Parkinson's disease (PD) patients exhibit motor and non-motor symptoms that severely affect quality of life. Cognitive alterations in PD subjects have been related to both structural and functional hippocampal changes. Here we investigated the effects of the 6-hydroxydopamine (6-OHDA) lesion in the Medial Forebrain Bundle (MFB) on the hippocampus focusing on the Dentate Gyrus (DG). In vivo microdialysis measurements revealed that the 6-OHDA injection disrupts both dopaminergic and noradrenergic transmission in rat DG. In vitro electrophysiological recordings showed that these neurochemical alterations were accompanied by impairment of long-term depression (LTD) at medial perforate path/DG synapses. Furthermore, this alteration was reversed by l-DOPA treatment. Notably, the therapeutic effect of l-DOPA on LTD was blocked by the antagonism of β-noradrenergic receptors, but not by dopamine D1 or D2 receptor antagonists. Thus, while the dopaminergic transmission does not seem to be implicated in this therapeutic effect of l-DOPA, the noradrenergic system plays a central role in the synaptic dysfunction of the DG in experimental PD. Our work provides new evidence on the role of catecholamines in DG synaptic plasticity and sheds light on the possible synaptic mechanisms underlying cognitive deficits in PD. Furthermore, our results indicate that l-DOPA exerts a therapeutic effect on the parkinsonian brain through different, coexistent, mechanisms.

l-DOPA reverses the impairment of Dentate Gyrus LTD in experimental parkinsonism via β-adrenergic receptors.

Ghiglieri, Veronica;CALABRESI, PAOLO;
2014

Abstract

Parkinson's disease (PD) patients exhibit motor and non-motor symptoms that severely affect quality of life. Cognitive alterations in PD subjects have been related to both structural and functional hippocampal changes. Here we investigated the effects of the 6-hydroxydopamine (6-OHDA) lesion in the Medial Forebrain Bundle (MFB) on the hippocampus focusing on the Dentate Gyrus (DG). In vivo microdialysis measurements revealed that the 6-OHDA injection disrupts both dopaminergic and noradrenergic transmission in rat DG. In vitro electrophysiological recordings showed that these neurochemical alterations were accompanied by impairment of long-term depression (LTD) at medial perforate path/DG synapses. Furthermore, this alteration was reversed by l-DOPA treatment. Notably, the therapeutic effect of l-DOPA on LTD was blocked by the antagonism of β-noradrenergic receptors, but not by dopamine D1 or D2 receptor antagonists. Thus, while the dopaminergic transmission does not seem to be implicated in this therapeutic effect of l-DOPA, the noradrenergic system plays a central role in the synaptic dysfunction of the DG in experimental PD. Our work provides new evidence on the role of catecholamines in DG synaptic plasticity and sheds light on the possible synaptic mechanisms underlying cognitive deficits in PD. Furthermore, our results indicate that l-DOPA exerts a therapeutic effect on the parkinsonian brain through different, coexistent, mechanisms.
2014
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1288169
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact