We study the relaxation of water molecules next to hydrophobic solutes with different functional groups by Brillouin light scattering. Evidence is given for (i) water activation energy in trimethylamine-N-oxide, proline and t-butyl alcohol diluted solutions which is comparable to that of neat water, almost independent from solute mole fraction and (ii) moderate slowdown of relaxation time of proximal water compared to the bulk, which is consistent with excluded volume models. Assuming that the main contribution to viscosity comes from bulk and hydration water, a rationale is given of the phenomenological Arrhenius' laws for the viscosity of diluted aqueous solutions. (C) 2012 American Institute of Physics.

Hydration properties of small hydrophobic molecules by Brillouin light scattering

COMEZ, Lucia;LUPI, LAURA;PAOLANTONI, Marco;FIORETTO, Daniele
2012

Abstract

We study the relaxation of water molecules next to hydrophobic solutes with different functional groups by Brillouin light scattering. Evidence is given for (i) water activation energy in trimethylamine-N-oxide, proline and t-butyl alcohol diluted solutions which is comparable to that of neat water, almost independent from solute mole fraction and (ii) moderate slowdown of relaxation time of proximal water compared to the bulk, which is consistent with excluded volume models. Assuming that the main contribution to viscosity comes from bulk and hydration water, a rationale is given of the phenomenological Arrhenius' laws for the viscosity of diluted aqueous solutions. (C) 2012 American Institute of Physics.
2012
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1001868
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 23
social impact