Abstract Several “low molecular weight” or “secretory” phospholipases A2 isoforms may be expressed in mammalian neural cells. Indeed, mRNAs for GIB, GIIA, GIIE, GIII, GV, GX, and GXII were detected in brain tissues despite different levels. However, only the presence of GIB, GIIA, and GV proteins has been clearly demonstrated in neural cells or in the nervous tissue. Although the roles of GIB and GV in the nervous tissue are still elusive, there is evidence to support the involvement of GIIA in physiological and pathological events, including neurotransmission, long-term potentiation, and neuritogenesis. The neurotoxic effects of an increase in GIIA may be envisaged under pathological conditions associated with the activation of astrocytes during inflammation or through activation of neurons and enzymes due to the stimulation of the NMDA glutamate receptor. In the past, elevation of GIIA expression in many acute and chronic neurological diseases is well known. Although each neurodegenerative disease has a separate etiology, many share similar neurochemical common processes, such as excitotoxicity, oxidative stress, and mitochondrial dysfunction, phenomena where GIIA play an important role.

Low Molecular Weight Phospholipases A2 in Mammalian Brain and Neural Cells: Roles in Functions and Dysfunctions

GORACCI, Gianfrancesco;
2010

Abstract

Abstract Several “low molecular weight” or “secretory” phospholipases A2 isoforms may be expressed in mammalian neural cells. Indeed, mRNAs for GIB, GIIA, GIIE, GIII, GV, GX, and GXII were detected in brain tissues despite different levels. However, only the presence of GIB, GIIA, and GV proteins has been clearly demonstrated in neural cells or in the nervous tissue. Although the roles of GIB and GV in the nervous tissue are still elusive, there is evidence to support the involvement of GIIA in physiological and pathological events, including neurotransmission, long-term potentiation, and neuritogenesis. The neurotoxic effects of an increase in GIIA may be envisaged under pathological conditions associated with the activation of astrocytes during inflammation or through activation of neurons and enzymes due to the stimulation of the NMDA glutamate receptor. In the past, elevation of GIIA expression in many acute and chronic neurological diseases is well known. Although each neurodegenerative disease has a separate etiology, many share similar neurochemical common processes, such as excitotoxicity, oxidative stress, and mitochondrial dysfunction, phenomena where GIIA play an important role.
2010
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/103019
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact