1	Evaluating the geogenic CO ₂ flux from geothermal areas by analysing Quaternary travertine
2	masses. New data from western Central Italy and review of previous CO ₂ flux data.
3	
4	
5	A. Mancini ¹⁻⁴ *, F. Frondini ¹ , E. Capezzuoli ² , E. Galvez Mejia ¹ , G. Lezzi ¹ , D. Matarazzi ¹ , A. Brogi ³ ,
6	R. Swennen ⁴ .
7	
8	alessandro.mancini@kuleuven.be
9	francesco.frondini@unipg.it
10	enrico.capezzuoli@unifi.it
11	edugame_10@hotmail.com
12	gabriele.lezi@libero.it
13	david.matarazzi@libero.it
14	andrea.brogi@uniba.it
15	rudy.swennen@kuleuven.be
16	
17	¹ Department of Physics and Geology, University of Perugia, Via Pascoli snc, Perugia, 06123, Italy.
18	² Department of Earth Sciences, University of Florence, Via la Pira 4, 50121, Firenze, Italy
19	³ Department of Earth and Geoenvironmental Sciences, University of Bari "Aldo Moro", Via
20	Orabona, 4, 70125 Bari, Italy
21	⁴ Department of Geology, Earth and Environmental Sciences, KU Leuven, Celestijnenlaan 200E,
22	3001 Heverlee, Belgium.
23	
24	*corresponding author
25	Alessandro Mancini: alessandro.mancini@kuleuven.be
26	
_~	
27	Declarations of interest: none

28 Abstract

29

Quantification of carbon fluxes between solid Earth and its atmosphere is necessary to understand 30 the global geological carbon cycle. Some of the main CO₂ contributors are metamorphism and 31 magmatic-mantle degassing. CO₂ is discharged from active and quiescent volcanoes, fault zones, 32 geothermal systems and CO₂ rich groundwater. Here a new method for the estimation of the 33 geogenic flux of CO₂ from tectonically active regions, based on the volume, composition and age of 34 travertine deposits, is proposed. The method is applied to the travertine deposits of western Central 35 Italy where travertine deposition is driven by degassing of CO₂ charged groundwater. 36 Results show that the study areas are characterized, since Middle Pleistocene, by diffuse CO₂ 37 degassing processes with time averaged CO₂ fluxes ranging between $1.24 \pm 0.12 \ 10^6 \ mol \ y^{-1} \ km^{-2}$ 38 and $1.38 \pm 0.42 \ 10^6 \text{ mol y}^{-1} \text{ km}^{-2}$. These values are of the same order of magnitude of carbon 39 dioxide fluxes measured by different methods in western central Italy and are higher than the global 40 baseline CO₂ flux from high heat flow regions. 41 The review of the available ²³⁴U/²³⁰Th and ¹⁴C data shows that the CO₂ degassing processes that 42 affects western Central Italy nowadays were already active at least 350 Ka ago, proving that this 43 region is a globally relevant case for the study of Earth degassing. 44 Considering the widespread occurrence of travertine deposits in tectonically active areas worldwide, 45 the proposed approach can be used as a reliable tool to estimate the CO₂ flux in different 46 geodynamic settings within system Earth. 47 48 Key words: Travertines; Quaternary; Carbon Dioxide degassing; western Central Italy. 49 50 51 1. Introduction 52

A better quantification of the carbon fluxes between solid Earth and Earth's atmosphere is 54 necessary for modelling the carbon cycle over geological times and its future evolution. It also 55 allows to study the connections between atmospheric CO₂ and climate (Kump et al., 2000; 56 Kurschner, 2001). Even if the geologic component of the carbon cycle - 300 Mt/y CO₂ according to 57 Mörner and Etiope (2002); >600 Mt/y CO₂ according to Burton et al. (2013) - operates slowly in 58 comparison to the other parts of the global carbon cycle, such as the anthropogenic component that 59 is currently characterised by a CO₂ flux 50-100 times higher (Gerlach, 2011; IPCC, 2013; Regnier 60 et al., 2013; Le Quéré et al., 2015), in the long term the carbon budget of Earth's atmosphere is 61 largely controlled by the relative fluxes of CO₂ consumed by chemical weathering of silicates vs 62 CO₂ degassed by metamorphism and magmatism (Berner et al., 1983; Berner, 1993, 2004; Kerrick 63 and Caldeira, 1993, 1998). Most of the models of geologic carbon cycle derive the CO₂ degassing 64 rate assuming that the present-day degassing flux is equal to the flux of CO₂ consumed by chemical 65 weathering of silicates (Berner et al., 1983; Lasaga et al., 1985; Berner, 2006). However, this steady 66 state assumption could be inadequate since there are still major uncertainties on the net direction 67 and magnitude of tectonic carbon fluxes from mantle and crust to the atmosphere: therefore, the 68 degassing flux and the CO₂ consumption by weathering should be estimated independently. 69

Despite the fact that in recent years some authors computed various global estimations of the carbon dioxide degassing rates from igneous and metamorphic activity (Mörner and Etiope, 2002; Burton et al., 2013), the total subaerial lithospheric CO_2 flux is still far from being quantified. Except for the areas of active volcanism, only a few data on diffuse CO_2 degassing from tectonically active areas are available (e.g. Chiodini et al., 2000; Crossey et al., 2009).

The amount of CO_2 released to the atmosphere from active faults, hydrothermal systems, mantle degassing and/or degassing from non-erupting magmas, is potentially of the same order of magnitude, or greater, than the amount directly measured from active volcanoes (Mörner and Etiope, 2002; Burton et al., 2013; Scott and Lindsey, 2016; Frondini et al., 2019), but at present it is not considered by IPCC estimates (IPCC, 2013), because present day estimations of regional CO_2 80 fluxes in tectonically active areas are very scarce and regionally widely scattered.

A notable exception is Central-southern Italy, which is one of the few regions of the world where 81 detailed mapping and quantification of the CO₂ fluxes have been performed in the last two decades 82 (Chiodini et al., 1999, 2000, 2004; Minissale, 2004). In particular, Chiodini et al. (2000) showed 83 that a large portion of the inorganic carbon dissolved in groundwater circulating in the central 84 Apennines is derived from a deep, mantle-related source. In addition, Chiodini et al. (2004), based 85 on the carbon balance of regional aquifers, produced the first regional map of CO₂ degassing in 86 central and southern Italy, showing that a globally significant amount of deeply derived CO₂ (2.1 \times 87 10¹¹ mol/y) is released by two large areas in western Italy, called by the authors Tuscan Roman 88 Degassing Structure (TRDS) and Campanian Degassing Structure (CDS); the amount of 89 90 endogenous CO₂ released to the atmosphere through diffuse regional degassing is the main component of the geological CO₂ budget in Italy (Frondini et al., 2018) and is higher than the 91 amount of CO₂ discharged by active volcanoes, as reported by Burton et al. (2013) for the Etna, 92 Stromboli and Vulcano volcanic complex, and volcanoes with hydrothermal activity (Campi Flegrei 93 and Vesuvio; Frondini et al. 2004; Cardellini et al. 2017). 94

- In western Italy, the areas of diffuse degassing are also characterised by focused gas emissions,
 anomalous heat flux, thermal and mineral springs and active travertine deposition (Chiodini et al.,
 1999, 2000, 2013; Minissale et al., 2002; Minissale, 2004).
- In this region, deposition of travertine (Capezzuoli et al., 2014) is generally driven by degassing of CO₂ charged groundwater circulating in deep carbonate-evaporitic reservoirs (Frondini, 2008; Frondini et al., 2012; Brogi et al., 2016). When high pCO₂ groundwater emerges at springs, it rapidly degases CO₂, due to the lower atmospheric pCO₂, leading to oversaturation with respect to calcite that precipitates according to the following overall reaction:
- 103

104
$$2HCO_3^- + Ca^{++} = CaCO_3 + CO_2 + H_2O$$
 (1).

The reaction stoichiometry shows that for each mole of calcite precipitated by groundwater, one 106 mole of CO_2 is degassed to the atmosphere. This simple observation suggests that the estimation of 107 the volume of travertine deposits can be used as an indirect measure of the amount of CO₂ degassed 108 during travertine deposition. For example, D'Alessandro et al. (2007), based on the estimated 109 volume of travertines of the S-W flanks of Mt. Etna (Italy), showed that between 10 and 20 Gg/y 110 $(2.2-4.5 \times 10^9 \text{ mol/y})$ of CO₂ were involved in travertine deposition for a time span of about 20 Ka. 111 If the age of the travertine is also known together with the surface area of the hydrogeological basin 112 feeding the travertine-depositing springs, it is possible to compute both the cumulative amount of 113 CO₂ degassed during travertine deposition and the time averaged flux of carbon dioxide per unit 114 115 area. The latter parameter could be very useful both to compare the CO₂ fluxes from different regions and to compare past and present-day carbon dioxide fluxes within the same region. 116

In this work, we analyze three of the most notable travertine outcrops, deposited in a similar time range (Pleistocene-Holocene), in western central Italy: i.e. Rapolano Terme, Canino and Tivoli (Fig. 1).

The objectives of the study are: (i) to quantify the travertine volume within each area, (ii) to compute the amount of CO_2 degassed related to travertine deposition and (iii) to compare the paleo CO_2 fluxes to the present-day CO_2 flux of the regions. All the considered travertine deposits are related to large thermal spring systems where travertine deposition is still active or was recently active and for all the systems the ages of the travertine deposits are known. Given these characteristics and considering their large extent and thickness, these travertine deposits can act as examples of some of the largest travertine occurrences in the world.

127

128

129 **2. Overall geological setting**

The travertine masses are located in the western side of the Northern Apennines (Fig. 1), a 131 collisional belt derived from the progressive convergence and collision of the European continental 132 margin (Corsica-Sardinia block) and the Adriatic promontory (Adria) being part of the African plate 133 (Patacca et al., 1992; Carmignani et al., 1994; Molli, 2008; Carminati and Doglioni, 2012; Rossetti 134 et al., 2015). The inner zone of the orogen (i.e. the hinterland) developed through several tectonic 135 phases, mostly during the Cretaceous-Early Miocene, which gave rise to a tectonic pile formed by 136 units belonging to different paleo-geographic domains (Carmignani et al., 1994). The orogenic 137 wedge comprises tectonic units deriving both from oceanic and continental domains of the African 138 paleomargin (Bianco et al., 2015 with references therein). In more detail, the stacked tectonic units 139 140 are: (a) the Ligurian Units, consisting of several slices made by fragments of Jurassic oceanic crust 141 overlain by the Cretaceous-Palaeocene sedimentary cover (Decandia and Elter, 1969; Marroni et al., 2001; Pandeli et al., 2005); (b) the Subligurian (Eocene-Oligocene) and Tuscan Units, made of 142 evaporite, carbonate and terrigenous, non-metamorphic to very low-grade metamorphic successions 143 (Kalin et al., 1979), and metamorphic units (blueschist and greenschist facies - Jolivet et al., 1998; 144 Rossetti et al., 1999, 2002; Brogi and Giorgetti, 2012; Bianco et al., 2015) ranging from Palaeozoic 145 to Early Miocene; (c) the Umbria-Marche and Sabina Units, principally consisting of an evaporite 146 succession overlain by platform and pelagic carbonates deposited on the thinning and subsiding 147 148 Adria continental crust formed from the Triassic to the early Tertiary (Barchi et al., 2010; Cosentino et al., 2010). 149

The Neogene-Quaternary tectonic evolution of the inner Northern Apennines was characterized by the development of simultaneous, co-axial, and eastward migrating compression (in the outer zone) and extension (in the inner zone) (Elter et al., 1975; Ricci Lucchi, 1986; Ori et al., 1986; Boccaletti et al., 1990; Patacca et al., 1992; Barchi, 2010), with a maximum extension oriented almost parallel to the direction of maximum shortening.

Extension and crustal thinning began in the western side of the Northern Apennines (northern Tyrrhenian sea) since Early-Middle Miocene (Bartole, 1995; Carmignani et al., 1995; Brogi and

Liotta, 2008; Barchi, 2010; Brogi, 2011), while, toward the East, accretion was still active at the 157 front of the orogenic wedge (Malinverno and Rvan 1986; Doglioni, 1991; Gueguen et al., 1997). 158 Today, the accretion of the Apennine orogen is still active in the outer zone of the belt, while in the 159 western sector the compressive structures are partly disrupted by extensional tectonics (Lavecchia, 160 1988; Barchi, 2010). These extensional processes, characterized by a system of NW-striking 161 normal faults and NE-striking transfer faults, produced numerous Neogene-Ouaternary basins filled 162 by marine to continental sediments (Martini and Sagri, 1993; Bartole, 1995; Liotta et al., 1998; 163 Brogi and Liotta, 2008; Mancini et al., 2014; Milli et al., 2017). 164

Such a Neogene-Quaternary tectonic evolution was accompanied by widespread magmatism in the 165 166 inner Northern Apennines (Serri et al., 1993; Peccerillo, 2003, 2005; Dini et al., 2005; Acocella and Funiciello, 2006). At present the area is characterized by (i) thinned lithosphere (Calcagnile and 167 Panza, 1981; Locardi and Nicolich, 2005), (ii) a positive regional Bouguer anomaly (Giese et al., 168 169 1981), (iii) high heat flow (Della Vedova et al., 2001; Chiodini et al., 2013), (iv) localised and regional uplift (Dallmeyer and Liotta, 1998) and geothermal fluids circulation, in the past (Liotta et 170 al., 2010; Zucchi et al., 2017) and today (Barbier, 2002; Batini et al., 2003; Bellani et al., 2004; 171 Chiodini et al., 2007). 172

Furthermore, the area is characterized by widespread travertine deposits (Capezzuoli et al., 2009) that have long been considered as powerful tools for investigating neotectonics and reconstructing palaeoseismic events (Brogi et al., 2017; 2018).

The recent travertine deposits are clear indicators of active tectonics (Brogi and Capezzuoli, 2009; Brogi et al., 2012) and are generally associated to hydrothermal activity and deep carbon dioxide degassing (Barnes et al., 1978; Chiodini et al., 2000), resulting at the surface in numerous tectonically controlled thermal springs (Brogi and Capezzuoli, 2009; Brogi et al., 2012) and CO₂ degassing areas (Chiodini et al., 2004; Minissale, 2004, Frondini et al., 2008). Hydrothermal circulation is favoured by the damaging fluid-flow enhancement related to the fault-fault intersection, well documented for the Tyrrhenian margin of the Central Apennines until the latest
Quaternary (Brogi et al., 2010 and references therein).

184

185

186 **3. Study areas**

187

The travertine deposits considered in this work (Rapolano Terme, Canino and Tivoli) are key 188 examples of Quaternary travertine bodies for this area. They are strictly related to tectonic activity, 189 circulation of CO₂ enriched hydrothermal fluids and are characterized by different lithofacies. 190 According to Capezzuoli et al. (2014), travertine is a continental calcium carbonate deposit related 191 to the circulation of non-marine hydrothermal waters. The different lithofacies typically make up 192 travertines (Pentecost, 2005), can be divided in (i) abiotically, related to physical and chemical 193 processes controlled by high temperature, turbulence and water composition, and (ii) biotically, 194 instead related to biological processes as well as to CO₂-degassing and water cooling creating more 195 favourable life conditions (Pentecost, 1990; Jones and Renaut, 1995; Guo and Riding, 1994; Rainey 196 and Jones, 2009; Fouke, 2011; Gandin & Capezzuoli 2014; Della Porta, 2015). The Rapolano 197 Terme travertines mainly formed in a slope environment where crystalline facies (related to abiotic 198 processes) are dominant and porosity is consequently low-medium. On the contrary, Canino and 199 Tivoli travertine systems are dominantly characterized by biotically-related (microbial) lithofacies 200 typical of distal environments and generally characterized by medium-high porosity. 201

202

3.1 Rapolano Terme travertines

204

Rapolano Terme (Fig. 2a) is located in the eastern side of the Siena-Radicofani Basin (Bossio et al.,
1993; Brogi, 2011), a 90 Km long, NNW-SSE structural depression developed during Neogene
extension and filled by Early-Middle Pliocene marine and Quaternary continental deposits made of

gravel, sand, clay and travertine deposits (Bertini et al., 1991; Carmignani et al., 1994; Liotta et al., 208 1998; Costantini et al., 2009). The Pleistocene-Holocene travertine deposits cover an area of about 209 14 km² with an average thickness of 50 m, and deposited by hydrothermal fluids discharged by 210 thermal springs (Brogi and Capezzuoli, 2009). Depositional environment results mainly formed by 211 several, coalescent slope systems (Brogi et al., 2010) laterally passing to palustrine and fluvio-212 lacustrine ones (Cipriani et al., 1972; Guo and Riding 1992, 1994, 1998, 1999; Guo et al. 1996; 213 214 Brogi and Capezzuoli 2009). Presently, the travertine deposits are intensely quarried for ornamental 215 stone.

Both the travertine and the active thermal springs are aligned along the Rapolano fault (Carrara et al., 1998; Minissale et al., 2002), a regional normal fault, NNW-SSE striking (Costantini et al., 2009), which bounds the eastern margin of the Siena-Radicofani Basin and separates the Neogene sediments from the pre-Neogene units exposed in the Rapolano-Trequanda Ridge (pre-Neogene marine carbonate and turbidite succession of the non-metamorphic Tuscan Succession – Losacco, 1952; Bernoulli et al., 1979; Kalin et al., 1979; Decandia et al., 1993; Lazzarotto et al., 2003).

Today the thermal springs are characterised by temperatures up to 38° C, high salinity, Ca-SO₄ composition and a total discharge rate of about 40 l/s (Celati et al., 1990; Frondini 2008; Frondini et al., 2008). The recharge zone of the thermal aquifer roughly coincides with the Mesozoic carbonate rocks exposed in the Rapolano-Trequanda Ridge (Brogi et al., 2007), even if its area is not well defined. The recharge area of the geothermal system can be estimated in 5.7±2.5 km²; the average flow rate per unit area of similar spring systems is considered to be 7±3 l/km² (Celati et al., 1990).

228

3.2 Canino travertines

230

Canino area (Fig. 2b) is located 80 km north-west of Rome and is characterized by a broad plain, of
 about 80 km², mostly covered by travertine (about 70 km²) whit a thickness ranging from a few to
 more than 100 m (Carrara, 1994). Travertines overlie the Miocene-Pliocene sediments and the

Quaternary pyroclastics and lava flows, this latter related to the alkali potassic volcanism of the Vulsini Mts (Peccerillo, 2005). The plain is limited, (i) to the west by the Fiora River and by the Romani Mts ridge, where crop out the phyllite and quartzites of the Palaeozoic and Triassic metamorphic basement (Dessau et al., 1972), and (ii) to the north-east by the structure of Canino Mt. composed by non-metamorphic Mesozoic carbonates and terrigenous successions of the Tuscan Units (Cocozza, 1963).

The deposition of travertines, started in Middle Pleistocene and is still active, is connected to an 240 intense hydrothermal activity (Carrara, 1994) and figured out by several thermal springs 241 discharging Ca-SO₄ and Na-Cl waters (up to 200 l/s; Chiodini et al., 1991) with high salinity, high 242 pCO_2 and temperatures up to 50°C. The resulting depositional system is mainly composed by 243 depressional environments (Guo and Riding, 1998) representing the extensive, distal portion of the 244 eastern-located thermal springs. The shallower aquifer is almost completely hosted within the 245 travertine deposit and is partly recharged by the carbonate units exposed in the Canino Mt. The 246 aquifer release CO₂ to the atmosphere when groundwater is discharged at the surface from springs. 247 Here, a large part of the discharged groundwater is drained by small streams where water rapidly 248 degasses and total carbon and carbonic acid contents decrease of about one order of magnitude in 249 the first hundred meters: as a consequence, the waters become strongly oversaturated with respect 250 251 to calcite and precipitate travertine (Chiodini et al., 1999).

252

3.3 Tivoli travertines

254

The Acque Albule Basin (Faccenna et al., 2008; Fig. 2c) is located west of Tivoli village (Latium, Central Italy), about 30 Km east of Rome. The basin is confined by the Neogene Appenine fold and thrust belt to the north and to the east (i.e. Cornicolani-Lucretili and Tiburtini Mts.), by the Pleistocene quiescent volcano complex of Colli Albani to the south (Karner et al., 2001) and to the west by the Tiber valley, formed during the Pliocene-Quaternary period (De Filippis et al., 2013)

260	and related with the Tyrrhenian extensional domain. According to De Filippis et al. (2013), the
261	Acque Albule Basin could be considered as a pull-apart basin: faults, mostly NW-striking and
262	extensional (Alfonsi et al., 1991), was accompanied by transverse or oblique (N-NE-striking) strike-
263	slip faults, acting as accommodation structures between the different extensional sectors. The basin
264	is worldwide famous for the Lapis Tiburtinus (stone of Tivoli) travertine deposits, used to create
265	many monuments by the early Roman architects. The Lapis Tiburtinus travertine, covering an area
266	of more than 20 Km ² , is overlaying the local Plio-Pleistocene alluvial, lacustrine, and epivolcanic
267	deposits, and the Meso-Cenozoic marine carbonate succession (La Vigna et al., 2013). Travertine
268	deposition developed mostly in an over logged, flat environment (Erthal et al., 2017) occurring after
269	or concurrently with the last volcanic phase activity of the Region, during the Late Pleistocene
270	(Faccenna et al., 2008). The Lapis Tiburtinus reaches a maximum thickness of 90 m along a N-S
271	line crossing the Acque Albule Basin, with an average thickness of 60 m. The local thermal (23-24 $^{\circ}$
272	C; La Vigna et al., 2013), Ca-SO ₄ rich waters, are enriched by large quantity of CO ₂ derived mainly
273	by the decarbonation of Meso-Cenozoic limestones and mantle degassing (Chiodini et al., 2001;
274	Minissale et al., 2002), with recharge area to the north, northeast and east of the basin (Lucretili-
275	Tiburtini and Cornicolani Mts.; La Vigna et al., 2013; Carucci et al., 2012). The most important
276	hydrothermal springs, characterised by T ~23 °C, pH 6.0-6.2 and associated CO ₂ , and H ₂ S
277	emissions (Pentecost and Tortora 1989; Minissale et al., 2002; Minissale, 2004; Carucci et al.,
278	2012; La Vigna et al., 2013; Di Salvo et al., 2013) are located in the central part of the plain (Regina
279	Lake; ~1850 l/s and Colonnelle Lake; ~250 l/s; La Vigna et al., 2013). The total natural discharge
280	of the system is about 4000 l/s corresponding to a recharge area of about 220 Km ² (Boni et al.,
281	1986; Chiodini et al., 2000).

- **4. Methods**

286	For the estimation of the CO_2 flux released to the atmosphere during travertine deposition it is
287	necessary to know the age of the travertines, their volume and their average CaCO ₃ content.
288	The absolute ages and the periods of travertine formation are quite well known for the three study
289	areas (Taddeucci and Voltaggio, 1987; Carrara, 1994; Minissale et al., 2002; Minissale, 2004). The
290	volumes of the travertine deposits have been estimated using a 3D geological model, developed for
291	each study area, based on available data refined by some new field observations.
292	Finally, for evaluating the average CaCO ₃ content, 86 travertine samples have been collected and
293	analyzed (29 at Rapolano; 34 at Canino; 23 at Tivoli).
294	
295	4.1 Age of the travertine deposits
296	
297	For the ages of the three travertine deposits, which all developed during the Pleistocene, we refer to
298	the values obtained by uranium-series disequilibrium datings reported in literature:
299	- at Rapolano travertine deposition started at 157 ± 15 Ka in the southern part of the deposit
300	(Brogi et al., 2010) and is still active today in its northern part (Guo and Riding, 1992, 1994,
301	1998, 1999);
302	- at Canino the lowermost part of the succession was dated by Radtke et al. (1976) at 300 Ka
303	and by Carrara et al. (1994) at more than 350 Ka. No travertines with ages between 300 Ka
304	and 237 Ka are present and most deposits are younger than 200 Ka (Taddeucci and
305	Voltaggio, 1987; Carrara et al., 1994). The base of the succession, excluding the oldest
306	travertine that are almost completely eroded, is dated between 237 and 181 Ka (209 ± 28 Ka
307	on average - Carrara et al., 1994);
308	- the beginning of travertine deposition in the Acque Albule Basin (Tivoli) started at 115 ± 8
309	Ka and, according to Faccenna et al. (2008), continued till 28 ± 16 Ka, covering an interval
310	of deposition of 87 ± 24 Ka. At present deposition occurs only in some very minor seeps
311	forming very limited amounts of travertine, At present deposition occurs only in some very

minor seeps forming very limited amounts of travertine, even if degassing is still active in a
large part of the Tivoli area.

314

4.2 Estimation of the travertine deposits volumes

316

Digital Elevation Models (DEM) have been computed for each study area, using elevation data 317 from aerial photos, topographic maps and new GPS data collected during field work. Areas of 318 travertine outcrops were delineated (Fig. 2) based on the available geological maps (Chiodini et al., 319 1991; Faccenna et al., 2008; Brogi and Capezzuoli, 2009). Finally, new detailed field observations 320 (supplementary material 1), integrated with the available stratigraphic data (Chiodini et al., 1991; 321 Carrara, 1994; Faccenna et al., 2008; Brogi and Capezzuoli, 2009) allowed to reconstruct the 322 thicknesses of travertine successions and to interpolate isopach lines for each deposit (Fig. 3). The 323 324 shape of the deposits and their volumes were estimated intersecting the DEM surfaces with surfaces representing the base of the travertines (Fig. 3). 325

326

4.3 Determination of the carbonate content and porosity of the travertine samples

328

In order to determine CaCO₃ content and porosity of the travertines, a portion of each sample has been dried and weighted with a high precision balance (precision 0.001 g) and its bulk volume has been determined by water displacement after coating the rock surface with paraffin. Then its bulk density has been computed from the weight/volume ratio and the sample porosity has been inferred from

334

335
$$p = 1 - (\rho_b / \rho_p)$$
 (2)

where ρ_b is the bulk density and ρ_p is the particle density (assumed to be 2.7 g cm⁻³, being the 337 density of calcite). 338 For the determination of the CaCO₃ fraction a known amount (some grams) of each sample has 339 been dissolved in a 5M HCl solution. Each solution has been filtered with a cellulose acetate 0.45 340 um membrane filters and the insoluble residue has been dried and weighted. The carbonate fraction 341 of each travertine sample has been computed from: 342 343 $f CaCO_3 = (W_i - W_r)/W_i$ 344 (3) 345 where W_i is the initial weight and W_r the weight of the insoluble fraction. 346 347 4.4 Determination of the CO₂ flux associated to travertine deposition 348 349 The total moles of CaCO₃ of each travertine deposit have been computed from 350 351 moles $CaCO_3 = (V \times \rho_b \times f CaCO_3)/M$ (4)352 353 where V is the volume of the deposit, ρ_b is the average bulk density of the travertine, $f CaCO_3$ is the 354 fraction of $CaCO_3$ in the travertine and M is the molar mass of $CaCO_3$. According to equation (1), 355 356 the moles of CaCO₃ correspond to the cumulative amount of CO₂ degassed during travertine deposition. 357 Finally, the CO₂ discharge rate (F-CO₂) has been computed dividing the moles of CaCO₃ by the 358 359 duration of the travertine formation and the average CO₂ flux (f-CO₂) has been computed dividing F-CO₂ by the area of the hydrological basin feeding the travertine-depositing CO₂-rich springs. 360 361

5. Results

364

The three study areas are characterised by different surface extensions of the travertine outcrops: i.e. Rapolano, 3.9 Km²; Canino, 70 Km²; Tivoli, 26 Km². The volumes of the deposits, as calculated through the 3D geological models, are: 0.046 km³ for Rapolano; 0.9 km³ for Canino; 1.1 km³ for Tivoli (Fig. 3).

The central tendency, the tendency of quantitative data to cluster around some central value, and the variability of porosity and CaCO₃ fraction (reported as weight %) are summarized in Table 1 (full dataset in supplementary material 2). Porosity values range from 0.27% to 30.68% and show a positively skewed distribution (Fig. 4a) with a mean (12.14%) being greater than the median (10.68%). Rapolano and Tivoli samples show similar porosity values (median values of 8.45% and 9.05%, respectively) while Canino samples are characterized by a higher porosity (median = 16.78%).

The CaCO₃ content is very similar in the three areas (median values of 98.34%, 99.09% and 99.29% respectively). Considering the whole dataset, the distribution is characterized by a left skewed log-normal distribution (Fig. 4b) with a median (99.09%) higher than arithmetic mean (97.44%) and a very small variability (interquartile range, IQR = 2.89%).

Considering that both porosity and $CaCO_3$ content do not follow a gaussian distribution, the median values are more representative of the central tendency with respect to the arithmetic mean and have been used in calculations of F-CO₂ and *f*CO₂.

383 The results of the CO_2 flux calculations are summarized in Table 2.

In the three areas considered in the present work, the CO₂ discharge rates estimated through the volume of the travertine deposits (F-CO₂) range from $(1.11 \pm 0.02) \times 10^6$ mol y⁻¹ at Rapolano to $(26.49 \pm 0.69) \times 10^6$ mol y⁻¹ at Tivoli. Despite the large differences in F-CO₂ values, the resulting *f*- 387 CO₂ values, that is the specific CO₂ discharge per unit area, are rather uniform, ranging in a very 388 small interval between $(1.24 \pm 0.12) \times 10^6$ mol y⁻¹ km⁻² and $(1.38 \pm 0.42) \times 10^6$ mol y⁻¹ km⁻² (Tab. 2). 389

390

6. Discussion

392

In western central Italy, travertines are mostly associated to spring systems discharging to the 393 surface warm, CO₂ rich and acidic waters. Groundwaters circulate into carbonate aquifers hosted by 394 Jurassic-Cretaceous formations, where they increase their pCO₂ and dissolve carbonate minerals 395 396 (Frondini, 2008). The high CO₂ content of groundwater is principally caused by the high flux of endogenous CO₂ characterizing the region (Chiodini et al., 2000, 2004) as confirmed by the isotopic 397 analysis of both dissolved inorganic carbon of groundwater (Chiodini et al., 2000, 2004) and calcite 398 399 in travertines (Panichi and Tongiorgi, 1975; Manfra, 1976; Minissale et al., 2002). When groundwaters are discharged by springs they re-equilibrate to the surface conditions degassing CO₂ 400 and rapidly precipitating solid carbonates. Through this process the amount of deposited travertine 401 is directly linked to the amount of CO₂ degassing from the groundwater, which is proportional to 402 the influx of deep CO₂ into the aquifers. In this kind of systems, the estimation of the volumes and 403 404 CaCO₃ fraction of travertines (of known age) is a proxy to estimate the average CO₂ discharged by the system since the beginning of travertine deposition. 405

In the diagram F-CO₂ values vs recharge area (Fig. 5), the three study areas are compared to the geothermal systems and spring systems of the region. Our data roughly plot along the same line, just above the global baseline of CO₂ fluxes from high heat flow regions ($10^6 \text{ mol y}^{-1} \text{ km}^{-2}$ - Kerrick et al., 1995), suggesting that, at least in the western Apennine region, the degassing processes are characterized by scale invariance: the CO₂ flux (*f*-CO₂) doesn't change significantly when scales (F-CO₂ and recharge area) are multiplied by a common factor. The deduced CO₂ fluxes associated to travertine deposition (i) fall in the range of the present day deep CO₂ fluxes of western central Italy (10⁵ to 10⁷ mol y⁻¹ km⁻² - Chiodini et al., 2000), (ii) are slightly higher than the global baseline of CO₂ fluxes from high heat flow regions (10⁶ mol y⁻¹ km⁻² - Kerrick et al., 1995), (iii) are lower but of the same order of magnitude of the current CO₂ flux of medium-high enthalpy geothermal systems in central Italy, ranging from 2×10^6 to 8×10^6 mol y⁻¹ km⁻² (Gambardella et al., 2004).

The estimated f-CO₂ values, that represent the time averaged CO₂ fluxes of each study area, are a minimum estimation of the deep CO₂ degassing processes, because part of the travertine deposits may have been eroded. As reported in Parise et al. (2008) dissolution and erosion affect the carbonate rocks, especially travertines in different ways. Such processes are influenced by latitude, temperature, and biological activity and strongly depend on the climatic zone.

A further cause of underestimation of the CO_2 flux is the possible CO_2 loss from the thermal water before travertine deposition starts. Often CO_2 -charged thermal waters are undersaturated with respect to carbonate minerals and reach oversaturation only after loosing part of the dissolved CO_2 . This part does not create recognizable deposits. In some cases deep groundwaters are characterised by very high pCO_2 (>1 bar) and can lose a significant part of their CO_2 content from bubbling pools or dry gas emissions (e.g. Rogie et al., 2000; Gulec et al., 2002; Mutlu et al., 2008).

The extent of the underestimation can be roughly evaluated by comparing the results of our calculations to the direct measurements of CO_2 flux or to the carbon mass and isotopic balance of the acquifers feeding the springs, when available (Chiodini et al., 1999; Chiodini et al., 2000).

At Rapolano the possible underestimation is not valuable but can be significant only in the southern part of the study area, where bubbling pools and CO_2 vents are present. At Canino our estimation is about 70% of the value computed from the carbon mass balance (see Fig.6). At Tivoli, travertine deposition is very limited nowadays, but CO_2 degassing is still very strong: the average specific flux computed with the methods proposed in this work is about 66% of the present day specific CO_2 flux computed from the carbon balance of the Prenestini Mts aquifer (the aquifer feeding Tivoli
springs) by Chiodini et al. 2000 (1.86x10⁶ vs 2.78x10⁶ mol/km⁻² y⁻¹).

Our data, although they are a minimum estimate of the CO_2 degassing process, are in agreement with earlier studies (Chiodini et al., 2000, 2004; Frondini et al., 2008) and confirm that western central Italy is a globally relevant source of (deeply mantle derived and metamorphic) carbon.

The CO₂ degassing process that is currently affecting the region was active, with similar discharge 442 rates, at least since 200 Ka ago (probably more, considering that the older, eroded travertines at 443 Canino were dated by Carrara et al. (1994) at more than 350 Ka). Other travertine deposits in 444 western central Italy, for which ²³⁴U/²³⁰Th and ¹⁴C data are available (Fig. 6), fall in the same time 445 interval (e.g. from 268 ± 22 ka to the present at Sarteano - Brogi et al. 2012; 134.8 ± 1.6 Ka at 446 Civita Castellana - Minissale et al., 2002; from 350 to 40 Ka in the Albegna Basin - Vignaroli et al., 447 2016; 23.216 ± 0.124 Ka Acqua Borra - Brogi et al., 2014; 182 ± 82 Ka San Casciano dei Bagni -448 Vignaroli et al., 2013) but could be even older, considering that travertine is prone to erosion. The 449 widespread presence of travertine bodies in the study area highlights the temporal continuity of the 450 degassing process in western central Italy from (at least) 350 Ka to the present. 451

452

453 **6.** Conclusion

454

455 A better quantification of diffuse degassing is necessary to constrain the global carbon cycle and to 456 give a realistic estimate of the CO₂ degassing process at a global scale (Frondini et al., 2018).

The proposed method is an independent approach to estimate CO_2 fluxes related to direct measurements; the similarity of the results obtained by the two methods supports the reliability of its outcome and suggests the possibility of its applications to other areas characterized by travertine deposits. 461 Considering the widespread occurrence of travertine deposits in geothermal areas, active fault 462 zones, volcanic and seismic regions, the proposed approach can be used as a tool to compute the 463 deep CO_2 flux in several tectonically active areas of the world.

In particular, computing the CO_2 fluxes from the volumes and the ages of travertine deposits may be useful in order (i) to compare the present-day CO_2 fluxes to the time integrated paleo CO_2 fluxes, (ii) to estimate a baseline CO_2 flux in large regions where direct measurements are not easily achievable and (iii) to study the Earth degassing process in seismically active fault zones.

- 468
- 469

470 Acknowledgements

471

We wish to thank Tonguç Uysal and an anonymous reviewer for their useful comments and constructive
criticisms that substantially improved our manuscript. This work was partly financially supported by
Department of Physics and Geology, University of Perugia and University of KU Leuven.

475

476 **References**

477

Acocella, V., Funiciello, R., 2006. Transverse systems along the extensional Tyrrhenian margin of
central Italy and their influence on volcanism. Tectonics, 25.

480

Alfonsi, L., Funiciello, R., Mattei, M., 1991. Strike-slip tectonics in the Sabina area", Bollettino
della Società Geologica Italiana, 110, 481-488.

483

Altunel, E., 2005. Travertines: neotectonic indicators. In: Travertine, Proceedings of 1st
International Symposium on Travertine (Eds M. Ozkul, S. Yagiz and B. Jones), pp. 105-106.
September 21–25, 2005, Denizli, Turkey. Kozan Offset, Ankara.

488	Altunel, E., Hancock, P.L., 1993a. Active fissuring and faulting in Quaternary travertines at
489	Pamukkale, Western Turkey. Zeitschrift für Geomorphologie Supplement, 94, 285-302.
490	
491	Altunel, E., Hancock, P.L., 1993b. Morphology and structural setting of Quaternary travertines at
492	Pamukkale, Turkey. Geol. J., 28, 335–346.
493	
494	Banerjee, A., Person, M., Hofstra, A., Sweetkind, D., Cohen, D., Sabin, A., Unruh, J., Zyvoloski,
495	G., Gable, C.W., Crossey, L. and Karlstrom, K., 2011. Deep permeable fault-controlled helium
496	transport and limited mantle flux in two extensional geothermal systems in the Great Basin, United
497	States. Geology, 39, 195–198.
498	
499	Barbier, E., 2002, Geothermal energy and current status: an overwiew. Renew. Sust. En. Rev. 6, 3-
500	65.
501	
502	Barchi, M., 2010. The Neogene-Quaternary evolution of the Northern Apennines: crustal structure,
503	style of deformation and seismicity. In: (Beltrando, M., Peccerillo, A., Mattei, M., Conticelli, S.,
504	and Doglioni, C. Eds) The Geology of Italy: tectonics and life along plate margins, Journal of the
505	Virtual Explorer, Electronic Edition, ISSN 1441-8142, volume 36, paper 11,
506	doi:10.3809/jvirtex.2010.00220
507	
508	Barnes, I., Irwin, W., White, D., 1978. Global distribution of CO ₂ and major zones of seismicity.
509	U.S. Geol. Surv., Open-File Rep.78-39.
510	
511	Bartole, R., 1995. The North Tyrrhenian-Northern Apennines post-collisional system: constraints
512	for a geodynamic model. Terra Nova 7, 7-30.

514	Batini, F., Brogi A., Lazzarotto A., Liotta D., Pandeli E., 2003. Geological Features of Larderello-
515	Travale and Mt. Amiata Geothermal Areas (Southern Tuscany, Italy). Episodes 26, 239-244
516	
517	Bellani, S., Brogi, A., Lazzarotto, A., Liotta, D., Ranalli, G., 2004. Heat flow, deep temperatures
518	and extensional structures in the Larderello Geothermal Field (Italy): Constraints on geothermal
519	fluid flow. J. Volcanol. Geotherm. Res. 132, 15-29.
520	
521	Berner, R.A., 1993. Weathering and its effect on atmospheric CO ₂ over Phanerozoic time. Chem.
522	Geol. 107, 373-374.
523	
524	Berner, R.A., 2004. The Phanerozoic Carbon Cycle: CO ₂ and O ₂ . Oxford University Press, p. 158.
525	
526	Berner, R.A., 2006. GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and
527	CO ₂ . Geochim. Cosmochim. Acta 70, 5653-5664.
528	
529	Berner R.A., Lasaga, A.C., Garrels, R.M., 1983. The carbonate-silicate geochemical cycle and its
530	effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci. 283, 641-683.
531	
532	Bernoulli, D., Kàlin, O., Pattaca, E., 1979. A sunken continental margin of the Mesozoic Tethys:
533	the Northern and Central Apennines. Assoc. Sedimentol. Fr. Publ. Spec, 1, 197-210.
534	
535	Bertini, G., Cameli, G.M., Costantini, A., Decandia, F.A., Di Filippo, M., Dini, I., Elter, F.M.,
536	Lazzarotto, A., Liotta, D., Pandeli, E., Sandrelli, F., Toro, B., 1991. Struttura geologica fra i monti
537	di Campiglia e Rapolano Terme (Toscana meridionale): stato attuale delle conoscenze e
538	problematiche, Studi Geologici Camerti, Vol. spec. 1991/1 155-178.

540	Bianco, C., Brogi, A., Caggianelli, A., Giorgetti, G., Liotta, D., Meccheri, M., 2015. HP-LT
541	metamorphism in Elba Island: implications for the geodynamic evolution of the inner Northern
542	Apennines (Italy). J. Geodyn. 91, 13–25.
543	
544	Boccaletti, M., Calamita, F., Deiana, G., Celati, R., Massari, F., Moratti, G., Ricci Lucchi, F., 1990.
545	Migrating foredeep-thrust belt systems in the northern Apennines and southern Alps.
546	Palaeogeography, Palaeoclimatology, Palaeoecology, 77, 3-14.
547	
548	Boni, C.F., Bono, P., Capelli, G., 1986. Schema Idrogeologico dell'Italia Centrale. Mem. Soc. Geol.
549	It., 35, 991-1012.
550	
551	Bosence, D., Gibbons, K., Le Heron, D.P., Morgan W.A., Pritchard, T., Vining, B.A., 2015.
552	Microbial carbonates in space and time: introduction. Special Publications, Geological Society of
553	London, 418, 1-15.
554	
555	Bossio, A., Costantini, A., Lazzarotto, A., Liotta, D., Mazzanti, R., Mazzei, R., Salvatorini, G.F.,
556	Sandrelli, F., 1993. Rassegna delle conoscenze sulla stratigrafia del Neoautoctono toscano, Mem.
557	Soc. Geol. It., 49, 17–98.
558	
559	Brancaccio, L., D'Argenio, B., Ferreri, V., Stanzione, D., Taddeucci, A., Voltaggio, M., 1988. I
560	travertini di Rocchetta al Volturno (Molise): datazioni con 230Th e modello deposizionale. Mem.
561	Soc. Geol. It., 41, 673-683.
562	
563	Brogi, A., Capezzuoli, E., Gandin, A., 2007. I travertini delle Terme di S.Giovanni (Rapolano
564	Terme, appennino settentrionale) e loro implicazione neotettonica. Il Quaternario (Italian Journal of

565 Quaternary Sciences), 20(2), 107-124.

566

Brogi A., Liotta D., 2008. Highly extended terrains, lateral segmentation of the substratum and
basin development: the Middle-Late Miocene Radicondoli Basin (Inner Northern Apennines, Italy),
Tectonics, 27, 1-20.

570

Brogi, A., Capezzuoli, E., 2009. Travertine deposition and faulting: the fault-related travertine
fissure-ridge at Terme S. Giovanni, Rapolano Terme (Italy). International Journal of Earth Sciences,
98, 931–947.

574

Brogi, A., Capezzuoli, E., Aqué, R., Branca, M., Voltaggio, M., 2010. Studying travertine for
neotectonics investigations: Middle–Late Pleistocene syn- tectonic travertine deposition at Serre di
Rapolano (Northern Apennines, Italy). Geologische Rundschau, 99, 1383–1398.

578

Brogi, A., 2011. Bowl-shaped basin related to low-angle detachment during continental extension:
The case of the controversial Neogene Siena Basin (central Italy, Northern Apennines).
Tectonophysics, 499, 54-76

582

Brogi, A., Capezzuoli, E., Buracchi, E., Branca, M., 2012. Tectonic control on travertine and
calcareous tufa deposition in a low-temperature geothermal system (Sarteano, Central Italy). J.
Geol. Soc., London 169, 461-476.

586

Brogi, A., Giorgetti, G., 2012. Tectono-metamorphic evolution of the siliciclastic units in the
Middle Tuscan Range (inner Northern Apennines): Mg-carpholite bearing quartz veins related to
syn-metamorphic syn-orogenic foliation. Tectonophysics, 526-529, 167-184.

591	Brogi, A., Capezzuoli, E. 2014. Earthquake impact on fissure-ridge type travertine deposition.
592	Geological Magazine, 151, 1135–1143.
593	
594	Brogi, A., Capezzuoli, E., Martini, I., Picozzi, M., Sandrelli, F., 2014. Late Quaternary tectonics in
595	the inner Northern Apennines (Siena Basin, southern Tuscany, Italy) and their seismotectonic
596	implication. Journal of Geodynamics, 76, 25–45.
597	
598	Brogi A., Liotta D., Ruggieri G., Capezzuoli E., Meccheri M., Dini A., 2016. An overview on the
599	characteristics of geothermal carbonate reservoirs in southern Tuscany. Ital. J. Geosci. 135, 17-29.
600	
601	Brogi, A., Capezzuoli, E., Kele, S., Baykara, M.O., Chuan-Chou, S., 2017. Key travertine
602	tectofacies for neotectonics and palaeoseismicity reconstruction: effects of hydrothermal
603	overpressured fluid injection. Journal of the Geological Society, 174, 4.
604	
605	Brogi, A., Capezzuoli, E., Moretti, M., Olvera-García, E., Matera, P.F., Garduno-Monroy, V-H.,
606	Mancini, A., 2018. Earthquake-triggered soft-sediment deformation structures (seismites) in
607	travertine deposits. Tectonophysics, 745, 349-365.
608	
609	Burton, M.R., Sawyer G.M., Granieri, D., 2013. Deep Carbon Emissions from Volcanoes. Rev.
610	Min. Geochem. 75, 323-354. D
611	
612	Calcagnile, G., Panza, G.F., 1981. The main characteristics of the lithosphere-asthenosphere system
613	in Italy and surrounding regions. Pure Appl. Geophys., 119, 865-879.
614	

615	Calderoni, G., Cilla, G., Dramis, F., Esu, D., Magnatti, M., Materazzi, M., 1996. La deposizione di
616	tarvertino nelle aree prossimali dei Fiumi Esino, Potenza e Chienti durante l'Olocene antico
617	(Appennino centrale marchigiano). Il Quaternario, 9(2), 481-492.
618	
619	Capezzuoli, E., Gandin, A., Pedley, H.M., 2009. Travertines and calcareous tufa in Tuscany
620	(Central Italy). 27th IAS Meeting of Sedimentology, Alghero, Italy. Fieldtrip Guidebook, v.129, pp.
621	158.
622	
623	Capezzuoli, E., Gandin, A., Sandrelli, F., 2010. Calcareous tufa as indicators of climatic variability:
624	a case study from southern Tuscany (Italy). Geological Society, London, Special Publications, 336,
625	263-281. https://doi.org/10.1144/SP336.14
626	
627	Capezzuoli, E., Gandin, A., Pedley, M., 2014. Decoding tufa and travertine (fresh water carbonates)
628	in the sedimentary record: The state of the art. Sedimentology, 61, 1-21.
629	
630	Cardellini, C., Chiodini, G., Frondini, F., Avino, R., Bagnato, E., Caliro, S., Lelli, M., Rosiello, A.,
631	2017. Monitoring diffuse volcanic degassing during volcanic unrests: the case of Campi Flegrei
632	(Italy). Scientific Reports, 7, 6757, https://doi.org/10.1038/s41598-017-06941-2
633	
634	Carmignani, L., Decandia, F.A., Fantozzi, P.L., Lazzarotto, A., Liotta, D., Meccheri, M., 1994.
635	Tertiary Extensional Tectonics in Tuscany (Northern Apennines, Italy). Tectonophysics, 238, 295-
636	315.
637	
638	Carmignani, L., Decandia, F.A., Disperati, L., Fantozzi, P.L., Lazzarotto, A., Liotta, D., Oggiano,
639	G., 1995. Relationships between the Sardinia-Corsica-Provençal Domain and the Northern
640	Apennines. Terranova 7, 128–137.

642	Carminati, E., Doglioni, C., 2012. Alps vs. Apennines: the paradigm of a tectonically asymmetric
643	Earth. Earth-Sci. Rev., 112, 67-96.
644	
645	Carrara. C., 1994. I travertini di Canino (Viterbo, Italia Centrale): Elementi di Cronolitostratigrfia,
646	di Geochimica Isotopica e loro significato ambientale e climatico. Il Quaternario 7, 73–90.
647	
648	Carrara, C., Ciuffarella, L., Paganin, G., 1998. Inquadramento geomorfologico e climatico -
649	ambientale dei travertini di Rapolano Terme (SI). Il Quaternario, 11, 319-329.
650	
651	Carrara, C., 1998. I tarvertini della Valle del Pescara tra Popoli e Tor de' Passeri (Abruzzo, Italia
652	Centrale). Il Quaternario, 11(2), 163-178.
653	
654	Carrara, C., Branca, M., Pisegna, E., Verrubbi, V., Voltaggio, M., 2006. Calcareous tufa deposits of
655	the Aniene Valley between Vallepietra and Mandela-Vicovaro (Latium, Central Italy). Il
656	Quaternario, 19(1), 19-44.
657	
658	Carucci, V., Petitta, M., Aravena, R., 2012. Interaction between shallow and deep aquifers in the
659	Tivoli Plain (Central Italy) enhanced by groundwater extraction: A multi isotope approach and
660	geochemical modeling. Appl. Geochem., 27, 266-280.
661	
662	Celati, R., Grassi, S., Calore. C., 1990. Overflow thermal springs of Tuscany (Italy). J. Hydrol.,
663	118,191 - 207.
664	
665	Chafetz, H.S., Folk, R.L., 1984. Travertines: depositional morphology and the bacterially
666	constructed constituents. J. Sedim. Petrol., 54, 289-316.

668	Chiodini, G., Giaquinto, S., Frondini, F., Santucci, A., 1991. Hydrogeochemestry and hydrogeology
669	of the Canino hydrothermal system (Italy). Geothermics, 20-5/6, 329-342.
670	
671	Chiodini, G., Frondini, F., Kerrick, D.M., Rogie, J., Parello, F., Peruzzi, L., Zanzari, A.R., 1999.
672	Quantification of deep CO ₂ fluxes from Central Italy. Examples of carbon balance for regional
673	aquifers and of soil diffuse degassing. Chem. Geol 159, 205-222.
674	
675	Chiodini, G., Frondini, F., Cardellini C., Parello F., Peruzzi, L., 2000. Rate of diffuse carbon
676	dioxide Earth degassing estimated from carbon balance of regional aquifers: The case of central
677	Apennine, Italy, J. Geophys. Res., 105, 8423-8434.
678	
679	Chiodini, G., Frondini F., 2001. Carbon dioxide degassing from the Albani Hills volcanic region,
680	Central Italy. Chem Geol. 177, 67-83.
681	
682	Chiodini, G., Cardellini, C., Amato, A., Boschi, E., Caliro. S., Frondini, F., Ventura, G., 2004.
683	Carbon dioxide Earth degassing and seismogenesis in central and southern Italy. Geophys. Res.
684	Lett. 31(7): L07615.
685	
686	Chiodini, G., Baldini, A., Barberi, B., Carapezza, M.L., Cardellini, C., Frondini, F., Granieri, D.,
687	Ranaldi, M., 2007. Carbon dioxide degassing at Latera caldera (Italy): Evidence of geothermal
688	reservoir and evaluation of its potential energy. J Geophys. Res 112, B12204.
689	
690	Chiodini, G., Cardellini, C., Caliro, S., Chiarabba, C., Frondini, F., 2013. Advective heat transport
691	associated with regional Earth degassing in central Apennine (Italy). Earth Planet. Sci. Lett. 373,
692	65–74.

694	Cipriani, N., Ercoli, A., Malesani, P., Vannucci, S., 1972. I travertini di Rapolano Terme (Siena).
695	Mem. Soc. Geol. It., 11, 31-46.
696	
697	Claes, H., Soete, J., Van Noten, K., El Desouky, H., Erthal, M.M., Vanhaecke, F., Özkul, M.,
698	Swennen, R., 2015. Sedimentology, three-dimensional geobody reconstruction and carbon dioxide
699	origin of Pleistocene continental carbonate deposits in the Ballık area (south-west Turkey).
700	Sedimentology, 62, 1408–1445.
701	
702	Claes, H., Marques-Erthal, M., Soete, J., Özkul, M., Swennen, R., 2017. Shrub and pore type
703	classification: Petrography of travertine shrubs from the Ballık-Belevi area (Denizli, SW Turkey).
704	Quaternary International. 217, 147–163.
705	
706	Cocozza, T., 1963. Nuovi dati stratigrafici e tettonici sul Monte Canino (Viterbo). Geol. Romana, 1,
707	15-40.
708	
709	Cosentino, D., Cipollari, P., Marsili, P., Scrocca, D., 2010. Geology of the central Apennines: a
710	regional review. In: Beltrando, M., Peccerillo, A., Mattei, M., Conticelli, S., Doglioni, C. (Eds) The
711	Geology of Italy: tectonics and life along plate margins, Journal of the Virtual Explorer, Electronic
712	Edition, ISSN 1441-8142, volume 36, paper 12, doi:10.3809/jvirtex.2010.00223
713	
714	Costantini, A., Decandia, F.A., Lazzarotto, A., Liotta, D., Mazzei, R., Pascucci, V., Salvatorini, G.,
715	Sandrelli, F., 2009. Note illustrative della Carta Geologica d'Italia alla scala 1:50.000 foglio 296
716	SIENA, ISPRA Servizio Geologico d'Italia, 123.
717	

718	Crossey, L., Karlstrom, K.E., Springer, A.E., Newell, D., Hilton, D.R., Fischer, T., 2009. Degassing
719	of mantle-derived CO ₂ and He from springs in the southern Colorado Plateau region-Neotectonic
720	connections and implications for groundwater systems. Geol. Soc. Am. Bull. 121, 1034-1053.
721	
722	D'Alessandro, W., Giammanco, S., Bellomo, S., Parello, F., 2007. Geochemistry and mineralogy of
723	travertine deposits of the SW flank of Mt. Etna (Italy): Relationships with past volcanic and
724	degassing activity. J. Volcanol. Geotherm. Res., 165, 64-70.
725	
726	Dallmeyer, R.D., Liotta, D., 1998. Extension, uplift of rocks and cooling ages in thinned crustal
727	provinces: the Larderello geothermal area (inner Northern Apennines, Italy). Geol. Mag., 135, 193-
728	202
729	
730	Decandia, F.A., Elter, P., 1969. Riflessioni sul problema delle ofioliti nell'Appennino Settentrionale
731	(Nota preliminare). Atti Soc. Tosc. Sc. Nat., Mem., ser. A,76, 1-9.
732	
733	Decandia, F.A., Lazzarotto, A., Liotta, D., 1993. La Serie ridotta nel quadro dell'evoluzione
734	geologica della Toscana meridionale, Mem Soc Geol I t49, 181–190.
735	
736	De Filippis, L., Faccenna, C., Billi, A., Anzalone, E., Brilli, M., Soligo, M., Tuccimei, P., 2013.
737	Plateau versus fissure ridge travertines from Quaternary geothermal springs of Italy and Turkey:
738	Interactions and feedbacks between fluid discharge, paleoclimate, and tectonics. Earth-Sci.Rev.,
739	123, 35-52.
740	
741	Della Porta, G., 2015. Carbonate build-ups in lacustrine, hydrothermal and fluvial settings:
742	Comparing depositional geometry, fabric types and geochemical signature. Geological Society
743	London, Special Publications 418, 1.

Della Porta, G., Croci, A., Marini, M., Kele, S., 2017. Depositional architecture, facies character
and geochemical signature of the Tivoli travertines (Pleistocene, Acque Albule Basin, Central
Italy). Rivista Italiana di Paleontologia e Stratigrafia (Research In Paleontology and Stratigraphy)
123, 487-540.
Della Vedova, B., Bellani, S., Pellis, G., Squarci, P., 2001. Deep temperatures and surface heat flow

distribution. In: Vai G.B. & Martini I.P. (Eds.): "Anatomy of an orogen: the Apennines and
adjacent Mediterranean basins". Kluwer Academic Publishers, pp 65-76, Dordrecht, The
Netherlands.

754

744

Dessau, G., Duchi, G., Steu, B., 1972. Geologia e depositi minerari della zona Monti RomaniMontete (comuni di Manciano e Capalbio, Grosseto) ed Ischia di Castro (Viterbo). Memorie della
Societa Geologica Italiana, 11, 217-260.

758

De Rita, D., Giordano, G., Esposito, A., Fabbri, M., Rodani, S., 2002. Large volume
phreatomagmatic ignimbrites from the Colli Albani volcano (Middle Pleistocene, Italy). J. Volc.
Geoth. Res., 118, 77-98.

762

De Rita, D., Faccenna, C., Funiciello, R., Rosa, C., 1995. Structural and geological evolution of the
Colli Albani volcanic district. In: Trigila R. (Ed) - The Volcano of the Alban Hills. Rome:
Tipografia SGS, 33–71.

766

Di Salvo, C., Mazza, R., Capelli, G., 2013. Gli acquiferi in travertino del Lazio: schemi
idrogeologici e caratteristiche chimico-fisiche. Rend. Online Soc. Geol. It., 27, 54-76.

770	Dini, A., Gianelli, G., Puxeddu, M., Ruggieri, G., 2005. Origin and evolution of Pliocene-
771	Pleistocene granites from the Larderello geothermal field (Tuscan Magmatic Province, Italy).
772	Lithos 81, 1-31.
773	
774	
775	Doglioni, C., 1991. A proposal for the kinematic modelling of W-dipping subductions - possible
776	applications to the Tyrrhenian-Apennines system. Terra Nova, 3, 423-434.
777	
778	Elter P., Giglia G., Tongiorgi M., Trevisan L., 1975. Tensional and compressional areas in the
779	recent (Tortonian to Present) evolution of north Apennines. Bollettino di Geofisica Teorica
780	Applicata 17, 3–18.
781	
782	Erthal, M.M., Capezzuoli, E., Mancini, A., Claes, H., Soete, J., Swennen, R., 2017. Shrub morpho-
783	types as indicator for the water flow energy – Tivoli travertine case (Central Italy). Sediment. Geol.,
784	347, 79-99.
785	
786	Faccenna, C., Soligo, M., Billi, A., De Filippis, L., Funiciello, R., Rossetti, C., Tuccimei, P., 2008.
787	Late Pleistocene depositional cycles of the Lapis Tiburtinus travertine (Tivoli, Central Italy):
788	Possible influence of climate and fault activity. Glob. Planet. Change, 63, 299-308.
789	
790	Fouke, B.W., 2011. Hot-spring Systems Geobiology: abiotic and biotic influences on travertine
791	formation at Mammoth Hot Springs, Yellowstone National Park, USA. Sedimentology, 58, 170,
792	219.
793	
794	Ford, T.D., Pedley, H.M., 1996. A review of tufa and travertine deposits of the world. Earth Sci.
795	Rev., 41, 117, 175.

797	Frondini, F., Chiodini, G., Caliro, S., Cardellini, C., Granieri, D. & Ventura, G. 2004. Diffuse CO ₂
798	degassing at Vesuvio, Italy. Bull. Volcanol., 66, 642-651. DOI:10.1007/s00445-004-0346-x
799	
800	Frondini, F., 2008. Geochemistry of regional aquifer systems hosted by carbonate-evaporite
801	formations in Umbria and southern Tuscany (central Italy). Appl. Geochem. 23, 2091–2104.
802	
803	Frondini, F., Caliro, S., Cardellini, C., Chiodini, G., Morgantini, N., Parello, F., 2008. Carbon
804	dioxide degassing from Tuscany and Northern Latium (Italy). Global and Planetary Change, 61, 89-
805	102.
806	
807	Frondini, F., Cardellini C., Caliro S., Chiodini G., Morgantini N., 2012. Regional groundwater flow
808	and interactions with deep fluids in western Apennine: the case of Narni-Amelia chain (Central
809	Italy). Geofluids (2012) 12, 182–196.
810	
811	Frondini, F., Cardellini C., Caliro, S., Beddini, G., Rosiello, A., Chiodini, G., 2018. Measuring and
812	interpreting CO ₂ fluxes at regional scale: the case of the Apennines, Italy. Journal of the Geological
813	Society (2019) 176, 408–416.
814	
815	Gaeta, M., Fabrizio, G., Cavarretta G., 2000. F-phlogopites in the Alban Hills Volcanic District
816	(Central Italy): indications regarding the role of volatiles in magmatic crystallisation. J. Volcan.
817	Geoth. Res., 99, 179-193.
818	
819	Gambardella, B., Cardellini, C., Chiodini, G., Frondini, F., Marini, L., Ottonello, G., Vetuschi,
820	Zuccolini, M., 2004. Fluxes of deep CO ₂ in the volcanic areas of central-southern Italy. J. Volcanol.
821	Geotherm. Res. 136, 31.52.

0	~~
X	22
0	

823	Gandin, A., Capezzuoli, E., 2014. Travertine: distintive depositional fabrics of carbonates from
824	thermal spring systems. Sedimentology, 61, 264-290.
825	
826	Gerlach, T., 2011. Volcanic versus anthropogenic carbon dioxide. EOS, 92, 201-208.
827	
828	Giese, P., Wigger, P., Morelli, C., Nicolich, R., 1981. Seismische Studien zur Bestimmung der
829	Krustenstruktur im Bereich der geothermischen Anomalie der Toskana. EUR 7578, de MF, 108 pp.
830	
831	Google., 2018. Google Earth/Maps; Digital Globe 2018. http://www.earth.google.com
832	
833	Gueguen, E., Doglioni, C., Fernandez, M., 1997. Lithospheric boudinage in the Western
834	Mediterranean backarc basin. Terra Nova, 9, 184-187.
835	
836	Güleç, N., Hilton, D. R., Mutlu, H. 2002. Helium isotope variations in Turkey: relationship to
837	tectonics, volcanism and recent seismic activities. Chem. Geol. 187, 129-142.
838	
839	Guo, L., Andrews, J., Riding, R., Dennis, P., Dresser, D., 1996. Possible microbial effects on stable
840	car- bon isotopes in hot-spring travertines. Jour. Sed. Research, 66, 468-473.
841	
842	Guo, L., Riding, R., 1992. Micritic aragonite laminae in hot water travertine crusts, Rapolano
843	Terme, Italy. Sedimentology, 39, 37-53.
844	
845	Guo, L., Riding, R., 1994. Origin and diagenesis of Quaternary travertine shrub fabrics, Rapolano
846	Terme, Central Italy. Sedimentology, 41, 499-520.
847	

- Guo, L., Riding, R., 1998. Hot-spring travertine facies and sequences, Late Pleistocene, Rapolano
 Terme, Italy. Sedimentology, 45, 163-180.
- 850
- Guo, L., Riding, R., 1999. Rapid facies changes in Holocene fissure ridge hot spring travertines,
 Rapolano Terme, Italy. Sedimentology, 46, 1145-1158.
- 853
- Hancock, P.L., Chalmers, R.M.L., Altunel, E., Cakir, Z., 1999. Travitonics: using travertines in
 active fault studies. J. Struct. Geol., 21, 903, 916.
- 856
- 857 IPCC, 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I
- to the Fifth Assessment Report of the Intergovernamental Panel on Climate Change [Stocker, T.F.,
- D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M.
 Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY,
- 861

USA, 1535 pp.

- Jolivet, L., Faccenna, C., Goffé, B., Mattei, M., Rossetti, F., Brunet, C., Storti, F., Funiciello, R.,
 Cadet, J.P., D'Agostino, N., Parra, T., 1998. Mid crustal shear zones in postorogenic extension.
- Example from the northern Tyrrhenian Sea. J. Geophys. Res. 103, 12123-12160.
- 866
- Jones, B., Renaut, R.W., 1995. Noncrystallographic calcite dendrites from hot-spring deposits at
 Lake Bogoria, Kenya. J. Sediment. Res., 65, 154-169.
- 869
- Kaelin, O., Patacca, E., Renz, O., 1979. Jurassic pelagic deposits from Southeastern Tuscany;
 aspects of sedimentation and new biostratigraphic data. Ecoglae Geol. Helv. 72, 715-762.
- 872

873	Karner, D.B., Marra, F., Renne, P.R., 2001. The history of the Monti Sabatini and Alban Hills
874	volcanoes: groundwork for assessing volcanic-tectonic hazards for Rome. J. Volcan. Geothe. Res.,
875	107, 185-219.
876	
877	Kerrick, D.M., Caldeira, K., 1993. Paleoatmospheric consequences of CO ₂ released during early
878	Cenozoic regional metamorphism in the Tethyan orogen. Chem. Geol. 108, 201-230.
879	
880	Kerrick, D.M., McKibben, M.A., Seward, T.M., Caldeira, K., 1995. Convective hydrothermal CO ₂
881	emission from high heat flow regions. Chem. Geol. 121, 285–293.
882	Kerrick, D.M., Caldeira, K., 1998. Metamorphic CO ₂ degassing from orogenic belts. Chem. Geol.,
883	145, 2013-232.
884	
885	Kump, L.R. Brantley, S.L., Arthur, M.A., 2000. Chemical weathering, atmospheric CO2 and
886	climate. A. Rev. Earth Planet. Sci. 28, 611-667.
887	
888	Kürschner, W.M. 2001. Leaf sensor for CO ₂ in deep time. Nature, 411, 247-248.
889	
890	Lasaga, A.C., Berner, R.A., Garrels, R.M., 1985. An Improved Geochemical Model of Atmospheric
891	CO ₂ Fluctuations Over the Past 100 Million Years. In: The Carbon Cycle and Atmospheric CO2:
892	Natural Variations Archean to Present (eds E.T. Sundquist and W.S. Broecker), Geophysical
893	Monograph Series, American Geophysical Union, Washington D.C. pp. 397-411.
894	
895	Lavecchia, G., 1988. The Tyrrhenian-Apennines system: structural setting and seismotectogenesis.
896	Tectonophysics, 147, 263-296.
897	

- La Vigna, F., Mazza, R., Capelli, G., 2013. Detecting the flow relationships between deep and shallow aquifers in an exploited groundwater system, using long-term monitoring data and quantitative hydrogeology: the Acque Albule basin case (Rome, Italy). Hydrological Processes 27, 3159-3173.
- 902
- Lazzarotto, A., Aldinucci, M., Cirilli, S., Costantini, A., Decandia, F.A., Pandeli, E., Sandrelli, F.,
 Spina, A., 2003. Stratigraphic correlation of the Upper Palaeozoic-Triassic successions in Tuscany,
 Italy: a review. Boll. Soc. Geol. It., vol. Spec. 1: 25–35.
- 906
- 907 Le Quéré, C., Moriarty, R., Andrew, R. M., Canadell, J. G., Sitch, S., Korsbakken, J. I.,
- 908 Friedlingstein, P., Peters, G. P., Andres, R. J., Boden, T. A., Houghton, R. A., House, J. I., Keeling,
- 909 R. F., Tans, P., Arneth, A., Bakker, D. C. E., Barbero, L., Bopp, L., Chang, J., Chevallier, F., Chini,
- L. P., Ciais, P., Fader, M., Feely, R. A., Gkritzalis, T., Harris, I., Hauck, J., Ilyina, T., Jain, A. K.,
- 911 Kato, E., Kitidis, V., Klein Goldewijk, K., Koven, C., Landschützer, P., Lauvset, S. K., Lefèvre, N.,
- 912 Lenton, A., Lima, I. D., Metzl, N., Millero, F., Munro, D. R., Murata, A., Nabel, J. E. M. S.,
- 913 Nakaoka, S., Nojiri, Y., O'Brien, K., Olsen, A., Ono, T., Pérez, F. F., Pfeil, B., Pierrot, D., Poulter,
- B., Rehder, G., Rödenbeck, C., Saito, S., Schuster, U., Schwinger, J., Séférian, R., Steinhoff, T.,
- 915 Stocker, B. D., Sutton, A. J., Takahashi, T., Tilbrook, B., van der Laan-Luijkx, I. T., van der Werf,
- G. R., van Heuven, S., Vandemark, D., Viovy, N., Wiltshire, A., Zaehle, S., and Zeng, N., 2015.
- Global Carbon Budget 2015, Earth Syst. Sci. Data, 7, 349-396.
- 918
- Liotta, D., Cernobori, L., Nicolich, R., 1998. Restricted rifting and its coexistence with
 compressional structures: results from the Crop03 traverse (Northern Apennines, Italy). Terra Nova
 10, 16-20.
- 922

923	Liotta, D., Ruggieri, G., Brogi, A., Fulignati, P., Dini, A., Nardini, I., 2010. Migration of
924	geothermal fluids in extended terranes: the ore deposits of the Boccheggiano-Montieri area
925	(southern Tuscany, Italy). Int. Journ. Earth Sciences, 99, 623-644. DOI:10.1007/s00531-008-0411-3
926	
927	Locardi, E., Nicolich, R., 2005. Crust-Mantle structures and Neogene-Quaternary magmatism in
928	Italy. Boll. Geof. Teor. Appl. 46, 169-180.
929	Losacco, U., 1951. La struttura del territorio di Rapolano e Lucignano. Boll. Soc. Geol. It., 70, 402-
930	434.
931	
932	Malinverno, A., Ryan, W.B.F., 1986. Extension in the Tyrrhenian sea and shortening in the
933	Apennines as result of arc migration driven by sinking of the lithosphere. Tectonics, 5, 227-245.
934	
935	Mancini, M., Marini, M., Moscatelli, M., Pagliaroli, A., Stigliano, F., Di Salvo, C., Simionato, M.,
936	Cavinato, G.P., Corazza, A., 2014. A physical stratigraphy model for seismic microzonation of the
937	Central Archaeological Area of Rome (Italy). Bulletin Earthquake Engineering, 12, 1339-1363.
938	
939	Manfra, L., Masi, U., Turi, B., 1976. La composizione isotopica dei travertini del Lazio. Geologica
940	Romana 15, 127-174.
941	
942	Marroni, M., Molli, G., Ottria, G., Pandolfi, L., 2001. Tectono-sedimentary evolution of the
943	External Liguride units (Northern Apennines, Italy): Insights in the pre-collisional history of a fossil
944	ocean-continent transition zone. Geodinamica Acta 14, 307-320.
945	
946	Martini, I.P., Sagri, M., 1993. Tectono-sedimentary characteristics of Late Miocene-Quaternary
947	extensional basins of the Northern Apennines, Italy. Earth Sci. Rev. 34, 197-233.
948	

949	Milli, S., Mancini, M., Moscatelli, M., Stigliano, F., Marini, M., Cavinato, G.P., 2017. From river to
950	shelf, anatomy of a high-frequency depositional sequence: the Late Pleistocene to Holocene Tiber
951	depositional sequence. Sedimentology, 63, 1886-1928.
952	
953	Minissale, A., 2004. Origin, transport and discharge of CO ₂ in central Italy. Earth Sci. Rev. 66, 89-
954	141.
955	
956	Minissale, A., Kerrick, D.M., Magro, G., Murrell, M.T., Paladini, M., Rihs, S., Sturchio, N.C.,
957	Tassi, F., Vaselli, O., 2002. Geochemistry of Quaternary travertines in the region north of Rome
958	(Italy): structural, hydrologic and paleoclimatic implications. Earth Planet. Sci. Lett. 203, 709-728.
959	
960	Molli, G., 2008. Northern Apennine-Corsica orogenic system: an updated overview. Geological
961	Society, London, Special Publications, 298, 413-442.
962	
963	Mörner, N.A., Etiope, G., 2002. Carbon degassing from the lithosphere. Global Planet. Change 33,
964	185-203.
965	
966	Mutlu, H., Güleç, N., Hilton, D. R. 2008. Helium-carbon relationships in geothermal fluids of
967	western Anatolia, Turkey. Chem. Geol. 247, 305-321.
968	
969	Nelson, S.T., Mayo, A.L., Gilfillan, S., Dutson, S.J., Harris, R.A., Shipton, Z.K. and Tingey, D.G.,
970	2009. Enhanced fracture permeability and accompanying fluid flow in the footwall of a normal
971	fault: the Hurricane fault at Pah Tempe hot springs, Washington County, Utah. Geol. Soc. Am.
972	Bull., 121, 236, 246.

974	Ori, G.G., Roveri, M., Vannoni, F., 1986. Plio-Pleistocene sedimentation in the Apenninnic-
975	Adriatic foredeep (Central Adriatic Sea, Italy). In: Allen, P.A., Homewood, P. (Eds.), IAS Special
976	Publication 8, Foreland Basins, pp. 183–198.
977	
978	Pandeli, E., Bertini, G., Castellucci, P., Morelli, M., Monechi, S., 2005. The sub-Ligurian and
979	Ligurian units of the Mt. Amiata geothermal Region (south-eastern Tuscany): new stratigraphic and
980	tectonic data and insight into their relationships with the Tuscan Nappe. Boll. Soc. Geol. It., Vol.
981	Spec. n.3 (2005), 55-71.
982	
983	Panichi, C., Tongiorgi, E., 1975. Carbon isotopic composition of CO ₂ from springs, fumaroles,
984	mofettes and travertines of central and southern Italy: a preliminary prospection method of
985	geothermal areas, Proc. 2nd UN Symp. On the Development and Use of Geothermal Energy,
986	SanFrancisco, CA, 20-29 May 1975, pp. 815-825.
987	
987 988	Parise, M., Inguscio, S., Marangella, A., 2008. Geomorfologia Carsica. Atti del 45º Corso CNSS-
987 988 989	Parise, M., Inguscio, S., Marangella, A., 2008. Geomorfologia Carsica. Atti del 45° Corso CNSS- SSI di III livello, Grottaglie, 2-3 febbraio 2008.
987 988 989 990	Parise, M., Inguscio, S., Marangella, A., 2008. Geomorfologia Carsica. Atti del 45° Corso CNSS- SSI di III livello, Grottaglie, 2-3 febbraio 2008.
987 988 989 990 991	 Parise, M., Inguscio, S., Marangella, A., 2008. Geomorfologia Carsica. Atti del 45° Corso CNSS- SSI di III livello, Grottaglie, 2-3 febbraio 2008. Patacca, E., Sartori, R., Scandone, P., 1992. Tyrrhenian basin and Apenninic arcs: kinematic
987 988 989 990 991 992	 Parise, M., Inguscio, S., Marangella, A., 2008. Geomorfologia Carsica. Atti del 45° Corso CNSS- SSI di III livello, Grottaglie, 2-3 febbraio 2008. Patacca, E., Sartori, R., Scandone, P., 1992. Tyrrhenian basin and Apenninic arcs: kinematic relations since late Tortonian times. Mem. Soc. Geol. It., 45, 425-451.
987 988 989 990 991 992 993	 Parise, M., Inguscio, S., Marangella, A., 2008. Geomorfologia Carsica. Atti del 45° Corso CNSS- SSI di III livello, Grottaglie, 2-3 febbraio 2008. Patacca, E., Sartori, R., Scandone, P., 1992. Tyrrhenian basin and Apenninic arcs: kinematic relations since late Tortonian times. Mem. Soc. Geol. It., 45, 425-451.
987 988 989 990 991 992 993 994	 Parise, M., Inguscio, S., Marangella, A., 2008. Geomorfologia Carsica. Atti del 45° Corso CNSS- SSI di III livello, Grottaglie, 2-3 febbraio 2008. Patacca, E., Sartori, R., Scandone, P., 1992. Tyrrhenian basin and Apenninic arcs: kinematic relations since late Tortonian times. Mem. Soc. Geol. It., 45, 425-451. Pazzaglia, F., R. Barchi, M., Buratti, N., Cherin, M., Pandolfi, L., Ricci, M., 2013. Pleistocene
 987 988 989 990 991 992 993 994 995 	 Parise, M., Inguscio, S., Marangella, A., 2008. Geomorfologia Carsica. Atti del 45° Corso CNSS- SSI di III livello, Grottaglie, 2-3 febbraio 2008. Patacca, E., Sartori, R., Scandone, P., 1992. Tyrrhenian basin and Apenninic arcs: kinematic relations since late Tortonian times. Mem. Soc. Geol. It., 45, 425-451. Pazzaglia, F., R. Barchi, M., Buratti, N., Cherin, M., Pandolfi, L., Ricci, M., 2013. Pleistocene Calcareous Tufa from the Ellera Basin (Umbria, Central Italy) as a key for an integrated
 987 988 989 990 991 992 993 994 995 996 	 Parise, M., Inguscio, S., Marangella, A., 2008. Geomorfologia Carsica. Atti del 45° Corso CNSS- SSI di III livello, Grottaglie, 2-3 febbraio 2008. Patacca, E., Sartori, R., Scandone, P., 1992. Tyrrhenian basin and Apenninic arcs: kinematic relations since late Tortonian times. Mem. Soc. Geol. It., 45, 425-451. Pazzaglia, F., R. Barchi, M., Buratti, N., Cherin, M., Pandolfi, L., Ricci, M., 2013. Pleistocene Calcareous Tufa from the Ellera Basin (Umbria, Central Italy) as a key for an integrated Paleoenvironmental and Tectonic Reconstruction. Quaternary International, 292, 59-70. DOI:
987 988 989 990 991 992 993 994 995 996 997	 Parise, M., Inguscio, S., Marangella, A., 2008. Geomorfologia Carsica. Atti del 45° Corso CNSS- SSI di III livello, Grottaglie, 2-3 febbraio 2008. Patacca, E., Sartori, R., Scandone, P., 1992. Tyrrhenian basin and Apenninic arcs: kinematic relations since late Tortonian times. Mem. Soc. Geol. It., 45, 425-451. Pazzaglia, F., R. Barchi, M., Buratti, N., Cherin, M., Pandolfi, L., Ricci, M., 2013. Pleistocene Calcareous Tufa from the Ellera Basin (Umbria, Central Italy) as a key for an integrated Paleoenvironmental and Tectonic Reconstruction. Quaternary International, 292, 59-70. DOI: 10.1016/j.quaint.2012.11.020
987 988 989 990 991 992 993 993 994 995 996 997 998	 Parise, M., Inguscio, S., Marangella, A., 2008. Geomorfologia Carsica. Atti del 45° Corso CNSS-SSI di III livello, Grottaglie, 2-3 febbraio 2008. Patacca, E., Sartori, R., Scandone, P., 1992. Tyrrhenian basin and Apenninic arcs: kinematic relations since late Tortonian times. Mem. Soc. Geol. It., 45, 425-451. Pazzaglia, F., R. Barchi, M., Buratti, N., Cherin, M., Pandolfi, L., Ricci, M., 2013. Pleistocene Calcareous Tufa from the Ellera Basin (Umbria, Central Italy) as a key for an integrated Paleoenvironmental and Tectonic Reconstruction. Quaternary International, 292, 59-70. DOI: 10.1016/j.quaint.2012.11.020

1001	Peccerillo, A., 2005. Plio-Quaternary volcanism in Italy. Petrology, geochemistry, geodynamics.
1002	Springer, Heidelberg, 365 pp.
1003	
1004	Pedley, M., 2009. Tufas and travertines of the Mediterranean region: a testing ground for freshwater
1005	carbonate concepts and developments. Sedimentology, 56, 221, 246.
1006	
1007	Pentecost, A., Tortora, C., 1989. Bagni di Tivoli, Lazio: a modern travertine depositing site and its
1008	associated microorganisms. Boll. Soc. Geol. It., 108, 315-324.
1009	
1010	Pentecost, A., 2005. Travertine. Springer, Berlin Heidelberg, 445 pp.
1011	
1012	Rainey, D.K., Jones, B., 2009. Abiotic versus biotic controls on the development of the Fairmont
1013	Hot Springs carbonate deposit, British Columbia, Canada. Sedimentology, 56, 1832-1857.
1014	
1015	Regnier, P., Friedlingstein, P., Ciais, P., Mackenzie, F.T., Gruber, N., Janssens, I.A., Laruelle,
1016	G.G., Lauerwald, R., Luyssaert, S., Andersson, A.J., Arndt, S., Arnosti, C., Borges, A.V., Dale,
1017	A.W., Gallego-Sala, A., Goddéris, Y., Goossens, N., Hartmann, J., Heinze, C., Ilyina, T., Joos, F.,
1018	LaRowe, D.E., Leifeld, J., Meysman, F.J.R., Munhoven, G., Raymond, P.A., Spahni, R.,
1019	Suntharalingam, P., Thullner, M., 2013. Anthropogenic perturbation of the carbon fluxes from land
1020	to ocean. Nature Geoscience 6, 597–607.
1021	
1022	Radtke, U., Hausmann, R., Hentzsch, B., 1986. The travertine complex of Vulci (Central Italy). An
1023	indicator of Quaternary climatic change. Proceedings of a Symposium on Climatic Fluctuations
1024	during the Quaternary in the Western Mediterranean, 2, 273-292.
1025	

1026	Ricci Lucchi, F., 1986. Oligocene to Recent foreland basins Northern Apennines. I.A.S., Special
1027	Public. No.8, Blackwell, 105-139.
1028	
1029	Rogie, J. D., Kerrick, D. M., Chiodini, G., Frondini, F. 2000. Flux measurements of nonvolcanic
1030	CO ₂ emission from some vents in central Italy. J. Geophys. Res. Solid Earth 105(B4), 8435-8445.
1031	
1032	Ronchi, P., Cruciani, F., 2015. Continental carbonates as a hydrocarbon reservoir, an analog case
1033	study from the travertine of Saturnia, Italy. AAPG Bulletin, 99, 4, 711-734.
1034	
1035	Rossetti, F., Faccenna, C., Jolivet, L., Funiciello, R., Tecce, F., Brunet, C., 1999. Syn-versus post-
1036	orogenic extension: the case study of Giglio Island (Northern Tyrrhenian Sea, Italy).
1037	Tectonophysics 304, 71-93.
1038	
1039	Rossetti, F., Faccenna, C., Jolivet, L., Goffe, B., Funiciello, R., 2002. Structural signature and
1040	exhumation PTt paths of the blueschist units exposed in the interior of the Northern Apennine
1041	chain, tectonic implications. Boll. Soc. Geol. It. 121, 829-842.
1042	
1043	Rossetti, F., Glodny, J., Theye, T., Maggi, M., 2015. Pressure-temperature-deformation-time of
1044	the ductile Alpine shearing in Corsica: from orogenic construction to collapse. Lithos, 218-219, 99-
1045	116.
1046	
1047	Rowland, J.V., Sibson, R.H., 2004. Structural controls on hydrothermal flow in a segmented rift
1048	system, Taupo Volcanic Zone, New Zealand. Geofluids, 4, 259-283.
1049	

1050	Scott, M., Lindsey, R., 2016. Which emits more carbon dioxide: volcanoes or human activities?
1051	NOAA, 2016. Climate.gov. website: https://www.climate.gov/news-features/climate-qa/which-
1052	emitsmore-carbon-dioxide-volcanoes-or-human-activities.
1053	
1054	Serri, G., Innocenti, F., Manetti, P., 1993. Geochemical and petrological evidence of the subduction
1055	of delaminated Adriatic continental lithosphere in the genesis of the Neogene-Quaternary
1056	magmatism of Central Italy. Tectonophysics, 223, 117-147.
1057	
1058	Soete, J., Kleipool, L., Claes, H., Claes, S., Hamaekers, H., Kele S., Özkul, M., Foubert, A.,
1059	Reijmer, J., Swennen, R., 2015. Acoustic properties in travertines and their relation to porosity and
1060	pore types. Marine and Petroleum Geology, 59, 320-335.
1061	
1062	Soligo, M., Tuccimei, P., Barberi, R., Delitala, M.C., Miccadei, E., Taddeucci, A., 2002. U/Th
1063	dating of freshwater travertine from Middle Velino Valley (Central Italy): paleoclimatic and
1064	geological implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 184, 147-161.
1065	
1066	Taddeucci, A., Voltaggio, M., 1987. Th-230 dating of the travertines connected to the Vulsini Mts.
1067	Volcanism (Northern Latium, Italy): neotectonics and hydrogeology. Per. Miner., 56, 295-302.
1068	
1069	Török, Á., Mindszenty, A., Claes, H., Kele, S., Fodor, L., Swennen, R., 2017. Geobody architecture
1070	of continental carbonates: "Gazda" travertine quarry (Süttő, Gerecse Hills, Hungary). Quaternary
1071	International, 437 (Part A), 164-185.
1072	
1073	Vignaroli, G., Pinton, A., De Benedetti, A.A., Giordano, G., Rossetti, F., Soligo, M., Berardi, G.,
1074	2013. Structural compartmentalisation of a geothermal system, the Torre Alfina field (central Italy).
1075	Tectonophysics, 608, 482–498.

1077	Vignaroli, G., Berardi, G., Billi, A., Kele, S., Rossetti, F., Soligo, M., Bernasconi, S.M., 2016.
1078	Tectonics, hydrothermalism, and paleoclimate recorded by Quaternary travertines and their spatio-
1079	temporal distribution in the Albegna basin, central Italy: Insights on Tyrrhenian margin
1080	neotectonics. Lithosphere 8, 335-358.
1081	
1082	Zucchi, M., Brogi, A., Liotta, D., Rimondi, V., Ruggieri, G., Montegrossi, G., Caggianelli, A., Dini,
1083	A. 2017. Permeability and hydraulic conductivity of faulted micaschist in the eastern Elba Island
1084	exhumed geothermal system (Tyrrhenian sea, Italy): insights from Cala Stagnone. Geothermics 70,
1085	125-145.
1086	
1087	
1088	
1089	
1090	
1091	
1092	
1093	

Fig. 1. Geological map of Central Italy and location of study areas. Red circles indicate present-day
geothermal systems and blue circles indicate CO₂-rich springs. Purple stars indicate the three study
areas, i.e. from N to S, Rapolano, Canino and Tivoli (redrawn and modified after De Rita et al.
1995, 2002; Gaeta et al. 2000; Karner et al. 2001; Minissale, 2004; Della Porta et al., 2017).

Fig. 2. Aerial view of the three study areas (images modified from Google Earth/Maps; Digital Globe 2018): A) Rapolano; B) Canino; C) Tivoli. For each area the isopachs of the travertine deposits are shown as well as the rivers and main springs. Alongside are shown the geological maps of the three study areas. The Meso-Cenozoic limestones generally represent the major fractured aquifers hosting deep CO_2 rich fluids. Faults and open fractures represent the zone where deep fluids can reach the surface, generating the thermal springs depositing travertines (modified after Chiodini et al., 1991; Faccena et al., 2008; Brogi and Capezzuoli, 2009; Della Porta et al., 2017).

1108

Fig. 3. 3D reconstructions of the volume occupied by the travertine deposits: A) Rapolano Terme;
B) Canino; C) Tivoli. The limits and the isopachs of the travertine deposits have been used to
reconstruct the 3D models. The different colors indicate the thicknesses of the deposits. The
different morphologies highlight the presence of paleo-valleys and depressions filled during
travertine deposition.

1114

1115 **Fig. 4.** Histograms of (a) porosity and (b) CaCO₃ content.

1116

Fig. 5. Log F-CO2 vs logarithm of the recharge area. Along with the CO_2 discharge rate of Rapolano, Canino and Tivoli travertine systems, in the diagram are shown (a) CO_2 discharge rates of adjacent main geothermal fields of the study area (red circles - Gambardella et al., 2004) and (b)

- the CO₂ discharge rates of some large, CO₂ rich, springs or groups of springs (blue circles -Chiodini et al., 1999 & 2000; Chiodini and Frondini, 2001; Frondini 2008; Frondini et al., 2012). The solid line represents the global baseline of CO₂ fluxes from high heat flow regions (Kerrick et al., 1995) and the dashed lines indicate the range of variation of \Box CO₂ in western central Italy (Chiodini et al., 2000).
- 1125
- 1126 **Fig. 6.** Travertine deposits dating by ${}^{234}U/{}^{230}$ Th and ${}^{14}C$ in western central Italy.

Thickness: 40 m

Thickness: 100 m

Volume: 0,9 Km³

Travertine deposits		Authors	U/Th Age (Ka)	¹⁴ C Age (years B.P.)	
- Umbria-Marche Appenine	\bigcirc	Calderoni et al., (1996)		From 8.260 ± 100	N
- Sarteano	\bigcirc	Brogi et al., (2012)	From 268 ± 22		$\neg \land$
- Rapolano Campo Muri quarry		Carrara et al., (1998)	From 24 ± 3.0	\int	
- Rapolano Terme Oliviera quarry	, O	Brogi et al., (2010)	From 157 ± 15	8 2	
- Bagni San Filippo	\bigcirc	Minissale & Sturchio, 2004	From 55		$\overline{\}$
- Pescara valley (Abruzzo)		Carrara, (1998)	From 120 ± 12		
- Rocchetta al Volturno		Brancaccio et al., (1998)	From 75 ± 8		
- Valdelsa		Capezzuoli et al., (2010)	From 114.3 ± 5.2	r /	\sim
- Aniene valley (Latium)	\bigcirc	Carrara et al., (2006)	From 112 ± 7	$\langle \tilde{1} \rangle$	\sim
- Velino valley (Latium)		Soligo et al., (2002)	From 113.6 ± 18		
- Tuscia (Latium)	\bigcirc	Taddeucci & Voltaggio, (1987	y) From 281 ± 39	<u> </u>	
- Ellera Basin (Umbria)	\bigcirc	Pazzaglia et al., (2011)	From 115 ± 8	\langle	

Table 1. Central tendency and variability of porosity and $CaCO_3$ content obtained from dissolution analysis. For each variable are reported: the mean, the standard deviation, the median, the mean absolute deviation from median (MAD) and the interquartile range (IQR)

	Rapolano	Canino	Tivoli	All samples
observations	29	34	23	86
porosity (%)				
mean	11.39	15.93	7.48	12.14
std	7.23	5.84	4.01	6.75
median	8.45	16.78	9.05	10.68
MAD	2.96	4.42	3.34	4.96
IQR	6.90	5.94	6.53	10.21
CaCO₃ (%)				
mean	97.71	96.90	98.06	97.44
std	2.13	4.11	3.46	3.39
median	98.34	99.09	99.29	99.09
MAD	1.58	2.64	1.64	2.06
IQR	2.71	3.26	1.19	2.89

 Table 2. Carbon dioxide flux calculations

	Rapolano	Canino	Tivoli		
travertine volume (km ³)	0.046	0.90	1.10		
recharge area (km ²)	5.7	75	220		
$CaCO_3$ (moles x10 ¹²)	1.11 ± 0.02	19.60 ± 0.52	26.49 ± 0.69		
Age (ka)	157 ± 15	209 ± 28	87 ± 24		
$F-CO_2 \pmod{y^{-1} x 10^6}$	7.1±1.1	93.8±12.8	304.5±88.9		
f-CO ₂ (mol y ⁻¹ km ⁻² x 10 ⁶)	1.24±0.12	1.25±0.18	1.38±0.42		

Individual contribution to the paper

Alessandro Mancini: Conceptualization, Methodology, Software, Investigation, Writing- Original draft preparation. Francesco Frondini: Conceptualization, Methodology, Formal Analysis, Supervision, Writing- Original draft preparation. Enrico Capezzuoli: Conceptualization, Investigation, Writing- Original draft preparation. Eduard Galvez Mejia: Investigation. Gabriele Lezzi: Investigation. David Matarazzi: Investigation. Andrea Brogi: Writing- Original draft preparation. Rudy Swennen: Conceptualization, Writing- Original draft preparation.

SUPPLEMENTARY MATERIAL 1: samples and stratigraphic logs

SUPPLEMENTARY MATERIAL 2: Mass, volume of travertine specimens and results of dissolution experiments

System	Section	ID	Wi	V	$\rho_{\rm b}$	Wr	CaCO ₃	Porosity	Porosity	CaCO ₃	CaCO ₃
-			g	cm ³	g/cm ³	g	g	fraction	%	%	fraction
Rapolano	Cava Oliviera	A1	34.266	13.50	2.54	0.63	33.64	0.06	5.99	98.17	0.982
Rapolano	Cava Oliviera	A2	28.911	15.00	1.93	0.80	28.11	0.29	28.61	97.23	0.972
Rapolano	Cava Oliviera	A3	26.749	10.50	2.55	0.16	26.59	0.06	5.65	99.42	0.994
Rapolano	Cava Oliviera	A4	31.028	12.50	2.48	0.09	30.94	0.08	8.07	99.72	0.997
Rapolano	Cava Oliviera	A5	29.538	11.50	2.57	0.09	29.45	0.05	4.87	99.71	0.997
Rapolano	Cava Oliviera	A6 48	23.390	9.50	2.40	2.25	21.15	0.09	8.79 12.88	90.39	0.904
Rapolano	Cava Oliviera	ΔQ	30.439	12.50	2.55	0.58	34.35	0.13	5 98	94.55	0.943
Rapolano	Cava Oliviera	A10	33,103	16.50	2.01	0.43	32.68	0.26	25.69	98.71	0.987
Rapolano	Cava Nera	A12	24.665	9.50	2.60	0.63	24.04	0.04	3.84	97.45	0.974
Rapolano	Campo Muri	A13	20.355	8.50	2.39	0.19	20.17	0.11	11.31	99.09	0.991
Rapolano	Campo Muri	A14	36.914	15.50	2.38	1.08	35.84	0.12	11.79	97.09	0.971
Rapolano	Campo Muri	A15	22.336	10.00	2.23	0.26	22.08	0.17	17.27	98.86	0.989
Rapolano	Campo Muri	A16	20.474	9.00	2.27	0.15	20.33	0.16	15.74	99.29	0.993
Rapolano	Campo Muri	A17	14.037	7.50	1.87	0.12	13.92	0.31	30.68	99.16	0.992
Rapolano	Campo Muri	A18	22.044	10.50	2.10	0.92	21.13	0.22	22.24	95.85	0.958
Rapolano	Parco dell'Acqua	A19	23.482	9.50	2.47	1.23	22.25	0.08	8.45	94.76	0.948
Rapolano	Parco dell'Acqua	A20	22 006	14.50 12 E0	2.52	0.50	30.05	0.06	6.50 E 17	98.48	0.985
Rapolano	Parco Auvontura	A21 A22	32.000	12.50	2.30	150	28.68	0.03	10.20	99.39	0.994
Rapolano	Cava Dei	A23	28 4 2 6	11 50	2.42	0.95	20.00	0.10	8 4 5	96.68	0.940
Rapolano	Cava Nera	A24	31.896	12.50	2.55	0.17	31.73	0.05	5.49	99.48	0.995
Rapolano	Cava Nera	A25	29.407	11.50	2.56	0.49	28.92	0.05	5.29	98.34	0.983
Rapolano	Campo Muri	A26a	43.385	17.50	2.48	1.78	41.61	0.08	8.18	95.91	0.959
Rapolano	Campo Muri	A26b	27.226	11.00	2.48	0.76	26.46	0.08	8.33	97.20	0.972
Rapolano	Campo Muri	A27a	19.947	8.00	2.49	0.06	19.89	0.08	7.65	99.71	0.997
Rapolano	Campo Muri	A27b	16.581	7.00	2.37	0.55	16.04	0.12	12.27	96.71	0.967
Rapolano	Campo Muri	A28a	29.378	12.00	2.45	0.06	29.32	0.09	9.33	99.79	0.998
Rapolano	Campo Muri	A28b	31.950	14.00	2.28	0.08	31.87	0.15	15.48	99.75	0.997
Canino	Poggio Olivastro A	A-1 A-2	26.870	0.00	2.05	0.00	10.10	0.25	24.72	99.55	0.995
Canino	Poggio Olivastro A	A-2 A-3	15 930	7 50	2.10	0.25	15.87	0.22	21.23	99.00	0.991
Canino	Poggio Olivastro A	A-4	18.920	9.00	2.12	0.04	18.88	0.22	22.14	99.80	0.998
Canino	Poggio Olivastro A	A-5	19.250	9.00	2.14	0.02	19.23	0.21	20.78	99.91	0.999
Canino	Poggio Olivastro B	B-1	13.240	7.00	1.89	0.11	13.13	0.30	29.95	99.19	0.992
Canino	Poggio Olivastro B	B-2	18.020	8.00	2.25	0.29	17.73	0.17	16.57	98.41	0.984
Canino	Poggio Olivastro B	B-3	21.940	10.00	2.19	0.34	21.60	0.19	18.74	98.46	0.985
Canino	Poggio Olivastro B	B-4	15.690	7.00	2.24	0.10	15.59	0.17	16.98	99.38	0.994
Canino	Poggio Olivastro M	M-1	20.110	8.00	2.51	2.57	17.54	0.07	6.90	87.24	0.872
Canino	Poggio Olivastro M	M-2	18.480	7.00	2.64	0.17	18.31	0.02	2.22	99.10	0.991
Canino	Poggio Olivastro M	M-3	18.070	8.00	2.26	0.43	17.64	0.16	16.34	97.64	0.976
Canino	Poggio Olivastro C	C-1 C-2	25.010	9.00	2.09	0.04	24.93	0.23	22.55	99.00 99.60	0.998
Canino	Poggio Olivastro C	C-3	25 500	11.00	2.27	0.00	24.95	0.10	14 14	97.89	0.979
Canino	Poggio Olivastro C	C-4	19.100	9.00	2.12	0.09	19.01	0.21	21.40	99.54	0.995
Canino	Poggio Olivastro D	D-1	33.180	13.50	2.46	0.23	32.95	0.09	8.97	99.32	0.993
Canino	Poggio Olivastro D	D-2	17.230	7.50	2.30	0.11	17.12	0.15	14.91	99.38	0.994
Canino	Poggio Olivastro D	D-3	22.200	10.00	2.22	0.20	22.00	0.18	17.78	99.11	0.991
Canino	Poggio Olivastro D	D-4	20.590	8.00	2.57	0.11	20.48	0.05	4.68	99.48	0.995
Canino	Poggio Olivastro E	E-1	25.150	10.00	2.52	0.10	25.05	0.07	6.85	99.61	0.996
Canino	Poggio Olivastro E	E-2	20.490	9.00	2.28	0.45	20.04	0.16	15.68	97.82	0.978
Canino	Poggio Olivastro E	E-3	26.500	12.00	2.21	0.26	26.24	0.18	18.21	99.03	0.990
Canino	Poggio Olivastro E	E-4 E-5	20 110	0.00	2.30	0.05	20.00	0.15	14.72	99.74	0.997
Canino	Fiume Fiora F	E-3 F-1	16 610	7 50	2.23	0.02	15 72	0.17	17.24	94.66	0.999
Canino	Fiume Fiora F	F-2	21.920	10.00	2.19	1.68	20.24	0.19	18.81	92.35	0.923
Canino	Fiume Fiora F	F-3	20.840	9.00	2.32	2.68	18.16	0.14	14.24	87.15	0.872
Canino	Fiume Fiora G	G-1	17.880	8.00	2.24	2.05	15.83	0.17	17.22	88.55	0.886
Canino	Fiume Fiora G	G-2	20.420	8.50	2.40	0.70	19.72	0.11	11.02	96.59	0.966
Canino	Fiume Fiora G	G-3	34.320	14.00	2.45	1.28	33.04	0.09	9.21	96.28	0.963
Canino	Fiume Fiora G	G-4	26.580	12.00	2.22	3.27	23.31	0.18	17.96	87.71	0.877
Canino	Fiume Fiora G	G-5	21.680	9.00	2.41	2.03	19.65	0.11	10.78	90.65	0.907
Canino	Fiume Fiora G	G-6	28.230	12.00	2.35	1.98	26.25	0.13	12.87	93.00	0.930
Tiveli	Cava Morelli 3° banco	A1 A2	23.190 22.170	9.5U 0 E0	2.44	0.16	∠3.U3 22.02	0.10	9.5/ 0.67	99.29 00.40	0.993
Tivoli	Cava Morelli 3º hanco	Δ2	23.170 19.627	9.50	2.44	0.14	23.03 19.63	0.10	9.07	99.40 99.94	0.774
Tivoli	Cava Morelli 3º banco	A4	22.474	8.50	2.64	0.23	22.19	0.02	2.29	98.96	0.990
Tivoli	Cava Morelli 3º banco	A5	31.384	12.50	2.51	0.03	31.36	0.07	7.01	99.91	0.999
Tivoli	Cava Morelli 3º banco	A6	25.324	10.50	2.41	0.05	25.28	0.11	10.67	99.81	0.998
Tivoli	Cava Morelli 3º banco	Α7	25.515	10.50	2.43	0.02	25.49	0.10	10.00	99.91	0.999

Tivoli	Cava Morelli 2° banco	B1	24.749	10.50	2.36	2.40	22.35	0.13	12.70	90.30	0.903
Tivoli	Cava Morelli 2° banco	B2	24.326	9.50	2.56	0.03	24.30	0.05	5.16	99.88	0.999
Tivoli	Cava Morelli 2° banco	B3	27.541	10.50	2.62	3.96	23.59	0.03	2.85	85.64	0.856
Tivoli	Cava Morelli 2° banco	B4	26.924	10.50	2.56	0.37	26.55	0.05	5.03	98.61	0.986
Tivoli	Cava Morelli 2° banco	B5	24.490	9.50	2.58	0.60	23.89	0.05	4.52	97.56	0.976
Tivoli	Cava Morelli 2° banco	B6	21.375	9.50	2.25	0.04	21.33	0.17	16.67	99.80	0.998
Tivoli	Cava Morelli 2° banco	B7	31.068	13.00	2.39	1.52	29.55	0.11	11.49	95.10	0.951
Tivoli	Cava Morelli 2° banco	B8	25.447	10.50	2.42	0.17	25.28	0.10	10.24	99.32	0.993
Tivoli	Cava Morelli 1º banco	C1	26.529	11.00	2.41	0.24	26.29	0.11	10.68	99.11	0.991
Tivoli	Cava Morelli 1º banco	C2	23.329	9.50	2.46	0.09	23.24	0.09	9.05	99.60	0.996
Tivoli	Cava Morelli 1º banco	C3	27.397	11.00	2.49	0.11	27.29	0.08	7.75	99.60	0.996
Tivoli	Cava Morelli 1º banco	C4	29.619	11.00	2.69	1.06	28.56	0.00	0.27	96.43	0.964
Tivoli	Cava Morelli 1º banco	C5	26.962	11.00	2.45	0.08	26.88	0.09	9.22	99.71	0.997
Tivoli	Cava Morelli 1º banco	C6	24.698	9.50	2.60	0.18	24.52	0.04	3.71	99.28	0.993
Tivoli	Cava Morelli 1º banco	C7	26.357	10.00	2.64	0.24	26.11	0.02	2.38	99.07	0.991
Tivoli	Cava Morelli 1º banco	C8	26.403	10.00	2.64	0.22	26.18	0.02	2.21	99.15	0.992
-											