We present a relatively simple analytical/conceptual model for rainfall infiltration during complex storms. It is an approximate but physically based model which can treat intervals of either no rain, low rain, or evaporation. The infiltration model is based on the very general three-parameter analytic model of Parlange et al. (1982), extended to treat soils with very high initial water content. The redistribution model is based on profile extension with shape similarity. A wide range of soil types can be simulated. The model is tested by comparison with numerical solutions of Richards's equation carried out for a variety of events upon four selected soils. The model simulates the solution to Richards's equation quite accurately, provided basic soil retention relations are parametrically represented. It simulates redistribution particularly well for redistribution intervals up to 20 hours. The model usefulness in comparison with the common and simple approach which disregards soil water redistribution is also shown.

Modeling infiltration for multistorm runoff events

CORRADINI, Corrado;
1993

Abstract

We present a relatively simple analytical/conceptual model for rainfall infiltration during complex storms. It is an approximate but physically based model which can treat intervals of either no rain, low rain, or evaporation. The infiltration model is based on the very general three-parameter analytic model of Parlange et al. (1982), extended to treat soils with very high initial water content. The redistribution model is based on profile extension with shape similarity. A wide range of soil types can be simulated. The model is tested by comparison with numerical solutions of Richards's equation carried out for a variety of events upon four selected soils. The model simulates the solution to Richards's equation quite accurately, provided basic soil retention relations are parametrically represented. It simulates redistribution particularly well for redistribution intervals up to 20 hours. The model usefulness in comparison with the common and simple approach which disregards soil water redistribution is also shown.
1993
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/100306
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 110
  • ???jsp.display-item.citation.isi??? 101
social impact