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Abstract
Evaluating the performance of health care institutions is of paramount interest 
and it is often conducted using generalized linear mixed models. In this paper, we 
focus on the evaluation of Nursing Homes for elderly residents in a region of Italy 
and concentrate on binary outcomes (death and worsening). We propose to use 
a routinely assessed covariate such as the Resource Utilization Group to account 
for case-mix. We fit finite mixtures of logistic models to check the assumption of 
normality of the random effects in the generalized linear mixed model approach 
and to obtain a clustering of the Nursing Homes with respect to their performance. 
Since the distribution of the random effects is very skew, we propose to use scores 
based on robust M-Quantile regression for binary data and estimate their standard 
error using block-bootstrap. A sensitivity analysis is also conducted to evaluate the 
assumption of missing at random for non-observed data on discharged residents.
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1  Introduction

As it is well-known, in Western countries Nursing Home (NH) care services are 
often supplied by private facilities, that typically get access to specific financial 
programs implemented by national or regional governments. Within this framework, 
equitable cost-based reimbursement schemes usually account for case-mix, that is, 
for the overall level of clinical complexity that each NH has to cope with (Brizioli 
et al. 2003). Indeed, NH residents typically find themselves in quite different health 
conditions when entering the facilities.

A well known approach to measure case-mix consists in classifying NH 
residents into Resource Utilization Groups  (RUGs; Schneider et  al. 1988; Fries 
et  al. 1994). The underlying idea is that residents belonging to the same RUG 
require approximately the same amount of resources to take care of them. Such a 
classification method was found to be quite effective in explaining the variability 
in NH managing costs (Ikegami et al. 1994; Fries et al. 1994), and it is still used in 
various public health care contexts; see for example Punelli and Williams (2013) 
and Broussard and Reiter (2020). The RUG classification version currently in use is 
RUG III (Fries et al. 1994).

The importance of adjusting for case-mix extends to another area of primary 
interest: the evaluation of care facilities’ performance  (Berlowitz et  al. 1996). In 
detail, when case-mix related factors are also associated with the outcome variables 
(like in most cases), some degree of confounding arises, and adjusting for such 
factors turns out to be necessary in order to make fair comparisons  (Wray et  al. 
1997).

In this paper, we build upon this framework and exploit the RUG classification 
for adjustment purposes, when comparing the performances of a set of NHs with 
respect to relevant outcomes. Specifically, we fit a set of statistical models to data 
collected on residents hosted by a group of NHs in Umbria, a region of central Italy. 
Our overall aim is assessing NH performance in relative terms, that is, taking their 
average level as benchmark. For all these models, case-mix adjustment is addressed 
by including residents’ RUG as a covariate.

Although embedded in a cross-sectional framework, our analyses take the same 
perspective as those implemented for NH performance evaluation with longitudinal 
data  (Bartolucci et  al. 2009; Montanari et  al. 2018; Montanari and Doretti 2019). 
Indeed, NH performance remains framed in terms of ability to preserve as much as 
possible residents’ health status. In this respect, we consider two binary outcomes 
of interest: resident death and resident worsening, both one year after baseline. As 
detailed in Sect. 2, worsening is defined in terms of RUGs as well.

Like in the more developed literature on hospital evaluation (see, e.g.,  Grieco 
et  al. 2012;  Berta et  al. 2016;  Berta and Vinciotti 2019), refined performance 
assessment approaches build upon mixed effect models  (Goldstein 2011). In 
particular, in our setting this corresponds to fitting Logistic Mixed Models (LMMs) 
with a Gaussian random effect at the NH level. Such an effect can be used as a 
performance marker, provided that the covariates included in the fixed part of the 
model properly account for the case-mix. For the data at hand, we start by fitting 
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LMMs but then, motivated by evidence against the normality assumption for the 
random effect distribution, we explore two more robust alternatives: Finite Mixtures 
of Logistic Models (FMLMs) and M-quantile regression for binary data.

In FMLMs, a discrete distribution for the NH-specific random effects is estimated 
from the observed data via a Non-Parametric Maximum Likelihood approach 
(NPML; Simar 1976; Laird 1978; Lindsay 1983a, b). This approach offers a number 
of advantages. First, it allows to avoid unverifiable assumptions on the random effect 
distribution, so that asymmetries or other departures from normality can be easily 
accommodated. In this sense, FMLMs are more robust to misspecification of the 
distribution of the random effects than LMMs. Also, FMLMs provide a data-driven 
method to cluster NHs according to their probability of belonging to the different 
mixture components, identified by the support points for the discrete random effect. 
The resulting clusters have a clear interpretation in terms of NH performance.

With regard to M-quantile regression, we rely on the approach of  Kokic et  al. 
(1997), developed for comparing business production. In general, M-quantile 
regression (Breckling and Chambers 1988) provides a quantile-like generalization of 
robust M-regression. It can also be seen as the robust version of expectile regression 
proposed by  Newey and Powell (1987). While in linear regression we model the 
expected value of the conditional distribution of the outcome given the covariates, 
with quantile regression (Koenker and Bassett 1978) we model the quantiles of this 
conditional distribution. On the other hand, with M-quantile regression we model a 
robustification of the expectiles of this conditional distribution using M-estimation 
via Huber-type influence functions. An extension of this approach to binary 
responses is introduced in Chambers et al. (2016). In this model, every observation 
lies on one of the estimated M-quantile regression hyperplanes: this provides a 
score between 0 and 1 that corresponds to the M-quantile of the distribution of the 
response variable each observation is estimated to belong to, conditional on the 
covariates included in the model. Suitably averaging these scores for units belonging 
to the same NH provides an alternative measure of performance. Importantly, such 
a measure does not depend on the level of the covariates, that is, on case-mix. 
Bootstrap is used to obtain a measure of uncertainty of the NHs’ average scores. 
There are many proposals in the literature that deal with quantile regression for 
binary data. See e.g. Benoit and Van den Poel (2012), Kordas (2006), Aristodemou 
et  al. (2019). However, the focus here is on exploring the use of the M-quantile 
coefficient for performance evaluation, as M-quantiles are a direct extension of 
the logistic regression model and look at (possibly robust) expectiles rather than 
quantiles.

The paper is organized as follows. Section 2 describes the dataset at hand, while 
Sect. 3 illustrates LMMs and the two alternative methodologies considered to obtain 
a performance measure for NHs in this context: FMLMs and M-quantile regression 
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for binary data. Section 4 details the results of the application of these methods to 
the data and Sect. 5 provides conclusions and directions for future research.

2 � Data

The healthcare division of the regional government of Umbria (Italy) routinely 
collects data on the residents in the NHs of the region for monitoring purposes. 
The analysis of this NH system is based upon data coming from the Long Term 
Care Facilities (LTCF) questionnaires  (Hirdes et  al. 2008; Kim et  al. 2015). The 
administration of LTCF questionnaires is implemented within an internationally 
validated protocol named Suite interRAI  (Carpenter and Hirdes 2013). Such a 
protocol is adopted by many other regional governments in Italy. The questionnaires 
are filled by the NH staff and investigate several aspects of NH residents’ health 
status as well as the medical treatments undertaken.

Using information from LTCF questionnaires, residents are classified 
according to the RUG system introduced in Sect. 1. Specifically, the underlying 
algorithm assigns residents to 44 distinct groups. These are partitioned into six 
macro-groups: Rehabilitation (not present in Umbrian NHs by law), Extensive 
services, Special care, Clinically complex, Impaired cognition, Behavior 
problems, Reduced physical functions. Attached to each group comes a weight, 
which is a numerical proxy of the conventional amount of resources required to 
take care of a resident in that RUG. Such a weight is a pure number ranging in 
our data from 0.52 to 1.86.

The LTCF questionnaires are administered to NH residents every six months and 
whenever a significant change in the health conditions is observed. Thus, a sort of 
longitudinal dataset is available. This allows to single out the set of residents hosted 
by the NHs at a chosen baseline data, as well as to observe their condition after a 
suitable time interval. A comparison between the final and the baseline observation 
can be performed to define some statistical indicators measuring NH ability to 
preserve their residents’ health status and/or to avoid their worsening over time.

In this paper, we consider residents hosted by the Umbrian NHs on January 
1st, 2018. For each of them, we observe the RUG associated to the last LTCF 
questionnaire filled before that date. Henceforth, this group will be referred to as 
the Initial RUG (IRG), while the corresponding macro-group it belongs to will be 
denoted by IMRG. For the same residents, we also observe the RUG associated to 
the last questionnaire available before January 1st, 2019, referred to as Final RUG 
(FRG). Since it can happen that in the meantime a resident dies or gets discharged, 
we add two additional groups to the FRGs: the “Death” and the “Discharge” groups. 
This approach reflects the fact that death and discharge are proper outcomes of the 
process of interest, rather than simple causes of missing values in the data.

The available dataset includes n = 1551 residents. For each resident, information 
on age and gender is available together with NH membership, IRG, FRG and the 
corresponding RUG weights. Furthermore, we compute two binary outcomes: (i) 
a death indicator, taking the value 1 when the FRG is the “Death” group, and (ii) a 
worsening indicator, taking the value 1 when the difference between the FRG weight 
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and the IRG weight is positive, denoting an increase in the care burden required by 
the resident, or when the FRG is the “Death” group. With regard to discharge, its 
determinants are various and not known from the data, so a well-established and uni-
vocal relationship with resident health status and care burden cannot be postulated.

The NH residents are hosted in m = 47 NHs. Table 1 reports summary statistics 
at the NH level. Each NH hosts on average 33 residents, though with some degree of 
variability. The mean of the NH average age of residents is 83.5 years, with standard 
deviation 10.3. The proportion of females is slightly greater than 70% on average. 
The average death rate is around 22%, ranging from 5.3% to 56.3% across NHs. 
Similarly, the average discharge rate is around 3%, ranging from 0% to 40% across 
NHs. Note that 29 out of 47 NHs do not present resident discharge.

The rather relevant variability in death rates across NHs can be due to case-mix, 
on the one hand, and to the quality of care provided by the NH, on the other hand. 
Therefore, through the statistical models mentioned in Sect. 1, we propose to estimate 
the NH effect on the probability of death or worsening of the residents, under the 
assumption that the latter reflects NH ability to preserve residents’ health, after properly 
accounting for the case-mix.

3 � Methods

Let yij be a binary response variable for unit j = 1,… , ni belonging to NH i = 1,… ,m , 
and let xij = (xij1,… , xijp)

T denote the corresponding vector of explanatory variables. 
Consider the case in which this binary response is modeled via a logistic mixed model 
with random intercepts ui in order to obtain a measure of the NH effect on the response 
variable. Then, conditional on the NH-specific random effect ui , responses for units in 

Table 1   Main descriptive statistics of NH characteristics at baseline

*One year after baseline

Variable Minimum         Q1         Q2     Mean         Q3 Maximum

Nr. of residents 3 19 24 33 46 80
Mean Age 74.0 81.4 84.0 83.7 85.6 94.7
% of Males 0.0 22.5 28.6 29.0 36.0 59.1
% of Deaths∗ 5.3 15.0 20.8 21.6 26.3 56.3

% of Worsened∗ 5.3 21.4 30.0 30.2 35.4 75.0

% of Discharged∗ 0.0 0.0 0.0 2.6 4.3 40.0
Mean IRG Weight 0.70 0.79 0.86 0.86 0.93 1.05
% of Special care 0.0 3.5 5.9 7.1 10.6 21.4
% of Clinically complex 0.0 8.3 15.4 16.5 22.9 41.3
% of Impaired cognition 0.0 1.2 5.6 7.7 11.4 28.6
% of Reduced physical function 14.3 29.7 36.4 38.6 48.3 71.4
% of Behavior problems 0.0 0.0 0.0 1.6 2.7 10.0
% of Extensive services 0.0 0.0 2.1 4.3 5.9 26.3
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the i-th NH are assumed to be independent Bernoulli random variables with success 
probability pij = E(yij ∣ ui;xij) described by the following model

Responses are assumed to be independent conditional on the random variable ui ; 
this is usually referred to as the local independence assumption. The corresponding 
likelihood function is

where f (yij|ui;xij) is the Bernoulli distribution for the outcome, f (ui) is the random 
coefficient distribution, and � denotes the global set of parameters. The terms ui , 
i = 1,… ,m, are meant to model unobserved NH-specific heterogeneity common to 
each resident (lower-level unit) within the same i-th NH (upper-level unit) and, in 
particular, to account for dependence between responses recorded within the same 
NH. Usually f (⋅) is taken from a parametric distribution, with the Gaussian being 
the most popular choice: ui ∼ N(0, �2

u
) , i = 1,… ,m . In the general case, the integral 

defining the likelihood cannot be analytically computed. For maximum likelihood 
estimation, the integral can be approximated using (adaptive) Gaussian Quadrature 
or Laplace approximation (see e.g. Pinheiro and Bates 1995), Monte Carlo EM 
methods (see e.g. McCulloch 1997), Penalized Quasi-Likelihood (PQL) approaches 
or Taylor linearization methods (Breslow and Clayton 1993). To overcome the issue, 
Jiang (1998) suggested to derive estimates by exploiting the method of moments.

For performance evaluation of NHs, prediction of the vector u = (u1,… , um)
T 

of random effects is essential. For known � , the Best Predictor of u in terms of 
minimum MSE is its conditional expectation given by

where

This suggests the predictor û = ũ(�̂) , where �̂ = (𝛽0, �̂
T
, 𝜎̂u)

T are suitable 
estimates. The computation of the Best Predictor requires the evaluation of integrals. 
These can be approximated using again (adaptive) Gaussian Quadrature or the 
Laplace approximation. Penalized iteratively reweighted least squares (PIRLS) and 
PQL methods directly estimate u (see e.g. Saei and Chambers 2003), but they may 
provide inconsistent model parameter estimates. Monte Carlo EM methods produce 
an estimate of �0 and of � , and since one generates a sample of the u ’s from the 
distribution of u given the data, the mean of these samples provides an estimate of u . 

(1)log
pij

1 − pij
= �0 + x

T
ij
� + ui.

(2)L(�) =

m∏

i=1

{

∫
ℝ

ni∏

j=1

f (yij|ui;xij)f (ui) d ui

}
,

ũ(�) = Eu|y(u|y) = ∫
ℝm

uf (u|y) d u,

f (u�y) =
∏m

i=1

∏ni
j=1

f (yij�ui;xij)f (ui)
∏m

i=1
∫
ℝ

∏ni
j=1

f (yij�ui;xij)f (ui) d ui
.
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Similarly, in a Bayesian setting, MCMC provides a sample of the u’s, and the mean 
of this sample yields an estimate of u.

As long as the covariates account properly for the case-mix, the random effects 
ui can be considered as measures of the performance of the NHs (Goldstein 2011). 
This approach has been used extensively for performance evaluation in general and 
of health care facilities, in particular (Berta et al. 2016; Grieco et al. 2012). In the 
following subsections, we illustrate two alternative approaches to obtain a measure 
of performance for binary outcomes in the abovementioned framework.

3.1 � Finite mixtures of logistic regression models

As a first alternative approach we use FMLMs to relax the assumption of 
normality for the distribution of the random effects. Indeed, the approach is more 
general and avoids any parametric assumption on the distribution f (ui) . Rather 
than specifying a parametric distribution for the random effects, we may leave it 
unspecified and approximate it by using a discrete distribution on G < m locations {
u1,… , uG

}
 , with associated probabilities defined by �k = Pr(ui = uk) , i = 1,… ,m 

and k = 1,… ,G . That is, ui ∼
∑G

k=1
�k�uk where �� is a one-point distribution 

putting a unit mass at � . In this case, the likelihood in Eq. (2) reduces to

Equation (3) resembles the likelihood function for a finite mixture of Bernoulli 
distributions, where � = (�, u1,… , uG,�1,… ,�G) , and fijk is the distribution of the 
response variable for the j-th unit in the i-th NH when the k-th component of the 
finite mixture, k = 1,… ,G , is considered.

The above model may be embedded into the class of semi-parametric mixed-
effect models, that was recently extended to deal with continuous  (Masci et  al. 
2019), categorical   (Masci et  al. 2022) and time-to-event outcomes  (Gasperoni 
et  al. 2020). With this regard, it can be seen as a semi-parametric, discrete 
approximation to a fully parametric, possibly continuous, distribution for the 
random coefficients. The seminal papers by Aitkin (1996, 1999) establish a 
connection between mixed effect models and finite mixtures, by exploiting 
the theory of Non Parametric Maximum Likelihood estimation of a mixing 
distribution, see Laird (1978). It can be also thought of as a model-based 
clustering approach, where the population of interest is assumed to be divided 
into G homogeneous sub-populations which differ for the values of the intercept, 
as in Wedel et al. (1993). This feature of the approach turns out to be particularly 
useful with the application at hand, as it provides a data-driven clustering of the 
NHs that accounts for the level of the covariates and is, therefore, associated with 
their performance. In addition, it provides a useful tool to assess whether the 
assumption of Normality for the random effects is plausible in LMMs.

Compared to a fully parametric framework, the finite mixture approach is less 
parsimonious, since the number of unknown parameters to be estimated is higher 

(3)L(�) =

m∏

i=1

{
G∑

k=1

∏

j

f (yij|uk;xij)�k

}
=∶

m∏

i=1

{
G∑

k=1

∏

j

fijk�k

}
.
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than in the corresponding parametric model. In fact, locations uk and masses 
�k , k = 1,… ,G , are unknown parameters, as it is G, which is usually treated as 
fixed and chosen through appropriate penalized likelihood criteria. While we 
also follow this strategy, it is worth to mention the recent proposal of Ragni et al. 
(2023), based on an adaptive procedure that, at each iteration of the estimation 
algorithm, merges two mixtures components if the difference between their 
location parameters is not statistically significant.

When using discrete random coefficients, the regression model in Eq. (1) for 
the k-th component of the mixture can be expressed as follows:

where uk is now a proper random intercept.
Given the model assumptions, the score function can be written as the posterior 

expectation of the score function corresponding to a standard logistic model:

where fik is the joint conditional probability for the observed responses in the i-th 
NH and the k-th component, i.e.

and the weights

represent the posterior probabilities of component membership. Equating (5) to 
zero gives likelihood equations that are essentially weighted sums of the likelihood 
equations for a standard logistic model, with weights �ik . Maximum likelihood 
estimation is based on the use of EM, or EM-type, algorithms   (Dempster et  al. 
1977). The basic EM algorithm is defined by solving equations for a given set of the 
weights, and updating the weights as a function of the current parameter estimates.

Under this approach, the NH-specific effects can be obtained computing the 
posterior mean of the estimated location points as

where ̂̄u =
∑

k ûk𝜋̂k is the overall intercept estimate.

(4)�ijk =∶ log
pijk

1 − pijk
= x

T
ij
� + uk,

(5)

S(�) =
� log[L(�)]

��
=

��(�)

��

=

m�

i=1

G�

k=1

�
fik�k∑
l fil�l

��

j

� log fijk

��
=∶

m�

i=1

G�

k=1

�ik

�

j

� log fijk

��
,

fik = exp

{
ni∑

j=1

[
yij�ijk − log(1 + e�ijk )

]
}

,

(6)�ik =
fik�k∑
l fil�l

(7)ûi =

G∑

k=1

(ûk − ̂̄u)𝜏ik,
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3.2 � M‑quantile regression for binary data

The second alternative approach to LMM moves away from random effect modeling 
to obtain a performance score for NHs. In particular, it looks at the conditional 
distribution of the outcome given the covariates by means of M-Quantile regression 
models for binary data. In fact, LMM and FMLM focus on the expected value of 
the binary (Bernoulli) response and provide a measure of the performance of the 
NHs based on the predicted value of the random effects. In this section, we propose 
a measure of performance by looking at the different levels of the conditional 
distribution of y given the set of explanatory variables, by means of M-quantile 
regression for binary data (Chambers et al. 2016).

For a continuous response, quantile regression (Koenker and Bassett 
1978) leads to a family of hyperplanes indexed by a real number q ∈ (0, 1) 
representing the quantile of interest. For example, for q = 0.05 the quantile 
regression hyperplane separates the lowest 5% of the conditional distribution 
from the remaining 95% . In this sense, quantile regression can be considered 
as a generalization of median regression (Koenker and Bassett 1978), as 
expectile regression (Newey and Powell 1987) is a quantile-like generalization 
of standard mean regression. M-quantile regression (Breckling and Chambers 
1988) integrates these concepts within a framework defined by a quantile-like 
generalization of regression based on influence functions (M-regression) or, 
similarly, by a robustification of expectile regression via influence functions.

The M-quantile of order q for the conditional density of a continuous outcome 
y is defined as the solution MQq that satisfies

where 𝜓q(t) = 2𝜓(t){qI(t > 0) + (1 − q)I(t ≤ 0)} , � is an influence function and �q 
is a measure of scale for y −MQq . When �(t) = t , MQq is the expectile of order 
q, while when �(t) = sign (t) , MQq is the standard quantile of order q. A linear 
M-quantile regression model is the one for which the M-quantile of order q of the 
conditional distribution of y given x is such that

Estimates of �0q and of �q on the available data are obtained by solving the following 
set of estimating equations

where the scale parameter is often estimated 
as  𝜎̂q = median |yij −MQq(yij|xij;𝜓)|∕0.6745 . The influence function � is usually 
chosen to be the Huber loss function, 𝜓(t) = tI(−c ≤ t ≤ c) + c ⋅ sgn (t)I(|t| > c) , 
where c is a tuning constant. Provided that c > 0 , estimates of �q are obtained using 

(8)∫
ℝ

�q

(
y −MQq

�q

)
f (y) d y = 0,

(9)MQq(y ∣ x;�) = �0q + x
T�q,

(10)
m∑

i=1

ni∑

j=1

�q

(
yij −MQq(yij|xij;�)

�q

)
(1, xT

ij
)T = 0p+1,
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Iteratively Weighted Least Squares (IWLS). In this case, the IWLS algorithm is 
known to guarantee convergence to a unique solution, see Kokic et al. (1997). The 
asymptotic theory for M-quantile regression with i.i.d. errors and fixed regressors 
can be derived from the results in Huber (1973) and is discussed in Breckling and 
Chambers (1988).

For a continuous outcome, Kokic et al. (1997) propose to develop a measure of 
business production performance within this framework. To illustrate the idea 
behind this approach, consider the case of simple M-quantile regression depicted 
in Fig. 1. Every observation in the scatterplot (first panel) can be thought of lying 
on a specific M-quantile regression line identified by its order q (second panel). 
In particular, the unit specific order qij is such that yij = �0qij + xij1�1qij . This is 
often called “M-quantile coefficient”. An estimate of qij can be obtained by first 
fitting an ensemble of M-quantile regression lines for a fine grid of values 
q ∈ (0;1) and, then, proceeding by interpolation of the two closest values.

