In this work we use a wafer-level, High Resolution Resistance Measuring Technique (HRRMT) to detect fabrication faults of Al-Cu interconnections. Experiments have been performed on two distinct sets of metal lines. The first set includes two lots of 4 μm wide lines which, once tested at moderately accelerated stress conditions, gave largely different life times. A microstructural analysis confirmed a major defectivity of the lot with shorter life time. An accurate examination of the early resistance variations revealed the presence of two distinct and subsequent phases, namely an initial pseudo-parabolic resistance increase followed by a linear resistance drop. Significant differences between the resistance behaviour of the two lots were detected during the first stage, lasting a few hours. Measurable differences could even be detected in the first few minutes. A second group of experiments was launched in order to assess the capability of HRRMT as in-line monitors. Samples from four wafers, one reference wafer and three wafers with intentional process variations, have been tested using our HRRMT at constant temperature and current, simulating an in-line production test. The standard life time of the four wafers have also been collected. Preliminary measurements highlight that a change of life time due to process variation corresponds to changes of the resistance behaviour in the first hours of test. These results pave the way for a new application of high resolution methods to assess the quality of a metallization system in a reasonable amount of time.

Early Detection of the Metallization Quality Using Moderately Accelerated Electromigration Stress Conditions

SCORZONI, Andrea;
1998

Abstract

In this work we use a wafer-level, High Resolution Resistance Measuring Technique (HRRMT) to detect fabrication faults of Al-Cu interconnections. Experiments have been performed on two distinct sets of metal lines. The first set includes two lots of 4 μm wide lines which, once tested at moderately accelerated stress conditions, gave largely different life times. A microstructural analysis confirmed a major defectivity of the lot with shorter life time. An accurate examination of the early resistance variations revealed the presence of two distinct and subsequent phases, namely an initial pseudo-parabolic resistance increase followed by a linear resistance drop. Significant differences between the resistance behaviour of the two lots were detected during the first stage, lasting a few hours. Measurable differences could even be detected in the first few minutes. A second group of experiments was launched in order to assess the capability of HRRMT as in-line monitors. Samples from four wafers, one reference wafer and three wafers with intentional process variations, have been tested using our HRRMT at constant temperature and current, simulating an in-line production test. The standard life time of the four wafers have also been collected. Preliminary measurements highlight that a change of life time due to process variation corresponds to changes of the resistance behaviour in the first hours of test. These results pave the way for a new application of high resolution methods to assess the quality of a metallization system in a reasonable amount of time.
1998
155899422X
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/922305
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact