The homeostasis of cytosolic calcium [Ca2+](c) in mammalian cells is a complex phenomenon, requiring the contribution of many cellular and extracellular systems. Nitric oxide (NO) acts on [Ca2+](c), although the mechanism of this action is unknown. We study the release and the uptake of Ca2+ in the endoplasmic reticulum and its capacitative entry in human lymphomonocytes in the presence of the NO donor S-nitrosocysteine (CysNO) at low (16 microM) and at high (160 microM) concentrations by measuring the [Ca2+](c) by the Fura 2-AM method. Thapsigargin (TG), which inhibits sarco-endoplasmic reticulum Ca2+-ATPase (SERCA), and nifedipine (NIF), which blocks the Ca2+ release from intracellular stores, are used to clarify the effects of NO on calcium movements. In the absence of extracellular Ca2+, CysNO decreases basal [Ca2+](c), whereas TG increases it as the result of SERCA inhibition. This effect of TG diminishes in the presence of the NO donor. In the presence of extracellular Ca2+(capacitative entry conditions), CysNO does not influence Ca2+ entry but reduces the toxic effects of TG connected to the increase of [Ca2+](c) in these conditions. The effect of NIF is, up to a certain extent, similar to that of CysNO, although the mechanisms of action of the two agents do not seem related. We conclude that CysNO participates in [Ca2+](c) homeostasis by stimulating the movement of the ion from the cytosol to other compartments.

The cytosolic calcium concentration is affected by S-nitosocysteine in human lymphomonocytes.

PALMERINI, Carlo Alberto;MAZZONI, MICHELA;SACCARDI, Carla;ARIENTI, Giuseppe
2008

Abstract

The homeostasis of cytosolic calcium [Ca2+](c) in mammalian cells is a complex phenomenon, requiring the contribution of many cellular and extracellular systems. Nitric oxide (NO) acts on [Ca2+](c), although the mechanism of this action is unknown. We study the release and the uptake of Ca2+ in the endoplasmic reticulum and its capacitative entry in human lymphomonocytes in the presence of the NO donor S-nitrosocysteine (CysNO) at low (16 microM) and at high (160 microM) concentrations by measuring the [Ca2+](c) by the Fura 2-AM method. Thapsigargin (TG), which inhibits sarco-endoplasmic reticulum Ca2+-ATPase (SERCA), and nifedipine (NIF), which blocks the Ca2+ release from intracellular stores, are used to clarify the effects of NO on calcium movements. In the absence of extracellular Ca2+, CysNO decreases basal [Ca2+](c), whereas TG increases it as the result of SERCA inhibition. This effect of TG diminishes in the presence of the NO donor. In the presence of extracellular Ca2+(capacitative entry conditions), CysNO does not influence Ca2+ entry but reduces the toxic effects of TG connected to the increase of [Ca2+](c) in these conditions. The effect of NIF is, up to a certain extent, similar to that of CysNO, although the mechanisms of action of the two agents do not seem related. We conclude that CysNO participates in [Ca2+](c) homeostasis by stimulating the movement of the ion from the cytosol to other compartments.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/151176
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact