The coarseness error of the finite-difference (FD) method is studied analyzing a typical planar waveguide and a rectangular coaxial geometry. Results for equidistant and graded mesh are compared in terms of accuracy and numerical efforts. Because of the field singularities involved a graded mesh proves to be superior compared to the equidistant case. A grading strategy with optimum efficiency is presented. Furthermore, the results show that the most significant improvement in accuracy can be obtained by incorporating the edge behavior into the FD scheme

Optimum mesh grading for finite-difference method

MEZZANOTTE, Paolo;ROSELLI, Luca
1996

Abstract

The coarseness error of the finite-difference (FD) method is studied analyzing a typical planar waveguide and a rectangular coaxial geometry. Results for equidistant and graded mesh are compared in terms of accuracy and numerical efforts. Because of the field singularities involved a graded mesh proves to be superior compared to the equidistant case. A grading strategy with optimum efficiency is presented. Furthermore, the results show that the most significant improvement in accuracy can be obtained by incorporating the edge behavior into the FD scheme
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/119613
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 31
social impact