The use of solid oxide fuel cell (SOFC) systems in micro-CHP applications is of great interest because of high efficiency, low emissions and absence of noise. However, SOFCs are sensitive to degradation caused by organic sulfur compounds present in natural gas or added as odorants. Among them, dimethyl sulfide (DMS) is one of the sulfur species most resistant to purification treatments and, relative to DMS removal, a lack in literature is highlighted for the investigated application. Regarding adsorption technology, the present work deals with an organic sensitivity performance analysis of different commercial sorbents. Virgin and impregnated activated carbons and a natural zeolite were tested, varying gas hourly space velocity, reactor geometry and filter assembly. Because of differences in activity towards DMS exhibited by the investigatedmaterials, to exploit their selectivity, also layered sorbentswere realized and tested. Starting from resulting data, for the yearly operation of 1 kWel SOFC-based micro-CHP system, an optimization of filter assembly (also considering multi-layered configurations) and operative conditions was performed, leading to a strong reduction in filter volume (up to five times) and cost (more than three times), with overall pressure drops compatible with pipeline gas distribution pressure.

Dimethyl sulfide adsorption from natural gas for solid oxide fuel cell applications

BARELLI, Linda;BIDINI, Gianni;Desideri, Umberto;DISCEPOLI, GABRIELE;SISANI, ELENA
2015

Abstract

The use of solid oxide fuel cell (SOFC) systems in micro-CHP applications is of great interest because of high efficiency, low emissions and absence of noise. However, SOFCs are sensitive to degradation caused by organic sulfur compounds present in natural gas or added as odorants. Among them, dimethyl sulfide (DMS) is one of the sulfur species most resistant to purification treatments and, relative to DMS removal, a lack in literature is highlighted for the investigated application. Regarding adsorption technology, the present work deals with an organic sensitivity performance analysis of different commercial sorbents. Virgin and impregnated activated carbons and a natural zeolite were tested, varying gas hourly space velocity, reactor geometry and filter assembly. Because of differences in activity towards DMS exhibited by the investigatedmaterials, to exploit their selectivity, also layered sorbentswere realized and tested. Starting from resulting data, for the yearly operation of 1 kWel SOFC-based micro-CHP system, an optimization of filter assembly (also considering multi-layered configurations) and operative conditions was performed, leading to a strong reduction in filter volume (up to five times) and cost (more than three times), with overall pressure drops compatible with pipeline gas distribution pressure.
2015
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1353820
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact