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Abstract 13 

 14 

Intensity Duration Frequency (IDF) curves are important tools for hydraulic and 15 

hydrologic design. Considering that there are different approaches to obtain the 16 

rainfall quantiles on which the IDF curves are based, the availability of a method 17 

to evaluate their reliability is of great importance. With this aim, in this work the 18 

multifractal properties of hourly rainfall data recorded at 23 rain gauges in the 19 

Umbria Region (Italy) have been used to select the most appropriate frequency 20 

analysis method of extreme annual rainfall at each location. Three methods 21 

have been tested: Local Frequency Analysis (by fitting at each station extreme 22 

annual rainfall data of different durations by a probability distribution function), 23 

Regional Frequency Analysis approach based on L-Moments and flood index 24 

method (considering the extreme annual rainfall data from all the stations), and 25 
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a variant of the latter method known as In-site Regional Frequency Analysis 26 

(based on the consideration of the station as a region). Therefore, quantiles of 27 

rainfall for different durations and return periods have been obtained. These 28 

quantiles have been fitted to the Montana Intensity-Duration-Frequency (IDF) 29 

curve. The scaling properties of rainfall have been obtained through out the 30 

empirical moments scaling function K(q). Their comparison with some scaling 31 

behavior properties of the IDF curves has let the selection of the most adequate 32 

quantile estimation method at each site, being the Regional Frequency Analysis 33 

the most appropriate one for 14 out of the 23 sites included in the study. 34 

 35 

Keywords: extreme rainfall, multifractality, frequency analysis methods.  36 

 37 

1. Introduction 38 

IDF curves are widely used in water resources management projects (Hajani 39 

and Rahman, 2018) to obtain the value of the design storm depth. They are 40 

derived by fitting extreme quantiles of rainfall (obtained from frequency analysis 41 

methods) by parametric equations characterized by different number of 42 

parameters like: the Montana equation widely used in real applications (Di 43 

Baldassarre et al., 2006a), the Temez equation proposed by the Spanish Water 44 

Authority Centre of Hydrographic Studies–CEDEX (Témez, 1987), the four-45 

parameter IDF function considered by Koutsoyiannis et al. (1998) or the one 46 

propose by Chow et al. (1988). All of these equations let to obtain the values of 47 

rainfall intensity, i, as a function of the duration, D, return period, T (or 48 

frequency), and some fitted parameters.  49 
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When observed rainfall extremes are available for a certain duration, the design 50 

storm value (quantile of rainfall with a certain duration and return period) can be 51 

estimated by fitting on such data a suitable extreme probability distribution 52 

function (e.g. Di Baldasarre et al., 2006a). For low return periods, short extreme 53 

data series are good enough to estimate quantile values, so that a local or at-54 

site frequency analysis is valid. As the return period value increases, the length 55 

of the data series needs to enlarge. Long rainfall data series are usually 56 

available for daily durations, but not for shorter time periods. In this situation, a 57 

Regional Frequency Analysis shows up as a good option in order to increase 58 

the amount of available data and also to improve quantile estimates (e.g. 59 

Hosking and Wallis, 1997; Yu et al, 2004; García-Marín et al., 2011; Haddad et 60 

al, 2011; Du et al, 2014; Liu et al, 2015; Hajani and Rahman, 2018; Moujahid et 61 

al., 2018).  62 

This approach solves the problem of lack of data in time with the abundance of 63 

data in space. The bigger the sample of data fitted by a probability distribution 64 

function the higher confidence is on estimated quantile values (specially for low 65 

frequencies of occurrence). A region will be composed with data from different 66 

sites that share the same probability distribution function. 67 

An alternative approach that is called In-site regionalization consists of applying 68 

the regionalization technique to a specific station (e.g. De Salas and 69 

Fernández, 2007; Ayuso-Muñoz et al, 2015). Even in this case the amount of 70 

available data increases (that is the main aim of the Regional Frequency 71 

Analysis), but with data recorded in the same station over different durations. 72 

The region will be formed by series that are considered to come from similar 73 

frequency distribution as in the standard regionalization technique.  74 
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IDF curves have been widely analyzed all over the world (e. g. Jakob et al., 75 

2007; Xu and Tung, 2009; Lee at al., 2010; Haddad et al., 2011; Dourte et al., 76 

2013; Du et al., 2014) and different approaches belonging to the 77 

aforementioned techniques have been adopted to obtain them (Elsebaie, 2011; 78 

Mamoon et al., 2014; Liu et al., 2015). Some studies show comparisons 79 

between at site and regional estimates. Haddad et al. (2011) found that regional 80 

design rainfall estimates were generally greater than the at-site estimates. 81 

Moujahid et al., (2018) found an increase in events intensities derived from 82 

Regional Frequency Analysis. Hajani and Rahman (2018) compared IDF curves 83 

derived by different distributions and methods and found that the regional 84 

curves values were generally higher than the at-site IDF ones. Despite the 85 

existence of these works, a widely recognized method to evaluate the reliability 86 

of different quantile estimate approaches to obtain IDF curves that best 87 

reproduces the behavior of real extreme annual rainfall data in a certain place is 88 

still lacking.  89 

Rainfall and Intensity-Duration-Frequency (IDF) curves satisfy scaling relations 90 

that are based on the complexity of rainfall that exhibits self-similarity at 91 

different scales and can be considered as fractal (e.g. Schertzer and Lovejoy, 92 

1987; de Lima and Grasman, 1999; Kiely and Ivanova, 1999; Castro et 93 

al.,2004; Langousis et al., 2009; García-Marín et al., 2013; Valencia et al., 94 

2010; Schertzer and Lovejoy, 2011; Rodríguez et al., 2013; Casas-Castillo et 95 

al., 2018). Self-similarity processes look the same regardless of the scale where 96 

they are observed. Fractal processes exhibit the same behavior for different 97 

scale measurements, so they are self-similar. Fractal self-similarity of rainfall 98 

has a statistical nature so that its scaling properties can be expressed by 99 
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statistical relationships (Schertzer and Lovejoy, 1987; Schertzer and Lovejoy, 100 

2011). Moreover, the probability distribution of the annual maximum rainfall 101 

intensities follows scale-relationships (Burlando and Rosso, 1996).  102 

The scale invariance character of rainfall must be reproduced by any rainfall 103 

model. A relation between rainfall fractal behavior and IDF scaling exists as 104 

detailed in section 3.4 (e.g. Veneziano and Furcolo, 2002; García-Marín et al., 105 

2013). Specifically, IDF values are simple scaled with a power law dependence 106 

on the duration (D) and return period (T). The power law exponent can be 107 

calculated from the moment scaling exponent function K(q) that characterizes 108 

the multifractality of rainfall time series (Veneziano and Furcolo, 2009).  109 

As a novelty and based on the evidence that IDF models satisfy the scaling 110 

behavior of rainfall (e.g. Yu et al., 2004; Ghanmi et al, 2016; Rodríguez-Solá et 111 

al., 2017; Choi et al., 2018), the objective of this work is to use the multifractal 112 

analysis to select the most appropriate frequency analysis method to obtain 113 

rainfall quantiles at a certain place. With this purpose the multifractal 114 

characterization of hourly rainfall data series in 23 rain gauges stations in the 115 

Umbria Region (Italy) is performed. Afterwards, rainfall quantiles are obtained at 116 

each place by applying three different methods: Local, Regional and In-site 117 

Regional Frequency Analysis. The local or at site rainfall frequency analysis is 118 

applied by fitting extreme annual rainfall data registered at each station by the 119 

General Extreme Values (GEV) probability distribution function. The regional 120 

and In-site regional analysis performed are based on the regionalization 121 

methodology proposed by Hosking and Wallis (1997). For the former, the 122 

extreme annual rainfall annual data of several durations from all the available 123 

stations are used and regionalization is studied for each duration. For the latter, 124 



 6 

the regionalization is made for each site considering only its extreme annual 125 

rainfall data for the available durations. For each frequency analysis method, all 126 

the quantiles obtained are fitted by the Montana IDF model. The existing 127 

relation between the multifractality of rainfall data previously studied and the 128 

scale invariance of the IDF curves is finally used to select the most appropriate 129 

rainfall frequency analysis methodology at each place.  130 

 131 

2. Study area and data source 132 

In this study, rainfall data from the Umbria Region (central Italy) are used. The 133 

Umbria Region, with an extension of 8,456 Km2, exhibits a mountainous 134 

landscape along its eastern side where Apennine Mountains reach up to 2,000 135 

m.a.s.l, and a hilly morphology in the central and western zones with altitudes 136 

ranging from 100 to 800 m a.s.l. A wide part of the study area is included in the 137 

Tiber River basin, which crosses the Region from North to South-West. 138 

Mean annual rainfall for the last century is about 900 mm, with values varying in 139 

space from 650 mm to 1450 mm. Based on 1921– 2015 period and a network of 140 

more than 90 rain gauges, the highest rainfall values usually take place during 141 

the autumn-winter seasons. The highest monthly rainfall values generally occur 142 

during the autumn-winter period, together with floods caused by widespread 143 

rainfall. The highest and lowest rainfall depths typically take place in November 144 

and July, respectively.  145 

Over the past 15 years the region has been affected by five significant droughts 146 

(2001 to 2003, then in 2007, 2012, 2015 and 2017) as well as by six dangerous 147 

flood events (one occurred in 2005, one in 2008, one in 2010, two in 2012 and 148 

one in 2013) with very large impacts in economic terms (Morbidelli et al., 2018).  149 
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The study area is currently monitored through a dense rain gauge network 150 

(about 1 rain gauge every 90 Km2) (Figure 1). In this study 23 rain gauge 151 

stations characterized by continuous hourly rainfall data from 1992 to 2015 are 152 

considered (Table 1 and Figure 1). One of the interests of the multifractal 153 

approaches is to use all the available data to extract the best information 154 

possible of the process under analysis. Therefore, for the multifractal approach, 155 

the continuous hourly rainfall data series are used, whereas for the quantile 156 

estimation the extreme annual rainfall data series (composed by the highest 157 

rainfall value in a year for a certain duration) are obtained  for durations of 1, 3, 158 

6, 12 and 24 hours. 159 

 160 

3. Methodology 161 

3.1. Multifractality 162 

Fractal and multifractal approaches can be used for modelling time series and 163 

deriving predictions regarding extreme events. Multifractal analysis is applicable 164 

to variables self-similarly distributed on a geometric support that is represented 165 

by a line (i.e., time series), plane, volume, or fractal set. To identify 166 

multifractality in hydrological time series it can be assumed that the variability of 167 

the process under study can be modeled as a stochastic turbulent cascade 168 

process (Shertzer and Lovejoy , 1987; Gupta and Waymare, 1993; Over and 169 

Gupta, 1994; Lovejoy and Schertzer, 1995). A cascade process can be 170 

described as eddies breaking up into smaller sub-eddies, each of which 171 

receives a part of the flux from its parent body. This cascade process-type 172 

behavior can be used with rainfall data to transfer information from some 173 
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temporal or spatial scales to another, if scale invariance is previously found in 174 

the data set.   175 

To identify multifractality in rainfall data sets the statistical moments scaling 176 

method has been widely applied (Sivakumar, 2001). To perform the analysis, 177 

the time series has to be divided into non-overlapping intervals of a certain time 178 

resolution. The ratio of the field maximum scale to this interval is the scale ratio, 179 

. By this process, the time is scaled so that the duration of the longest period 180 

of interest is 1 (De Lima and Grasman, 1999). For a time interval i at the scale 181 

ratio , the mean rainfall intensity is given by 𝑅(𝜆, 𝑖). In order to obtain non-182 

dimensional values, the mean rainfall intensity 𝑅(𝜆, 𝑖) has to be normalized by 183 

the so-called joint average of the mean rainfall intensities obtained for  = 1 (the 184 

average found at the higher resolution), 〈𝑅(1, 𝑖)〉, where 〈 〉 =  {
1

𝑁𝜆
∑  𝜆

𝑗=1 }, with N  185 

the number of non-overlapping time intervals in which the time series is divided 186 

for a certain . The non-dimensional mean rainfall intensity for an interval i is 187 

then obtained as 𝜀 (𝜆, 𝑖) = 𝑅(𝜆, 𝑖)/〈𝑅(1, 𝑖)〉. The average qth moments of the 188 

rainfall intensities of the process at resolution level , 〈𝜀𝜆
𝑞〉, can then be obtained 189 

and their scaling can be described by the K(q) function, that satisfies (Schertzer 190 

and Lovejoy, 1987; Lovejoy and Schertzer, 1990):  191 

             〈𝜀𝜆
𝑞〉 ≈ 𝜆𝐾(𝑞)             (1) 192 

The scaling behavior given by equation 1 can be investigated by plotting 〈𝜀𝜆
𝑞〉 as 193 

a function of  in a log-log plot diagram for several values of q. High and low 194 

values of q are related to extreme (very high or very low) values of rainfall. The 195 

former are conditioned by the length of data and the latter by the resolution of 196 

the pluviograph (commonly 0.1 mm). Therefore, a wide range of q moments 197 



 9 

values greater and lower 1 is recommended to describe the scale behavior of 198 

rainfall in a certain place (e.g. De Lima and Grasman, 1999). The linear fits of 199 

the log-log plot of equation 1 let to obtain the complete K(q) function and give 200 

information about the temporal scale invariance of the data set.  201 

Different shapes of K(q) can be expected for mono and multifractal processes. 202 

For the former, K(q) versus q is a straight line, whereas for the latter a convex 203 

function appears (e.g. Yu et al., 2014). If K(q) is linear through the origin, the 204 

measure is self-similar. The value of K(0) is related to the zeros of the data 205 

series and also reflects the codimension of the field > 0 .  206 

The codimension function c() can describe the probability distribution of the 207 

process intensity. It also indicates how the histograms of a variable change with 208 

resolution. It can be obtained parametrically as 𝑐(𝑞) = 𝑞𝛾(𝑞) − 𝐾(𝑞), where 209 

𝛾(𝑞) = 𝑑𝐾(𝑞)/𝑑𝑞 (Parisi and Frish, 1985; Veneziano and Furcolo, 2002). The 210 

value of max, which is the maximum value of the order of singularity , can 211 

provide information about the rare or extreme events in the data series (e.g. 212 

Veneziano and Furcolo, 2002). 213 

                                                                                                               214 

3.2. Frequency analysis of extreme events 215 

The main objective of frequency analysis is the estimation of extreme events 216 

corresponding to different return periods (quantiles) by using probability 217 

distribution functions. For this purpose, maximum annual rainfall data series are 218 

used, being composed by the highest annual values of rainfall for certain 219 

duration. For annual series, the return period of an event is the reciprocal of the 220 

probability of exceedance of that event (Koutsoyiannis et al., 1998; Langousis 221 
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et al., 2009) and can be also defined as the average time interval between 222 

exceedances of a certain value.  223 

For small return periods or long historical data series, single-site or Local 224 

Frequency Analysis (LFA) of extreme data is enough to obtain quantile values. 225 

When dealing with rainfall, quantiles are usually estimated to obtain IDF curves. 226 

For this purpose, in many studies GEV probability distribution function and its 227 

particular form Gumbel are applied to extreme rainfall (Menabde et al., 1999; 228 

Bougadis and Adamowski, 2006; Gubareva and Gartsman, 2010; Ghanmi et 229 

al., 2016; Choi et al., 2018). The GEV function is preferred for rainfall data 230 

series with high extreme values (e.g. Coles, 2001; Koutsoyiannis, 2004; 231 

Russell, 2019). 232 

Regardless the probability distribution function used for an at-site frequency 233 

analysis, the main limitation of this analysis appears when the objective is to 234 

estimate extreme rainfall quantiles for high return periods starting from short-235 

length data series. Being this kind of data the most frequently found all over the 236 

world, the Regional Frequency Analysis (RFA) appears then as a useful tool to 237 

solve the problem of temporal data scarcity by increasing data through the 238 

space (e.g. Rostami, 2013).   239 

The RFA methodology used in this work was proposed by Hosking and Wallis 240 

(1997) and is based on L-moments and the Flood Index method (Dalrymple, 241 

1960). The L-moments introduced by Hosking (1990, 1992) are commonly used 242 

in RFA of rainfall data (e.g. Yang et al., 2010; Zakaria and Shabri, 2012; 243 

Monjahid et al., 2018). They are linear functions of the probability weighted 244 

moments (Greenwood et al., 1979). For a sample size n, the estimator of 245 

probability weighted moments is given by 𝑏𝑟 = 𝑛−1(𝑛−1
𝑟

)
−1

∑ (𝑗−1
𝑟

)𝑛
𝑗=𝑟+1 𝑥𝑗:𝑛., 246 



 11 

being x the variable under analysis. The sample L-moments are obtained as 247 

linear combinations of br, being 𝑙1 = 𝑏0 , 𝑙2 = 2𝑏1 − 𝑏0, 𝑙3 = 6𝑏2 − 6𝑏1 + 𝑏0, 𝑙4 =248 

20𝑏3 − 30𝑏2 + 12𝑏1 − 𝑏0, among others. The L-moments ratios are given by 249 

𝑡𝑟
 = 𝑙𝑟/𝑙2 (for r = 3, 4…). The value of 𝑡 

 = 𝑙2/𝑙1 is known as L-coefficient of 250 

variation. Flood index procedures are a convenient way of pooling summary 251 

statistics from different data samples. The term "flood index" arose because 252 

early applications of the procedure were performed on flood data in hydrology 253 

(e.g., Dalrymple. 1960), but the method can be used with any kind of data. The 254 

key assumption of a flood index procedure is that a group of sites forms a 255 

homogeneous region, that is their data sets are characterized by frequency 256 

distributions identical apart from a site-specific scaling factor, called flood index. 257 

The RFA is advantageous over at-site analysis if homogeneous regions can be 258 

compound with the available data series. A homogeneous region is composed 259 

by stations that have identical frequency distributions apart from a site-specific 260 

scale factor. The obtaining of homogenous regions is the most critical step in 261 

RFA and several methodologies and site-characteristics can be applied to 262 

group stations into homogeneous regions (e.g. García-Marín et al., 2011, 2015; 263 

Medina-Cobo et al., 2017; Satyanarayana and Srinivas, 2011).  264 

In order to easily understand the main steps of RFA, appendix A can be seen. 265 

As a first step in RFA, L-moments and their corresponding L-moments ratios (L-266 

coefficient of variation (𝑡(𝑖)), L-skewness (𝑡3
(𝑖)

) and L-kurtosis (𝑡4
(𝑖)

)) have to be 267 

obtained for all the data series (for each site or station, i) used in the analysis    268 

(notice that (i) changes to (R) if we refer to the region instead of the site).The 269 

three L-moments ratios of a certain site are considered as components of a 270 

vector in a three-dimensional space with L-moments ratios as coordinates. 271 
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Considering that each site is then characterized by a vector, the whole set of 272 

stations forms a cloud of points in that space. Any point far from the center of 273 

that cloud (being a point with average L-moments ratios values as coordinates) 274 

has to be considered as discordant and excluded from the analysis. 275 

Specifically, for each station the discordancy, Di, with respect to the center can 276 

be determined as (Hosking and Wallis, 1997):  277 

              11
( ) ( )

3

T

i i iD N u u A u u−= − −                                   (2) 278 

where 𝑢𝑖 = (𝑡(𝑖), 𝑡3
(𝑖)

, 𝑡4
(𝑖)

), 
1

1

N

i

i

u N u−

=

=   , 
1

( )( )
N

i i

i

A u u u u
=

= − −  and N is the 279 

number of stations. If the obtained Di value exceeds a critical value that 280 

depends on the number of sites and can be found in Hosking and Wallis, 1997, 281 

the site has to be excluded from the analysis because is discordant. The critical 282 

values of discordancy vary from 1.333 for regions of five sites to 3.000 for 283 

regions of fifteen or more sites (Hosking and Wallis, 1997).  284 

In order to test if a group of sites forms a homogeneous region, the 285 

heterogeneity measure H, that compares the between-site variations in sample 286 

L-moments for a group of sites with what would be expected for a 287 

homogeneous region, has to be calculated. For that purpose, it is necessary: 288 

- to calculate the weighted standard deviation of at-site sample L- 289 

coefficient of variation, V, given by 
( ) 2 1/2

1 1

( ) / }
N N

i R

i i

i i

V n t t n
= =


= −


  , with 𝑡𝑅 =290 

∑ 𝑛𝑖𝑡(𝑖)/ ∑ 𝑛𝑖
𝑁
𝑖=1

𝑁
𝑖=1 , n the number of data, and t(i) the L-coefficient of 291 

variation of the station; 292 

- to fit a kappa distribution to the regional average L-moments ratios; 293 
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- to simulate a large number, Nsim, of realizations of a region with N sites, 294 

each having this kappa distribution as its frequency distribution; the 295 

simulated regions are homogeneous and the sites have the same record 296 

lengths as their real-world counterparts; 297 

- to calculate V for each simulated region; 298 

- to determine the mean, μv, and standard deviation, σv, of Nsim values of V 299 

from the simulations.  300 

The heterogeneity measure can finally be obtained as:  301 

                                       
( )V

V

V
H





−
=                                                  (3) 302 

The region under consideration is acceptably homogeneous when H<1; 303 

possibly heterogeneous when 1<H<2, and definitely heterogeneous for H>2.  304 

Once the homogeneity of a region is checked, the quantiles of the variable 305 

analyzed for several return periods can be obtained. Different probability 306 

distribution functions can be tested in order to select the most appropriate to 307 

describe the region and to obtain the regional growth curve, q(F), where F is the 308 

frequency. In a set of three-parameter candidate distributions, to measure the fit 309 

goodness of each one, the following statistics can be calculated: 310 

                                                            𝑍𝐷𝐼𝑆𝑇 = (𝜏4
𝐷𝐼𝑆𝑇 − 𝑡4

𝑅 + 𝐵4)/𝜎4                              (4)                      311 

where 𝜏4
𝐷𝐼𝑆𝑇 is the L-kurtosis coefficient of the three-parameter distribution; 𝑡4

𝑅 312 

the regional average L-kurtosis coefficient; 𝜎4 the standard deviation of 𝑡4
𝑅 which 313 

can be obtained by repeated simulation of a homogeneous region whose sites 314 

have the selected three-parameter frequency distribution and record lengths the 315 

same as those of the observed data; and 𝐵4 is the bias in the regional average 316 
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L-kurtosis for regions with the same number of sites and the same record 317 

lengths as the observed data.  318 

The fit of a specific distribution is considered to be adequate if the value of 319 

statistics 𝑍𝐷𝐼𝑆𝑇  is below or the same as 1.64 at the significance degree of 320 

90%. 321 

By applying the flood index method, the quantiles Qi at a site i can then be 322 

obtained by,  323 

                                              ( ) ( ), 1...i iQ F q F i N= =                                       (5) 324 

being μi the flood index (average of data at site i). 325 

Besides the lack of long data series, in some cases there is a lack of spatial 326 

information, so a regular RFA cannot be performed. In this case, the 327 

regionalization technique can be applied in a single station (de Salas and 328 

Fernández, 2007). The station now becomes the region, and the sites of the 329 

region are the available data series of different duration. This method is called 330 

the In-site Regional Frequency Analysis (IRFA) and can be applied at any 331 

location where rainfall records of around 10 min to 24 h duration are available, 332 

allowing the development of robust quantiles estimations (Ayuso-Muñoz et al., 333 

2015). The following steps to be followed are the same as stated before.  334 

 335 

3.3. IDF formulation 336 

Regardless of the statistical frequency analysis performed, once the quantiles of 337 

rainfall are obtained for different durations, an IDF model can be fitted. The 338 

most widely used approach consists of using a parametric model characterized 339 

typically from 2 to 4 parameters. As the number of parameters increases, the 340 
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uncertainty of the estimations is amplified as well (Di Baldassarre et al., 2006a, 341 

b).  342 

Several IDF equations can be found (e.g. Chow, 1964; Bell, 1969; Chen, 1983; 343 

García-Bartual and Schneider, 2001), being the one known as Montana Curve 344 

one of the most widely used (Di Baldassarre et al., 2006a): 345 

                                                                       𝑖(𝑇, 𝐷) = 𝑎𝐷𝑏−1                                      (6) 346 

where a and b are the parameters that depend on the return period.  347 

This equation shows some limitations for describing the behavior of short-term 348 

storms of less than 1 hour (Di Baldassarre et al., 2006a). Nevertheless, 349 

considering that it is widely used in the region of the present study and that the 350 

work is focused on durations higher than 1 hour, it has been chosen as IDF 351 

model.  352 

 353 

3.4. Fractals and IDF 354 

As Veneziano and Furcolo (2002) stated, most of the models of IDF curves 355 

belongs to self-similar models that satisfy simple-scaling relations, or 356 

asymptotically self-similar models. While the IDF curves satisfy simple scaling 357 

relations, temporal rainfall has multifractal scale invariance.  358 

In engineering practice, the scaling relations between some IDF models and 359 

some multifractal parameters can be relevant. They can be used to obtain 360 

probable maximum precipitation estimates (Casas-Castillo et al., 2018), rainfall 361 

values of low durations by downscaling (Rodríguez-Solá et al., 2017) or rainfall 362 

values in un-gauged sites (Ghanmi et al., 2016). 363 

One can consider: 364 
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                                                        𝑖(𝑇, 𝐷) = 𝐷−ℎ𝑖(𝑇, 1)                                                 365 

(7) 366 

being h the self-similarity index, D the duration, i (T, D) the intensity value with 367 

probability 1/T, and T the return period.  368 

On the other hand, in approximation and for large T: 369 

                                                                      𝑖(𝑇, 1) ∝ 𝑇𝛼                                     (8) 370 

where  is a constant (Bendjoudi et al., 1997; 1999). 371 

For any finite range of T and D→0, Veneziano and Furcolo (2002) obtained that 372 

ℎ = 𝛾1 and 𝛼 = 1/𝑞1, where 𝛾1 is the value of  where the codimension function 373 

c() equals 1 and q1 is the associated moment order. 374 

The scaling of IDF can be then expressed by: 375 

                                                            𝑖(𝑇, 𝐷) ∝ 𝐷−𝛾1𝑇1/𝑞1                                             (9) 376 

The parameters 𝛾1  and q1 can be obtained from K(q) function (from the linear 377 

behavior of the field for q values greater than a given moment)  and be related 378 

to the slope of the IDF obtained for a certain location. Thus, for each return 379 

period analyzed, the absolute value of the IDF slopes (b-1, equation (6)) 380 

should be close to the 𝛾1 value obtained from the multifractal analysis of rainfall 381 

data at the same place. Moreover, the slope of the line obtained from plotting 382 

the mean rainfall intensity values of several duration for different return periods 383 

should be close to the value 1/𝑞1 (García-Marín et al., 2013). 384 

 385 

4. Results and discussion  386 

4.1. Mutifractal analysis of hourly rainfall in the Umbria Region 387 

To obtain the empirical moments scaling exponent function K(q) for the hourly 388 

rainfall data series in the 23 rain gauge stations available (Table 1), the log-log 389 
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plot of the qth average moments of the rainfall intensity 𝜀𝜆 against the scale ratio 390 

𝜆 has to be obtained at each place. Figure 2 shows this plot for three sites: 391 

Casacastalda, San Benedetto Vecchio and San Silvestro. As it can be 392 

observed, straight lines appear for moments higher (Figure 2a) and lower 393 

(Figure 2b) than 1. These straight lines give information about the scaling 394 

behavior of the moments observed in the range from 1 hour to 21 days for the 395 

three sites. Similar values have been found by other authors for different 396 

locations (e.g. Ladoy et al., 1991, 1993; Fraedrich and Larnder, 1993; 397 

Svensson et al., 1996; Tessier et al., 1996; Labat et al., 2002; García-Marín et 398 

al., 2013; Rodriguez et al., 2013). The same scale invariance regimens have 399 

been found for the hourly rainfall data of the other stations in the Umbria region. 400 

The empirical function K(q) has been then obtained for the scale regimen 401 

detected and for all the sites. In Figure 3 the function K(q) for the same stations 402 

of Figure 2 is shown. In all three cases it shows a convex shape that gives 403 

information about the multifractal behavior of hourly rainfall at the Umbria 404 

region. Important information for the present work can be obtained from K(q) 405 

function, like the singularity values 𝛾1. The value for this parameter varies from 406 

0.7219 for Casacastalda, to 0.7945 for San Benedetto Vecchio, with a value of 407 

0.7491 for San Silvestro. Table 2 shows the values of 𝛾1 obtained from the 408 

scaling functions at all the sites analyzed, found to vary from 0.7125 to 0.8242. 409 

Similar results have been found by García-Marín et al. (2013) and Rodríguez-410 

Solá et al. (2017) for rainfall data in Spanish stations. The value of moment 411 

order q1 associated to 𝛾1 is also shown in Table 2 for all the sites, and in Figure 412 

3 for the selected stations.   413 

4.2. Quantile estimation 414 
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For the 23 rain gauges, the extreme annual rainfall data series are obtained by 415 

selecting the maximum rainfall value of certain duration (for durations of 1, 3, 6, 416 

12 and 24 hours) for each year of data. The three different frequency analysis 417 

methods described in section 3 have been applied. Firstly, a LFA for each 418 

extreme data series at each location. Secondly, a RFA of extreme rainfall data 419 

for each duration considering all the sites. And finally, an IRFA at each location.  420 

For the local analysis the GEV probability distribution function has been used, 421 

obtaining quantiles values of extreme rainfall for return periods of 5, 10, 25, 50, 422 

100 and 200 years.  423 

For each duration, a RFA has been performed (RFAih with i = 1, 3, 6, 12 and 24 424 

hours) obtaining the results summarized in Table 3. As first step, the existence 425 

of discordant sites was checked by obtaining the values of Di (equation 2). For 426 

the hourly extreme rainfall Regional Frequency Analysis (RFA1h), only Petrelle 427 

station was found discordant, and was taken out of the analysis. Two sites 428 

resulted discordant for RFA3h, Compignano and San Biagio della Valle; and two 429 

more for the RFA12h, being Narni Scalo and San Benedetto Vecchio. For RFA6h 430 

and RFA24h no sites were found to be discordant.  431 

The heterogeneity measure of the region compound by the remaining stations 432 

was then evaluated with equation 3. The values of H were found lower than one 433 

for RFA1h (-0.11), RFA3h (0.90), RFA12h (0.54) and RFA24h (0.97). These results 434 

show the homogeneity of the regions constituted by the considered stations for 435 

the selected durations. For RFA6h the initial value of H was 1.96, which 436 

indicated that the region was probably heterogeneous and so it was divided into 437 

sub-regions. Following the methodology proposed by García-Marín et al. 438 

(2015), the multifractal characteristics of rainfall data were used to divide the 439 
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RFA6h region into two regions. With the values of 𝛾1 and K(0) (Table 2) a K-440 

means cluster analysis was performed and two groups of sites were obtained. 441 

Two new Regional Frequency Analyses were done, RFA6hA and RFA6hB. The 442 

first group was initially composed by 9 sites, whereas 14 stations formed the 443 

second. Petrelle station was discordant again, so finally two groups stayed, one 444 

with 8 sites and one with 14 stations (Table 3). Both groups were found to be 445 

homogeneous according to the values of H parameter, being -0.23 for RFA6hA 446 

and -0.83 for RFA6hB, respectively.  447 

Once the homogeneous regions have been compounded, the growth curves 448 

are necessary in order to finally obtain the quantiles at all the sites. For this 449 

purpose, the goodness of a probability distribution function (pdf) in fitting the 450 

regional data has to be studied through the value of ZDIST (equation 4). Five 451 

three-parameter probability distribution functions were tested, being the 452 

Generalized Logistic (GEN-LOG), Generalized Extreme Value (GEV), 453 

Generalized Normal (GEN-NOR), Pearson type III (PT-III) and Generalized 454 

Pareto (GEN-PAR).  455 

Table 4 shows the values of statistics ZDIST obtained by applying equation 4 for 456 

all the homogeneous regions and probability distribution functions. According to 457 

these results, the most appropriate function for each region is the one that gives 458 

the lowest value of 𝑍𝐷𝐼𝑆𝑇 between 0 and 1.64. Based on that, the GEV pdf is 459 

the most appropriate for RFA3h, RFA6hA and RFA24h, the GEN-NOR pdf is the 460 

best one for RFA6hB and RFA12h, whereas GEN-LOG is the most suitable for 461 

RFA1h. The regional growth curves for each region can then be obtained with 462 

the selected probability distribution functions for several return periods (Table 463 

5). For each duration, considering the calculated growth curve and the average 464 
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datum at each site, the quantiles for different return periods were obtained by 465 

applying the flood index method (equation 5).  466 

The IRFA was then applied at each location, considered as one region and 467 

each series of a particular duration (5, 10, 15, 20, 30 and 40 min, 1, 3, 6, 12 and 468 

24 h) as one site into the region.  469 

As it can be seen in Table 6, for 15 out of 23 In-site regions, all durations (sites) 470 

formed a homogeneous region with H values less than 1.00. For the In-site 471 

regions Forsivo, Gubbio and La Cima, some sites were found to be discordant 472 

and were removed from the analysis: 5’ and 24 h in Forsivo, 24 h in Gubbio and 473 

5’, 10’, 15’, 20’ in La Cima. Once the discordant sites were eliminated, the In-474 

site regions became homogeneous according to the H values (Table 6). In-site 475 

regions of Montelovesco and San Biagio della Valle, formed a homogeneous 476 

region considering all sites, with H values of -0.57 and -2.07, respectively. 477 

Nevertheless, no probability distribution function was found as a good candidate 478 

to fit the In-site regional data, according to the values of ZDIST obtained. For 479 

Montelovesco two subregions were formed, one for durations less than one 480 

hour and another for durations greater than one hour (Table 6). Both of them 481 

were homogeneous. Petrelle In-site region was heterogeneous considering all 482 

sites, so two subregions were formed, and homogeneity results were obtained 483 

(Table 6). For San Biagio della Valle, some sites were removed in order to form 484 

a homogeneous region. The final In-site homogeneous region was 485 

compounded by 7 sites from 30’ to 24 h. Similar situation occurred for San 486 

Benedetto Vecchio station, where a final homogeneous region was formed 487 

removing some sites (Table 6).  488 
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The regional growth curves for each In-site region were then obtained with the 489 

selected probability distribution functions for several return periods (Table 7). As 490 

an example, and in order to compare the different approaches, the local, 491 

regional and in-site regional quantiles for 24 hours and 50 years of return period 492 

are shown in Figure 4. Notice that the values are missing for Forsivo and 493 

Gubbio, where 24 h duration was removed from the In-site Regional Frequency 494 

Analysis. As it can be seen in this figure, there is no a general pattern in the 495 

values obtained by the different methodologies. For 8 sites out of 23 (34.8%) 496 

local quantiles are the highest, for 10 sites out of 23 (43.5%) regional quantiles 497 

are the highest, whereas In-site quantiles are the highest only for 4 out of 23 498 

sites (17.4%). In any case, the different values of quantiles obtained by the 499 

three applied methods provide different IDF curves and different design storm 500 

values. Thus, it is important to select the most appropriate IDF curve for each 501 

site in order to reproduce adequately the extreme rainfall behavior.  502 

4.3. IDF fitting  503 

All the quantiles of more than one hour of duration obtained by using LFA, RFA 504 

and IRFA have been fitted by the Montana IDF model (equation 7). As an 505 

example, Table 8 shows the values of parameters a and b for Casacastalda, 506 

San Benedetto Vecchio and San Silvestro. It can be noticed that, for each site 507 

and frequency analysis, the parameter b has a constant value for all the return 508 

periods. This is because when fitting a different b for each Ti (i = 5,…, 200 509 

years) value, it was observed that, in some cases, 𝑖𝐷,𝑇2
< 𝑖𝐷,𝑇1

, being 𝑇2 > 𝑇1. In 510 

order to avoid that situation, a constant value of b was obtained as the average 511 

of all the b values independently estimated for the different return periods.  512 

 513 
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 514 

4.4. Selection of frequency analysis  515 

The scale invariance properties of IDF curves and their relationship with 516 

multifractal parameters (e.g. Veneziano and Furcolo, 2002; García-Marín et al., 517 

2013) are used in this work to select the most appropriate frequency analysis at 518 

each site of the Umbria region.  519 

In this context, for each site, the absolute value of slopes of the estimated IDF 520 

lines SlopeIDF has to be close to the value obtained for  the singularity value 1 521 

in the multifractal analysis of the hourly rainfall data (Table 2). For 522 

Casacastalda, San Benedetto Vecchio and San Silvestro, Figure 5a shows 523 

SlopeIDF for each approach and the singularity value 1 obtained for each 524 

location. As it can be checked, for Casacastalda the values obtained for LFA 525 

and IRFA are lower than 1 (0.7219), being the value for Regional Frequency 526 

Analysis very close to the singularity value. For San Benedetto Vecchio station, 527 

the closest value to 1 (0.7945) is that obtained through LFA, whereas at San 528 

Silvestro station the IRFA is the most suitable to reproduce the 1 value 529 

(0.7491). 530 

For the same stations, Figure 5b shows the slope of the fit of the rainfall 531 

intensity values averaged over durations for different return periods (SlopeARI). 532 

The slope value has to be close to the value of 1/q1 obtained for each location 533 

(Table 2). It can be observed that for Casacastalda the closest value to 1/q1 534 

(0.2222) is the one obtained with RFA, being the results obtained with LFA and 535 

IRFA the worst. In San Benedetto Vecchio station, the best result is obtained 536 

with LFA, whereas IRFA is the best to fit 1/q1 (0.2667) in San Silvestro station. 537 
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According to the results described above, the IDF curve obtained with quantiles 538 

from RFA is the best for Casacastalda station, the one obtained with Local 539 

Frequency Analysis quantiles is the most appropriate for San Benedetto 540 

Vecchio station, and the IDF curve obtained with quantiles from IRFA is the best 541 

choice for San Silvestro station.  542 

For the rest of stations, the SlopeIDFand the SlopeARI values obtained for the 543 

three approaches are shown in Table 9. The values in Table 9 have to be 544 

compared to those in Table 2 (1, q1) in order to select the best IDF curve at 545 

each location.  546 

To better synthetize the results of Figure 5 and Table 9, the values of (𝛾1 −547 

𝑆𝑙𝑜𝑝𝑒𝐼𝐷𝐹)2 and |𝑆𝑙𝑜𝑝𝑒𝐴𝑅𝐼 − (1/𝑞1)|  have been obtained for each site and frequency 548 

analysis and shown in Table 10 (e.g. García-Marín et al., 2013). 549 

For each multifractal criterium the green values indicate when the LFA is the 550 

best, the red values have the same meaning but for RFA, and the blue ones 551 

correspond to the best results for IRFA. Combining both multifractal criteria, a 552 

decision can be made and a proper frequency analysis can be selected for 553 

each site. The selected frequency analysis at each location is shown in bold. 554 

Table 10 shows that only for three sites (Città di Castello, Ripalvella and San 555 

Benedetto Vecchio stations) the LFA is the best option. IRFA exhibits to be the 556 

best choice only at San Silvestro station. RFA is the most appropriate frequency 557 

analysis for 14 out of 23 sites. For the rest of stations (5), very close results 558 

have been obtained for all frequency analyses, but no coincidence of the two 559 

multifractal criteria has been found.  560 

 561 

5. Conclusions 562 



 24 

The scaling properties of IDF curves are used in this work to select the proper 563 

frequency analysis method to obtain quantiles of rainfall in the Umbria Region 564 

(Italy). With this purpose, rainfall data series from 23 rainfall gauges were used.  565 

The multifractal properties of hourly rainfall were evaluated by applying the 566 

statistical moments scaling method. The empirical function K(q) was obtained at 567 

each place, and some important multifractal parameters were identified: 1, q1 568 

and the value of K(0). 569 

Three frequency analyses of annual maximum rainfall data for different 570 

durations have been considered: local, regional and In-site regional frequency 571 

analyses. For the Local Frequency Analysis, the GEV probability distribution 572 

function was used, and the local quantiles were obtained. The Regional 573 

Frequency Analysis proposed by Hosking and Wallis (1997) was performed for 574 

each duration, and homogeneous regions of annual maximum rainfall were 575 

composed. Different probability distribution functions were tested at each region 576 

in order to obtain the regional growth curves and the corresponding quantiles at 577 

each location. 578 

The Regional Frequency Analysis was also applied at each station (In-site 579 

Regional Frequency Analysis), considering the site as a region and the 580 

maximum annual rainfall data series as the sites of the region, and the quantiles 581 

were derived. Different quantile values were obtained at each station for the 582 

different frequency analyses approaches, with no regular pattern for the highest 583 

or lowest values for a certain approach.  584 

The rainfall quantiles obtained through the different approaches were fitted by 585 

the Montana IDF curve. Then, following the theory proposed by Veneziano and 586 

Furcolo (2002), the values of 1 were compared with the absolute value of 587 
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slopes of the different IDF curves, and the values of 1/q1 were compared to the 588 

slope of mean rainfall intensity versus return period fit. These comparisons 589 

between multifractal parameters and IDF properties let to select the most 590 

appropriate frequency analysis at each location. The Regional Frequency 591 

Analysis gave the best results for the 61% of stations, closely followed by the 592 

Local Frequency Analysis that was the best option for the 13% of sites. The In 593 

site Regional Frequency Analysis was the most appropriate only in one station, 594 

and for five more similar values were obtained with the three frequency analysis 595 

approaches.   596 

Thus, the analysis of the scaling behavior of rainfall proposed here seems to be 597 

a good tool to decide which frequency analysis is adequate at a certain place.  598 

Lastly, the scaling behavior of rainfall can be analyzed through data sets with 599 

time resolution that can vary from fine (e.g. Veneziano and Furcolo 2002; 600 

Rodríguez-Solá et al., 2017) to coarse (e.g. Garcia-Marín et al., 2015; Casas-601 

