Borexino is a 280-ton liquid scintillator detector located at the Laboratori Nazionali del Gran Sasso (LNGS), Italy and is one of the two detectors that has measured geoneutrinos so far. The unprecedented radio-purity of the scintillator, the shielding with highly purified water, and the placement of the detector at a 3800 m w.e. depth have resulted in very low background levels and has made Borexino an excellent apparatus for geoneutrino measurements. The new update of the Borexino geoneutrino measurement, using the data obtained from December 2007 to April 2019, has been presented. Enhanced analysis techniques, adopted in this measurement, have been also presented (poster presentation #39 by S. Kumaran). The updated statistics and the new elaborate analysis have led to more than a factor two increase in exposure ((1.12 +/- 0.05) x 10(32) protons x yr) when compared to the latest Borexino result from 2015. The resulting geoneutrino signal of 47.0(-7.7)(+8-.4) (stat)(-1.9)(+2.4) (sys) TNU has (+18.3)(-17.2)% total precision. The geological interpretations of this measurement have been discussed. In particular, the 99% C.L. observation of the mantle signal by exploiting the relatively well-known lithospheric contribution, the estimation of the radiogenic heat, as well as the comparison of these results to the predictions based on different geological models. The upper limits on the power of a hypothetical georeactor that might be present at different locations inside the Earth have been set.

Updated geoneutrino measurement with Borexino

F. Ortica;A. Romani;
2020

Abstract

Borexino is a 280-ton liquid scintillator detector located at the Laboratori Nazionali del Gran Sasso (LNGS), Italy and is one of the two detectors that has measured geoneutrinos so far. The unprecedented radio-purity of the scintillator, the shielding with highly purified water, and the placement of the detector at a 3800 m w.e. depth have resulted in very low background levels and has made Borexino an excellent apparatus for geoneutrino measurements. The new update of the Borexino geoneutrino measurement, using the data obtained from December 2007 to April 2019, has been presented. Enhanced analysis techniques, adopted in this measurement, have been also presented (poster presentation #39 by S. Kumaran). The updated statistics and the new elaborate analysis have led to more than a factor two increase in exposure ((1.12 +/- 0.05) x 10(32) protons x yr) when compared to the latest Borexino result from 2015. The resulting geoneutrino signal of 47.0(-7.7)(+8-.4) (stat)(-1.9)(+2.4) (sys) TNU has (+18.3)(-17.2)% total precision. The geological interpretations of this measurement have been discussed. In particular, the 99% C.L. observation of the mantle signal by exploiting the relatively well-known lithospheric contribution, the estimation of the radiogenic heat, as well as the comparison of these results to the predictions based on different geological models. The upper limits on the power of a hypothetical georeactor that might be present at different locations inside the Earth have been set.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1473660
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact