Topological matter in 3D is characterized by the presence of a topological BF term in its long- distance effective action. We show that, in 3D, there is another marginal term that must be added to the action in order to fully determine the physical content of the model. The quantum phase structure is governed by three parameters that drive the condensation of topological defects: the BF coupling, the electric permittivity and the magnetic permeability of the material. For intermediate levels of electric permittivity and magnetic permeability the material is a topological insulator. We predict, however, new states of matter when these parameters cross critical values: a topological superconductor when electric permittivity is increased and magnetic permeability is lowered and a charge confinement phase in the opposite case of low electric permittivity and high magnetic permeability. Synthetic topological matter may be fabricated as 3D arrays of Josephson junctions.

From topological insulators to superconductors and Confinement

DIAMANTINI, MARIA CRISTINA;
2012

Abstract

Topological matter in 3D is characterized by the presence of a topological BF term in its long- distance effective action. We show that, in 3D, there is another marginal term that must be added to the action in order to fully determine the physical content of the model. The quantum phase structure is governed by three parameters that drive the condensation of topological defects: the BF coupling, the electric permittivity and the magnetic permeability of the material. For intermediate levels of electric permittivity and magnetic permeability the material is a topological insulator. We predict, however, new states of matter when these parameters cross critical values: a topological superconductor when electric permittivity is increased and magnetic permeability is lowered and a charge confinement phase in the opposite case of low electric permittivity and high magnetic permeability. Synthetic topological matter may be fabricated as 3D arrays of Josephson junctions.
2012
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1223703
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 11
social impact