Castillo et al., 2018). When scale invariance is found in a data set, the 602 

downscaling or upscaling of maximum rainfall data can be performed. This last 603 

procedure let to obtain both quantiles and IDF relations at places where no fine 604 

time resolution data are available. Therefore, different types of quantile 605 

estimation can be always obtained and the methodology proposed in this work 606 

can be useful to decide among them.  607 

 608 

APPENDIX A 609 

Figure A.1 shows a flowchart that can summarizes the main steps to be 610 

followed in RFA. Let suppose a potential region (REGION 1 in Figure 6) 611 

composed by n sites with extreme annual rainfall data series. Calculate the L-612 
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moments of the data series. Afterwards, obtain the values of discordancy Di 613 

(from equation 2). Remove from the analysis all the m sites with discordancy 614 

values greater than the critical one, and repeat this procedure until no 615 

discordant site is found. With all the non-discordant sites, calculate the 616 

heterogeneity value (H) by applying equation 3. If H value is greater than one, 617 

star the process again subdividing REGION 1 into sub-regions. If the H value is 618 

lower than one, the region can be considered as homogeneous and the value of 619 

ZDIST for a number of candidate probability distribution functions (p.d.f.) has to 620 

be obtained by applying equation 4. If the absolute value of ZDIST is lower than 621 

1.64 all the data of REGION 1 can be fitted by a p.d.f. (consider the one with 622 

the lowest𝑍𝐷𝐼𝑆𝑇) and the regional growth curve can be obtained. On the 623 

contrary, fit the data through the Wakeby p.d.f. Finally, obtain the quantile 624 

values Qi by applying equation 5. 625 
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Figure captions 849 

Figure 1. Rain gauges at the Umbria Region (red triangles). The green squares 850 

show the rain gauges used in this work. 851 

Figure 2. Log-log plot of the averaged qth moments of the hourly rainfall 852 

intensity on the time scales from 1 hour to 21 days, versus the scale ratio   at 853 

Casacastalda, San Benedetto Vecchio and San Silvestro stations. (a) Moments 854 

greater than 1; (b) Moments lower than 1. R2 values higher than 0.9999 for all 855 

the fits.  856 

Figure 3. Moments scaling exponent function K(q) for the range of scales 857 

detected for the averaged qth moments of the hourly rainfall intensity with the 858 

value of  that makes c() = 1 and the associated moment order q at 859 

Casacastalda, San Benedetto Vecchio and San Silvestro stations. 860 

Figure 4. Values of the quantiles of 24 hours duration and 50 years of return 861 

period obtained by Local, Regional and In-site Regional Frequency Analysis for 862 

all the rain gauges used in this work.  863 

Figure 5. (a) Comparison between the SlopesIDF (different color symbols for 864 

each frequency analysis) and the value of singularity  1, for Casacastalda, San 865 

Benedetto Vecchio and San Silvestro stations. (b) For each IDF studied 866 

(obtained from Local, Regional o In-site Regional Frequency Analyses 867 

quantiles), values of the mean rainfall intensity of all the durations analyzed and 868 

for different return periods, at Casacastalda, San Benedetto Vecchio and San 869 

Silvestro stations. 870 

Figure A.1 Flowchart showing the application steps of the Regional Frequency 871 

Analysis. 872 
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Figure 2. Log-log plot of the averaged qth moments of the hourly rainfall 887 

intensity on the time scales from 1 hour to 21 days, versus the scale ratio   at 888 

Casacastalda, San Benedetto Vecchio and San Silvestro stations. (a) Moments 889 

greater than 1; (b) Moments lower than 1. R2 values higher than 0.9999 for all 890 

the fits.  891 
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 895 

Figure 3. Moments scaling exponent function K(q) for the range of scales 896 

detected for the averaged qth moments of the hourly rainfall intensity with the 897 

value of  that makes c() = 1 and the associated moment order q at 898 

Casacastalda, San Benedetto Vecchio and San Silvestro stations. 899 
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Figure 4. Values of the quantiles of 24 hours duration and 50 years of return 903 

period obtained by Local, Regional and In-site Regional Frequency Analysis for 904 

all the rain gauges used in this work.  905 
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 906 

 907 

Figure 5. (a) Comparison between the SlopesIDF (different color symbols for 908 

each frequency analysis) and the value of singularity  1, for Casacastalda, San 909 

Benedetto Vecchio and San Silvestro stations. (b) For each IDF studied 910 

(obtained from Local, Regional o In-site Regional Frequency Analyses 911 

quantiles), values of the mean rainfall intensity of all the durations analyzed and 912 

for different return periods, at Casacastalda, San Benedetto Vecchio and San 913 

Silvestro stations. 914 
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 916 

Figure A.1 Flowchart showing the application steps of the Regional Frequency 917 

Analysis. 918 
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Table captions 928 

Table 1. Main characteristics of the rain gauges used in this work at the Umbria 929 

Region (Italy).  930 

Table 2. Values of multifractal parameters obtained from the hourly rainfall data 931 

series analyzed.  For symbols meaning see the text. 932 

Table 3. Heterogeneity results of the Regional Frequency Analysis (RFA) 933 

performed for rainfall durations of 1h, 3h, 6h, 12h and 24h at the Umbria region. 934 

H is the heterogeneity measure. 935 

Table 4. Values of statistics ZDIST for the five probability distribution functions 936 

tested at each homogenous region. In red color, the selected probability 937 

distribution function according to the value of ZDIST. 938 

Table 5. Regional growth curves for different return periods (T) and durations 939 

obtained for the homogeneous regions by the selected probability distribution 940 

functions. 941 

Table 6. In-site Regional Frequency Analysis results for all the stations at the 942 

Umbria region. H is the heterogeneity measure, pdf refers to most suitable 943 

probability distribution function for the region, and ZDIST is the statistics that 944 

measures the goodness of fit.  945 

Table 7. In-site Regional Frequency Analysis growth curves for all the sites at 946 

the Umbria region and for different return periods (T), obtained from the 947 

selected probability distribution functions (details in table 6). 948 

Table 8. Values of the IDF parameters, a and b, obtained by fitting the quantiles 949 

derived from Local, Regional and In-site Regional Frequency Analyses, for the 950 

stations of Casacastalda, San Benedetto Vecchio and San Silvestro.  951 
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Table 9. Absolute values of slopes of IDF curves slope, SlopeIDF, slopes and 952 

slope of average rainfall intensity fit versus return periods, SlopeARI, at each 953 

station obtained with the three adopted approaches (Local, Regional and In-site 954 

Regional Frequency Analyses).  955 

Table 10. Comparison between the multifractal results and the IDF properties 956 

for the selection of the proper frequency analysis at each site. Coloured bold 957 

values select the best approach, being bold green for Local, bold red for 958 

Regional, and bold blue for In-site Regional Analysis.  959 

 960 

 961 

 962 

 963 

 964 

 965 

 966 

 967 

 968 

 969 

 970 

 971 

 972 

 973 



 44 

Table 1. Main characteristics of the rain gauges used in this work at the Umbria 974 

Region (Italy).  975 

RAIN GAUGE STATION ID 
ALTITUDE 
(m a.s.l.) 

UTM33 X 
(m) 

UTM33 Y 
(m) 

MEAN ANNUAL 
RAINFALL (mm) 

AZZANO 10 235 316615 4742431 782.5 

BASTARDO 11 331 300489 4748742 803.8 

BASTIA UMBRA 12 203 301377 4769716 705.0 

CASACASTALDA 19 730 309715 4783398 971.0 

CASIGLIANO 22 273 294947 4732331 869.1 

CERBARA 27 310 275092 4821081 834.3 

CITTÀ DI CASTELLO 28 304 277643 4815738 883.0 

COMPIGNANO 30 240 278394 4758593 756.8 

FORSIVO 37 963 337588 4740488 867.0 

GUBBIO 39 471 302789 4802329 946.5 

LA CIMA 43 791 266480 4790970 1097.1 

MONTELOVESCO 53 634 290484 4798142 833.0 

NARNI SCALO 55 109 298381 4713916 907.5 

NOCERA UMBRA 56 534 320281 4776405 937.6 

PERUGIA SANTA 
GIULIANA 

62 417 287387 4775762 892.5 

PETRELLE 64 342 269830 4803553 897.7 

PONTE SANTA MARIA 73 240 256802 4753550 790.1 

PONTICELLI 74 245 252657 4757685 754.0 

RIPALVELLA 77 453 279329 4746964 879.1 

SAN BENEDETTO 
VECCHIO 

78 729 294749 4812427 831.5 

SAN BIAGIO DELLA 
VALLE 

79 257 278380 4766281 707.2 

SAN SILVESTRO  82 381 309649 4736325 897.9 

TODI 86 329 288089 4740319 852.0 

 976 
 977 

 978 

 979 

 980 

 981 

 982 

 983 

 984 
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Table 2. Values of multifractal parameters obtained from the hourly rainfall data 985 

series analyzed.  For symbols meaning see the text. 986 

 987 

STATION 𝛾1 q1 K(0) 

AZZANO 0.8029 4.875 -0.6248 

BASTARDO 0.7773 5.000 -0.6194 

BASTIA UMBRA 0.8052 3.500 -0.6298 

CASACASTALDA 0.7219 4.500 -0.5904 

CASIGLIANO 0.7905 4.000 -0.6200 

CERBARA 0.8052 3.500 -0.6342 

CITTÀ DI CASTELLO 0.7406 5.875 -0.6050 

COMPIGNANO 0.7881 4.750 -0.6579 

FORSIVO 0.8219 4.000 -0.6395 

GUBBIO 0.7973 3.750 -0.5932 

LA CIMA 0.7838 4.500 -0.5895 

MONTELOVESCO 0.7834 5.000 -0.6119 

NARNI SCALO 0.7920 4.750 -0.6098 

NOCERA UMBRA 0.7125 5.000 -0.5917 

PERUGIA SANTA 
GIULIANA 

0.7691 4.875 -0.6043 

PETRELLE 0.7311 5.250 -0.6020 

PONTE SANTA MARIA 0.8195 3.500 -0.6401 

PONTICELLI 0.7659 5.000 -0.6241 

RIPALVELLA 0.7759 4.000 -0.6036 

SAN BENEDETTO 
VECCHIO 

0.7945 4.250 -0.6091 

SAN BIAGIO DELLA 
VALLE 

0.8242 3.500 -0.6389 

SAN SILVESTRO  0.7491 3.750 -0.5986 

TODI 0.8056 3.500 -0.5899 

 988 
 989 

 990 

 991 

 992 

 993 

 994 

 995 
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Table 3. Heterogeneity results of the Regional Frequency Analysis (RFA) 996 

performed for rainfall durations of 1h, 3h, 6h, 12h and 24h at the Umbria region. 997 

H is the heterogeneity measure. 998 

 999 
RFAih Number of stations Considered stations (ID) H  

RFA1h 22 All except 64  -0.11 

RFA3h 21         All except 30 and 79  0.90 

RFA6h 23 - 1.96 

RFA12h 21 All except 55 and 78 0.54 

RFA24h 23 - 0.97 

 

RFA6hA 8 19, 27, 53, 56, 62, 74, 79, 82 -0.23 

RFA6hB 14 
10, 11, 12, 22, 28, 30, 37, 39, 43, 55, 

73, 77, 78, 86 
-0.83 

 1000 
 1001 
 1002 

 1003 

Table 4. Values of statistics ZDIST for the five probability distribution functions 1004 

tested at each homogenous region. In red color, the selected probability 1005 

distribution function according to the value of ZDIST. 1006 

 1007 
 1008 

RFAih GEN-LOG GEV GEN-NOR PT-III GEN-PAR 

RFA1h 0.87 -1.04 -1.56 -2.60 -5.45 

RFA3h 1.59 -0.25 -0.91 -2.15 -4.63 

RFA6hA 1.47  0.03 -0.11 -0.54 -3.08 

RFA6hB 2.25  0.76  0.13 -1.01 -2.87 

RFA12h 2.54  0.43 -0.02 -0.98 -4.36 

RFA24h 1.81 -0.31 -0.81 -1.84 -5.17 

GEN-LOG: generalized logistic; GEV: generalized extreme value; GEN-NOR: generalized 1009 

normal; PT-III: Pearson Type 1010 

 1011 

 1012 
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Table 5. Regional growth curves for different return periods (T) and durations 1013 

obtained for the homogeneous regions by the selected probability distribution 1014 

functions. 1015 

  T (years) 

RFAih 5 10 25 50 100 200 

RFA1h 1.23 1.46 1.79 2.07 2.40 2.79 

RFA3h 1.24 1.46 1.78 2.02 2.29 2.57 

RFA6hA 1.22 1.40 1.63 1.80 1.97 2.14 

RFA6hB 1.25 1.49 1.81 2.06 2.33 2.60 

RFA12h 1.24 1.45 1.72 1.92 2.12 2.32 

RFA24h 1.25 1.47 1.76 1.98 2.21 2.45 
 1016 

 1017 

 1018 

 1019 

 1020 

 1021 

 1022 

 1023 

 1024 

 1025 

 1026 

 1027 

 1028 

 1029 
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Table 6. In-site Regional Frequency Analysis results for all the stations at the 1030 

Umbria region. H is the heterogeneity measure, pdf refers to most suitable 1031 

probability distribution function for the region, and ZDIST is the statistics that 1032 

measures the goodness of fit.  1033 

In-site Region Considered sites H pdf ZDIST 

AZZANO All -2.08 PT-III 0.62 

BASTARDO All -1.47 GEV 0.08 

BASTIA UMBRA All -0.76 GEN-PAR -1.40 

CASACASTALDA All -1.14 GEV 0.08 

CASIGLIANO All -1.23 PT-III -0.34 

CERBARA All -1.79 GEN-NOR -0.29 

CITTÀ DI CASTELLO All -1.87 PT-III -0.26 

COMPIGNANO All -2.59 GEN-NOR 0.16 

FORSIVO All except 5’, 24h -1.04 GEN LOG 0.23 

GUBBIO All except 24 h 0.99 GEN-NOR 0.19 

LA CIMA 
All except 5’, 10’, 15’, 

20’ 
-0.93 GEN-NOR -0.02 

MONTELOVESCO 
1 5’, 10’, 15’, 20’, 30’, 40’ -0.33 GEN-PAR -1.17 

2 1, 3, 6, 12, 24 h 0.00 PT-III 0.99 

NARNI SCALO 30’, 1, 3, 6, 12, 24 h  0.85 PT-III 0.85 

NOCERA UMBRA All -1.52 PT-III 0.01 

PERUGIA SANTA GIULIANA All -1.94 GEN-LOG 0.19 

PETRELLE 
1 5’, 10’, 15’, 20’, 12h 0.88 PT-III 1.45 

2 30’, 40’, 1, 3, 24 h -0.38 GEN-PAR 1.17 

PONTE SANTA MARIA All -0.43 GEN-NOR -0.05 

PONTICELLI All 0.23 PT-III 0.07 

RIPALVELLA All -1.29 GEN-NOR 0.17 

SAN BENEDETTO VECCHIO 30’, 1, 3, 6, 12, 24 h 0.99 PT-III -0.17 

SAN BIAGIO DELLA VALLE 
30’, 40’, 1, 3, 6, 12, 24 

h 
-1.89 GEN-LOG -1.21 

SAN SILVESTRO  All -1.77 GEN-LOG -0.11 

TODI All 0.88 GEV -0.42 

 1034 
 1035 
 1036 

 1037 

 1038 

 1039 
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Table 7. In-site Regional Frequency Analysis growth curves for all the sites at 1040 

the Umbria region and for different return periods (T), obtained from the 1041 

selected probability distribution functions (details in table 6). 1042 

 1043 
 T (years) 

In Site Region 5 10 25 50 100 200 

AZZANO 1.250 1.447 1.584 1.854 2.018 2.177 

BASTARDO 1.227 1.475 1.836 2.142 2.482 2.862 

BASTIA UMBRA 1.283 1.465 1.635 1.725 1.791 1.840 

CASACASTALDA 1.196 1.385 1.644 1.852 2.072 2.306 

CASIGLIANO 1.246 1.465 1.739 1.938 2.134 2.325 

CERBARA 1.259 1.441 1.658 1.813 1.962 2.107 

CITTÀ DI CASTELLO 1.222 1.396 1.607 1.757 1.903 2.044 

COMPIGNANO 1.265 1.479 1.747 1.946 2.144 2.344 

FORSIVO 1.264 1.498 1.830 2.112 2.427 2.782 

GUBBIO 1.246 1.480 1.792 2.036 2.288 2.551 

LA CIMA 1.253 1.413 1.596 1.722 1.840 1.953 

MONTELOVESCO1 1.316 1.449 1.543 1.580 1.601 1.613 

MONTELOVESCO2 1.245 1.425 1.639 1.790 1.934 2.074 

NARNI SCALO 1.305 1.613 1.993 2.262 2.515 2.753 

NOCERA UMBRA 1.225 1.383 1.568 1.697 1.820 1.937 

PERUGIA SANTA 

GIULIANA 

1.213 1.383 1.617 1.807 2.014 2.240 

PETRELLE1 1.203 1.345 1.512 1.629 1.740 1.846 

PETRELLE2 1.302 1.480 1.638 1.717 1.772 1.811 

PONTE SANTA MARIA 1.291 1.542 1.865 2.109 2.357 2.609 

PONTICELLI 1.276 1.482 1.729 1.904 2.072 2.234 

RIPALVELLA 1.303 1.596 1.988 2.295 2.614 2.947 

SAN BENEDETTO 

VECCHIO 

1.232 1.441 1.703 1.894 2.081 2.266 

SAN BIAGIO DELLA 

VALLE 

1.213 1.417 1.715 1.974 2.271 2.614 

SAN SILVESTRO 1.195 1.408 1.733 2.030 2.382 2.802 

TODI 1.234 1.499 1.890 2.228 2.608 3.039 

 1044 
 1045 
 1046 
 1047 
 1048 
 1049 
 1050 
 1051 
 1052 
 1053 
 1054 
 1055 
 1056 
 1057 



 50 

Table 8. Values of the IDF parameters, a and b, obtained by fitting the quantiles 1058 

derived from Local, Regional and In-site Regional Frequency Analyses, for the 1059 

stations of Casacastalda, San Benedetto Vecchio and San Silvestro.  1060 

 1061 
 1062 
 1063 

 1064 
 1065 

 1066 

 1067 

 1068 

 1069 

 1070 

 1071 

 1072 

STATION T (years) 
IDF-LOCAL IDF-RFA IDF-IRFA 

a b a b a b 

CASACASTALDA 

5 35.54 

0.2992 

36.55 

0.2760 

35.53 

0.2938 

10 41.19 43.06 41.14 

25 48.95 52.37 48.83 

50 55.20 60.25 54.99 

100 61.84 69.05    61.54 

200 68.93 78.95 68.50 

SAN 
BENEDETTO 

VECCHIO  

5 33.40 

0.1734 

34.05 

0.2409 

33.96 

0.2414 

10 40.52 40.37 39.72 

25 51.33 49.48 46.94 

50 60.88 57.23 52.21 

100 71.89 65.92 57.37 

200 84.61 75.75 62.46 

SAN SILVESTRO 

5 43.34 

0.1759 

43.50 

0.1898 

42.25 

0.2076 

10 51.22 51.24 49.75 

25 62.12 62.32 61.27 

50 70.93 71.70 71.74 

100 80.36 82.18 84.18 

200 90.47 93.94 99.06 
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Table 9. Absolute values of slopes of IDF curves slope, SlopeIDF, slopes and 1073 

slope of average rainfall intensity fit versus return periods, SlopeARI, at each 1074 

station obtained with the three adopted approaches (Local, Regional and In-site 1075 

Regional Frequency Analyses).  1076 

 1077 

STATION 
SlopeIDF SlopeARI 

LFA RFA IRFA LFA RFA IRFA 

AZZANO 0.7492 0.7892 0.7730 0.1543 0.2243 0.1489 

BASTARDO 0.7999 0.7673 0.7510 0.2563 0.2161 0.2288 

BASTIA UMBRA 0.7276 0.7463 0.7300 0.1829 0.2161 0.0952 

CASACASTALDA 0.7007 0.7240 0.7062 0.1789 0.2078 0.1773 

CASIGLIANO 0.7046 0.7623 0.7460 0.1795 0.2161 0.1677 

CERBARA 0.7363 0.7563 0.7385 0.1819 0.2078 0.1383 

CITTÀ DI CASTELLO 0.7095 0.6913 0.7045 0.1590 0.2161 0.1384 

COMPIGNANO 0.7272 0.7620 0.7414 0.1336 0.2186 0.1657 

FORSIVO 0.8646 0.8373 0.8156 0.2257 0.2200 0.2126 

GUBBIO 0.7418 0.7264 0.7030 0.0434 0.2161 0.1932 

LA CIMA 0.8111 0.7713 0.8233 0.1398 0.2268 0.1190 

MONTELOVESCO 0.7205 0.7697 0.7501 0.1091 0.2077 0.1453 

NARNI SCALO 0.6920 0.7556 0.7248 0.2213 0.2158 0.1999 

NOCERA UMBRA 0.7265 0.7175 0.6997 0.1320 0.2078 0.1231 

PERUGIA SANTA 
GIULIANA 

0.7156 0.7466 0.7288 0.1497 0.2077 0.1655 

PETRELLE 0.8239 0.7262 0.7276 0.1534 0.2026 0.0860 

PONTE SANTA MARIA 0.7215 0.7469 0.7306 0.2041 0.2161 0.1712 

PONTICELLI 0.6425 0.7431 0.7252 0.1280 0.2078 0.1502 

RIPALVELLA 0.7395 0.6879 0.6716 0.2498 0.2161 0.2196 

SAN BENEDETTO 
VECCHIO 

0.8263 0.7591 0.7586 0.2259 0.2158 0.1639 

SAN BIAGIO DELLA 
VALLE 

0.7638 0.7461 0.7139 0.1820 0.2057 0.2072 

SAN SILVESTRO  0.8241 0.8102 0.7924 0.1802 0.2078 0.2301 

TODI 0.7444 0.7662 0.7499 0.2517 0.2161 0.2434 

AZZANO 0.7492 0.7892 0.7730 0.1543 0.2243 0.1489 

BASTARDO 0.7999 0.7673 0.7510 0.2563 0.2161 0.2288 

 1078 

 1079 

 1080 

 1081 

 1082 
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Table 10. Comparison between the multifractal results and the IDF properties 1083 

for the selection of the proper frequency analysis at each site. Coloured bold 1084 

values select the best approach, being bold green for Local, bold red for 1085 

Regional, and bold blue for In-site Regional Analysis.  1086 

 1087 
STATION (𝛾1 − 𝑆𝑙𝑜𝑝𝑒𝐼𝐷𝐹)2 |𝑆𝑙𝑜𝑝𝑒𝐴𝑅𝐼 − (1/𝑞1)| 

LFA RFA IRFA LFA RFA IRFA 

AZZANO 0.00288 0.00019 0.00089 0.0508 0.0192 0.0562 

BASTARDO 0.00051 0.00010 0.00069 0.0563 0.0161 0.0288 

BASTIA UMBRA 0.00602 0.00347 0.00566 0.1028 0.0696 0.1905 

CASACASTALDA 0.00045 0.00000 0.00025 0.0433 0.0144 0.0449 

CASIGLIANO 0.00738 0.00080 0.00198 0.0705 0.0339 0.0823 

CERBARA 0.00475 0.00239 0.00445 0.1038 0.0779 0.1474 

CITTÀ DI CASTELLO 0.00097 0.00243 0.00130 0.0112 0.0459 0.0318 

COMPIGNANO 0.00371 0.00068 0.00218 0.0769 0.0081 0.0448 

FORSIVO 0.00182 0.00024 0.00004 0.0243 0.0300 0.0374 

GUBBIO 0.00308 0.00503 0.00889 0.2233 0.0506 0.0735 

LA CIMA 0.00075 0.00016 0.00156 0.0824 0.0046 0.1032 

MONTELOVESCO 0.00396 0.00019 0.00111 0.0909 0.0077 0.0547 

NARNI SCALO 0.01000 0.00132 0.00452 0.0108 0.0053 0.0106 

NOCERA UMBRA 0.00020 0.00003 0.00016 0.0680 0.0078 0.0769 

PERUGIA SANTA GIULIANA 0.00286 0.00051 0.00162 0.0554 0.0026 0.0396 

PETRELLE 0.00861 0.00002 0.00001 0.0371 0.0121 0.1045 

PONTE SANTA MARIA 0.00960 0.00527 0.00790 0.0816 0.0696 0.1145 

PONTICELLI 0.01523 0.00052 0.00166 0.0720 0.0078 0.0498 

RIPALVELLA 0.00132 0.00774 0.01088 0.0002 0.0339 0.0304 

SAN BENEDETTO 
VECCHIO 0.00101 0.00125 0.00129 0.0094 0.0195 0.0714 

SAN BIAGIO DELLA VALLE 0.00365 0.00610 0.01217 0.1037 0.0800 0.0785 

SAN SILVESTRO  0.00563 0.00373 0.00187 0.0865 0.0589 0.0366 

TODI 0.00375 0.00155 0.00310 0.0340 0.0696 0.0423 

 1088 
 1089 
 1090 


