In East Asia, for thousands of years, the fruit of Chinese tallow tree (Sapium sebiferum) has been used for multiple purposes because of its chemical composition; the presence of high amounts of lipids is remarkable, showing potential to be used as substrate for biodiesel synthesis. Previously have been reported the use of alkaline and enzymatic catalysts, microwave technology and the use of ionic liquids as co-solvents with the lipids of this tree species to produce biodiesel. This study shows the results of the use of Burkholderia cepacia lipase as enzymatic catalyst for transesterification of Chinese Tallow Kernel oil (CTK), extracted from the fruit of Chinese tallow tree, into biodiesel, with the use of ultrasonic assisted technology and without the usage of solvents. The optimal operational parameters were determined and the reactions were developed in a batch reactor with the use of ultrasonic irradiation and emulsification to enhance the mass transfer. The scaled-up experiments, in an especially designed 3 L capacity reactor, showed promising results, obtaining 55.20% biodiesel and a kinematic viscosity of 10.31 mm2.s−1 in only 4 h, in comparison with previously published (in vitro) methods. The valorization of this non-edible source of oil represents an opportunity to use as an alternative source for bioenergy and also to tackle the uncontrolled expansion of this oleaginous tree species in some ecologically fragile ecosystems.

Scaled-up biodiesel synthesis from Chinese Tallow Kernel oil catalyzed by Burkholderia cepacia lipase through ultrasonic assisted technology: A non-edible and alternative source of bio energy

Bartocci P.;Fantozzi F.
2019

Abstract

In East Asia, for thousands of years, the fruit of Chinese tallow tree (Sapium sebiferum) has been used for multiple purposes because of its chemical composition; the presence of high amounts of lipids is remarkable, showing potential to be used as substrate for biodiesel synthesis. Previously have been reported the use of alkaline and enzymatic catalysts, microwave technology and the use of ionic liquids as co-solvents with the lipids of this tree species to produce biodiesel. This study shows the results of the use of Burkholderia cepacia lipase as enzymatic catalyst for transesterification of Chinese Tallow Kernel oil (CTK), extracted from the fruit of Chinese tallow tree, into biodiesel, with the use of ultrasonic assisted technology and without the usage of solvents. The optimal operational parameters were determined and the reactions were developed in a batch reactor with the use of ultrasonic irradiation and emulsification to enhance the mass transfer. The scaled-up experiments, in an especially designed 3 L capacity reactor, showed promising results, obtaining 55.20% biodiesel and a kinematic viscosity of 10.31 mm2.s−1 in only 4 h, in comparison with previously published (in vitro) methods. The valorization of this non-edible source of oil represents an opportunity to use as an alternative source for bioenergy and also to tackle the uncontrolled expansion of this oleaginous tree species in some ecologically fragile ecosystems.
2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1459730
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 22
social impact