The sensitivity of gravitational wave interferometric detectors is ultimately limited by the quantum noise, which arises from the quantum nature of light and it is driven by vacuum fluctuations of the optical field entering from the dark port of the interferometer. One way to improve the sensitivity of gravitational wave interferometers is to inject squeezed vacuum into the dark port. This has been already demonstrated for the main gravitational wave detectors (GEO, Advanced LIGO and Advanced VIRGO). We are studying tricks to produce a "frequency- dependent squeezing": a standard method is to filter the squeezed optical field with one or more optical cavities (300 m long cavities). An alternative method using a pair of squeezed EPR (Einstein-Podolsky-Rosen) entangled beams to produce frequency-dependent squeezing by a non-degenerate OPO (Optical Parametric Oscillator) will be discussed in this paper. This method promises to achieve a frequency-dependent optimization of the injected squeezed light fields without the need for an external filter cavity.

Frequency-dependent squeezing generation with EPR entanglement

Bawaj M.;
2020

Abstract

The sensitivity of gravitational wave interferometric detectors is ultimately limited by the quantum noise, which arises from the quantum nature of light and it is driven by vacuum fluctuations of the optical field entering from the dark port of the interferometer. One way to improve the sensitivity of gravitational wave interferometers is to inject squeezed vacuum into the dark port. This has been already demonstrated for the main gravitational wave detectors (GEO, Advanced LIGO and Advanced VIRGO). We are studying tricks to produce a "frequency- dependent squeezing": a standard method is to filter the squeezed optical field with one or more optical cavities (300 m long cavities). An alternative method using a pair of squeezed EPR (Einstein-Podolsky-Rosen) entangled beams to produce frequency-dependent squeezing by a non-degenerate OPO (Optical Parametric Oscillator) will be discussed in this paper. This method promises to achieve a frequency-dependent optimization of the injected squeezed light fields without the need for an external filter cavity.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1482644
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact