, and X1A0SP.

The upper row of Fig. [9 plots the maximum error, whereas the lower row plots the average error

of the compared localization algorithms under different settings. The maximum and the average
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error tend to be close to, respectively, I, and %w in all the algorithms, but X1AoSp. The maximum
error of XIAOSP is about three times larger than that of the other algorithms when r and I, are
small. The gap between the maximum errors of X1AOSP and the other algorithms decreases when
r and [, increase. Then, we can conclude that X1IAOSP is the least accurate algorithm, and as such
it is less sensitive to the increase of the implicit uncertainty, i.e., the inter-waypoint distance. In
general, for all the algorithms, when h increases, the maximum localization error increases, while
the average localization error remains stable.

Drr improves over OUSP, especially for large values of r because DRF forces a vertical quasi-
chord. The uncertainty due to the inter-waypoint cannot be larger than I, for vertical chords,
while the uncertainty can be larger for arbitrary oblique chords. So, OUSP loses to DRF because
it has, in general, two oblique chords.

Finally, in all our experiments, as shown Fig. [9] the most accurate algorithm is LEERP. Both
in maximum and in average, LEERP allows to have smaller localization errors because its error
depends only on the error on the vertical chord delimited by the first and the last heard beacon.
Nevertheless, LEERP has the longest path as shown in Fig. [10]and it can withstand the irregularity
of the radio signal worse, as we will prove in Section [5.3

In conclusion, LEERP is slightly more accurate than DRF, which is slightly better than OuUSP.
The error performance of X1A0SP follows that of all the other three algorithms with a large gap.

5.2.2. Path Length
Fig. |10 compares the static path performed by the drone in X1A0Sp, LEERP, OUuSP, and DRF.

h=15,1, =75 (m) h=15,1, =10 (m) h =30,1, =10 (m)
20 20 20
3 15 1 g 15 E 15 A
= = =
210 4 210 210
< R W, . < “’L-\\,,,\ A . 2 e
;‘; _-\—\:/‘\nm:ﬂ g ;’“ J—orr T ] = — bRF ]
59 ousp 59 ousp & 59 ousp
== XIAOSP LEESP LEESP
LEESP === XIAOSP === XIAOSP
0 T T T 0 T T T 0 T T T
50 75 100 125 150 50 75 100 125 150 50 75 100 125 150

r (m) r (m) r (m)
(a) (b) (c)

Figure 10: The path length in DrRF, OUSP, LEERP, and X1AOSP.

As expected the length of the path, decreases when r increases. The static paths performed
by the drones in DRF, OUSP, and XIAOSP scan the deployment area in a very similar way. It
is worthy to note that LEERP, which is the most accurate localization algorithm, requires a very
long and undetermined random path. This algorithm could hypothetically never terminate with
an overall 100% localization. Since we know the number of sensors, we stop LEERP when all the
nodes have been localized. In our experiments, on average, the length of the path of LEERP is
twice that of DRF. Considering that with a single recharge a drone can fly about 10 km, only
the three paths of DRF, OUSP and XIAOSP can be accomplished by a customary drone without
recharging the battery.
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5.8. Anisotropic model

To test the performance of the DRF and DRFE algorithms in the anisotropic model, we assume
the same experimental setting described in Sec.

On the sensor’s side, the main difference is that the receiving disk of each sensor is affected by a
degree of irregularity. We assume that all the sensors are afflicted by the same DOI value, although
each sensor has its own antenna pattern. To derive the antenna pattern, we randomly generate
the variation of the path loss by using Eq. , and we obtain by Eq. (@ the maximum current
2D distance d; up to which the sensor hears the beacon sent by the drone. In the simulation,
to decide if a sensor hears a beacon, we check if the projection W of the drone’s position on the
ground falls inside the irregular antenna pattern of the sensor itself. The act of hearing is simulated
by: i) determining the angle ¢ between the waypoint W and the sensor P, ii) computing the 2D
distance WP, and finally iii) comparing W P with d..

On the drone’s side, the main difference is the inter-scan H'. To compute H' (see Eq. ), one
must know the minimum radius dmax given by Eqgs. |§| and . To estimate dax, which depends on
the DOI parameter, we generated thousands of antenna patterns at different radii and altitudes,
using the Weibull distributions with scale and shape parameters in the ranges suggested by [19].
For each generated antenna pattern, we recorded the minimum radius dp,.x and the overall average
value is reported in Tab. |1 These values are computed at a 95% confidence level.

Table 1: The experimental average difference dmax — dmax in percentage, for some DOI values.

DO[ dmax - dmax (%)

0.003 —9.80
0.005 —15.57
0.010 —28.32

5.3.1. Localization error

Our first goal is to compare the performances of the two new range-free localization algorithms
DRFE and DRF in presence of irregularities in the propagation of the signal. We aim to verify how
the DOI value impacts the DRF performance, and how much better DRFE is than DRF.

Impact of DOI. In Fig. [TI} we compare DRF and DRFE in presence of radio irregularities. In the
simulations, we set DOI = {0.003,0.005,0.010}, and according to Tab. (1| and depending on the
current setting, we derive the value dyax to be used to design the static path of DRFE. Precisely,
two vertical scans of the static path of DRFE are at distance H’, given by Eq. .

In Fig. we compare the average localization error of DRF and DRFE when the minimum
chord length is set t0 pmin = dmax/2 and the maximum set to pmax = 2dmax. This value of puyin
is used to select the chords close to the center of the receiving disk of each sensor where the
signal is stronger and less affected by the DOI parameter. Results show that the main difference
between the two algorithms is the number of unlocalized sensor, which is reported in Fig
For DOI = 0.003, in DRF about 10% of the sensors remain unlocalized, while DRFE is capable to
localize all of them. Where DOI = 0.005, the number of unlocalized sensors increases for DRF.
Finally, a large number or sensors remain unlocalized when DOI = 0.010 in DRF and even few
sensors in DRFE do not estimate their position (less than 5%). The growth of the number of
the unlocalized sensors is much more than linear in DRF. This shows that it is crucial to select
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Figure 11: The impact of DOI when r = 100, h = 15, [,, = 5m.

the inter-scan distance H’ for being able to collect at least three non-collinear beacons for each
sensor. Regarding the error of localized nodes only, both DRF and DRFE work well, as reported
in Fig. Doubling the value of the DOI parameter, the average error almost doubles.

Fig. [11(b)| reports the usage of each single enhancement used in DRFE when n = 300. For
DOI = 0.003, almost 10% of the chords are merged, about 30% are discarded because too short,
and about 60% are discarded because too long. For larger DOI values, the percentage of merged
chords increases. Same behavior is also valid for the discarded ones.

Fig. depicts the path length comparison. As expected DRF has the shortest path length
because it imposes a larger inter-scan value than that of DRFE. When the DOI value increases, the
overall path length obviously increases because dpayx decreases. This increase of the path length
is the price to pay in order to localize all the sensors in the more realistic anisotropic model. It
is likely that to accomplish the DRFE mission, especially when DOI = 0.010, a customary drone
needs to stop once for recharging the batteries, or two drones can be used.

Summarizing, the comparison between DRF and DRFE at different levels of irregularity shows
that, excluding extreme cases, DRF can handle weak anisotropic signals still achieving a reasonable
precision on the average case. DRFE gains more in precision over DRF if the irregularity is strong.
Notable, DRFE localizes almost all the sensors.

DRFE wvs. all. Finally, Fig. [I[2) compares all the algorithms in presence of DOI.
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Figure 12: Comparison when r = 100, h = 15, [,, = 5m.

To start, Fig. [12(c)| reports the percentage of unlocalized in the anisotropic model for each
algorithm. When DOI = 0.003 and 0.005, DRFE localizes all the sensors (as already seen in
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Fig. [11(c)). Thanks to the random path, the number of unlocalized nodes is not very critical for
LeEeRpP. Instead, X1AOSP has a number of unlocalized sensors larger than DRF although it uses
the same inter-scan distance as DRF.

As regard to the average localization error of the localized nodes only, Figs. and
show that the radio irregularities heavily afflict both LEERP and X1A0Sp. Interestingly, OUSP,
DRrF, and DRFE that are based on the perpendicular bisector method work better than LEERP and
XI1AOSP that are based on constraint area method in presence of radio irregularities. This is due
to the fact that in LEERP and X1AOSP the range di,.x is fundamental to derive the node position.
Namely, both methods assume that when the sensor receives, it is at distance dyax or dpmax & Ly
from the drone’s position and they draw a constraint area based on such assumption. Whereas,
due to the radio irregularity, the communication range can be quite different. On the other hand,
OuSp, DrF, and DRFE find the sensor position only as a function of the heard positions, without
making any assumption on the relative distance between the sensor and the drone.

In conclusion, the enhanced version DRFE is quite effective because it clears the number of
unlocalized sensors and it preserves accuracy. This comes with an increase of the path length,
which is larger for small values of r and for large values of DOI.

6. Conclusion

In this paper, we presented two new range-free localization algorithms, called DRF and DRFE,
that replace multiple fixed anchors nodes with a single flying drone. DRF assumes an ideal isotropic
model of communication and it guarantees the localization precision required by the final-user.
When the radio signal propagates anisotropically, DRF handles localization with a good precision
on average in presence of weak irregularities, but up to 20% of sensor remain unlocalized. Then,
we proposed DRFE to cope with high levels of irregularity and to clear the number of unlocalized
sensors. The efficiency of the DRFE algorithm is paid in terms of length of the drone’s path.

Finally, a wide set of simulations is offered to compare the performance of DRF and DRFE with
that of other range-free algorithms, originally proposed in the literature for being implemented
using a rover. Both DRF and DRFE outperform all the other algorithms in almost all scenarios.

More investigation of the practical challenges of our new localization algorithms is left for
future work. We also plan to consider a localization mission performed by a small fleet of drones,
to overcome the path length issue.
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Appendix: Proof of Lemma

Proof. The configuration of A, B, and C that leads to the maximum error is shown in Fig. [
Given the initial configuration, and recalling that P is at the intersection of the two quasi-chords
bisector, points A, B, and P satisfy the following equations: i) 2% + y% = dmax>, Y5 > 0, ii) (x5 +
H)2 + (yA + Iw)2 = dmax27 111) rp = _w (]Tw - yA—gyB) + IAéxB,yP = %“” We find that rp
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can be expressed in terms of zp, dmax, H as follows: zp = f(xp) with f(z) =2+ %H — %

where Q1(z) = Ly — 33/dmax?® — (x + H)2 — YImax’=2% and Qy(z) = — Iy + v/dmax? — (& + H)2 —
Vdmax? — x2. Differentiating f, we find that f’(z) = 0 for  such that: 8z% + 16+/dmax? — [223 —
81222 —18+/dmax? — I2dmax >+ 912 dimax? — Idmax® = 0. As I, < d, the equation f'(x) = 0 is well-
approximated by Poly(z) = 0 with Poly(z) = 82% 4+ 16dmaxt® — 81222 — 18dmax°T — Ydmax . Using
routine of quartic equation solving, the existence of real solutions of ax? + bx® + cx? + dx +e =0

b3 L gbe_gd
depends on the sign of Ps(a,b,c,d,e) — Ps(a,b,c,d,e) with P5 = % — ;,17(; —P3, 5 = %7
. / 1/3
Po= . B _2¢cip p - %czf?ﬁ;f;me + 2057 py = P+ /=4( — 3bd + 12ae)? + PZ,
and P; = 2¢3 — 9bed + 27ad? + 27b%e — T2ace. In our case, using a = 8, b = 16dmax, ¢ = —8]120, d=

—18dmax®, and € = —9diax? we find: Ps—Ps = ( 2 — 42%/3155521/3 — \/22/3;))%) dinax> +O(1).

A quartic equation has real solutions if P; — FPs > 0. For our purpose, we have P5; — Py ~
—6.23 - dpax> < 0 and f(x) is monotonically increasing from f(—H) to f(0). Being f(x) <0, |f(z)]
is maximized for rg = —H. ]
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