Lipoproteins are the complexes of different lipids and proteins, which are devoted to the transport and clearance of lipids or lipid-related molecules in the circulation. Lipoproteins have been found to play a crucial role in brain function and may influence myelination process. Among lipoproteins, high-density lipoproteins (HDLs) and their major protein component, apoA-I, are directly involved in cholesterol efflux in the brain. It has been suggested that inadequate or dysfunctional brain HDLs may contribute to cerebrovascular dysfunctions, neurodegeneration, or neurovascular instability. HDL deficiency could also promote cognitive decline through impacting on atherosclerotic risk. The focus of this review is to discuss knowledge on HDL dysregulation in neurological disorders. A better understanding on how changes in cellular HDL and apolipoprotein homeostasis affect central nervous system function may provide promising novel avenues for the treatment of specific HDL-related neurological disorders.

Emerging roles for high-density lipoproteins in neurodegenerative disorders

Pirro M.;
2019

Abstract

Lipoproteins are the complexes of different lipids and proteins, which are devoted to the transport and clearance of lipids or lipid-related molecules in the circulation. Lipoproteins have been found to play a crucial role in brain function and may influence myelination process. Among lipoproteins, high-density lipoproteins (HDLs) and their major protein component, apoA-I, are directly involved in cholesterol efflux in the brain. It has been suggested that inadequate or dysfunctional brain HDLs may contribute to cerebrovascular dysfunctions, neurodegeneration, or neurovascular instability. HDL deficiency could also promote cognitive decline through impacting on atherosclerotic risk. The focus of this review is to discuss knowledge on HDL dysregulation in neurological disorders. A better understanding on how changes in cellular HDL and apolipoprotein homeostasis affect central nervous system function may provide promising novel avenues for the treatment of specific HDL-related neurological disorders.
2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1462959
Citazioni
  • ???jsp.display-item.citation.pmc??? 14
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 27
social impact