If the observations were clustered (in the third panel observations are color coded 
according to the cluster they belong to) and if a cluster effect is indeed present 
in the data, then units belonging to the same cluster, i.e.  to the same NH in this 
paper, should have a similar M-quantile coefficient as they should lie on a similar 
portion of the conditional distribution of the response given the covariates. In fact, 
if a hierarchical structure does explain part of the variability in the data, then we 
expect units within clusters defined by this hierarchy to have similar M-quantile 
coefficients, as for the green and the brown units in the illustration. Then, (fourth 
panel) a performance score can be obtained by suitably averaging the estimated 
M-quantile coefficients within the cluster as

Fig. 1   An illustration of the rationale behind the performance score based on individual M-quantiles 
coefficients for a continuous response



763

1 3

Performance evaluation of nursing homes using finite mixtures…

A similar approach has been used in Fiaschi et al. (2020) to develop an index of cor-
porate wrongdoing, understood as firms’ involvement in the number of controversies 
over universal human rights. Note that M-quantile regression with random effects 
is proposed in Tzavidis et  al. (2015) to deal with longitudinal data on a continu-
ous response. Therefore, it would be possible, by suitably extending Tzavidis et al. 
(2015) to the case of a binary response, to include the clustering structure directly 
into the regression model using random intercepts. Note that, however, using q̂i as a 
performance score instead of an estimate of these random effects, a structure with 
random intercepts and random slopes can be automatically accounted for (see, e.g., 
Fig. 1), without the need to make assumptions on their distribution.

Now, since the quantile of order q of a binary variable is not unique, there is no 
clear definition of a quantile function in this case. Nonetheless, M-quantiles of a binary 
variable exist and are unique as long as the influence function � is continuous and 
monotone non-decreasing (Chambers et al. 2016). In particular, for a binary variable y 
with probability of success equal to p, Eq. (8) becomes

Note that, when �(t) = t and q = 0.5 , the solution to this estimating equation is 
MQ0.5 = p.

In the presence of explanatory variables, MQq(y ∣ x;�) can be specified as follows

Estimates of �0q and of �q can be obtained using the extension to the M-quantile 
case of the approach proposed by Cantoni and Ronchetti (2001) for M-estimation 
of parameters of a generalized linear model. This approach has also been used to 
develop M-quantile regression for counts in Tzavidis et  al. (2015) and in Dreassi 
et  al. (2014). The details for binary outcomes can be found in Chambers et  al. 
(2016). Here, it suffices to notice that the approach is based on robustification of the 
maximum likelihood estimating equations for a logistic model where the influence 
function is applied to Pearson residuals. In this sense, no explicit distributional 
assumptions are made as quasi-likelihood is employed together with a link function 
so that only a working mean and a variance function for y are required. Analytic 
formulas for the estimation of the variance covariance matrix of (𝛽0q, �̂

T

q
)T are also 

provided in Chambers et al. (2016).
The definition of the M-quantile coefficient for binary data is more challenging than 

for a continuous response. Chambers et al. (2016) propose to define it as the the value 
qij for which

(11)q̂i =

ni∑

j=1

q̂ij∕ni.

(12)pq�

(
1 −MQq

�q

)
− (1 − p)(1 − q)�

(
MQq

�q

)
= 0.

(13)MQq(y ∣ x;�) =
exp(�0q + x

T�q)

1 + exp(�0q + xT�q)
.
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When a logistic specification for MQq(y ∣ x;�) is used, such as in (13), this definition 
is equivalent to defining qij as the solution to

where y∗
ij
= �0qij + x

T
ij
�qij

 . Since relevant analytic expressions are intractable, 
bootstrap methods can be used to evaluate standard error and confidence intervals 
for scores obtained as averages of M-quantile coefficients qij.

4 � Application to the evaluation of Umbrian NHs

We report here the results obtained with the proposed approaches applied to the 
dataset described in Sect. 2. Among the n = 1, 551 residents hosted by the Umbrian 
NHs as of January 1st, 2018, there are 42 cases of discharge before January 1st, 
2019. For these residents, the values of the outcome variables Death and Worsening 
are missing and the reason of discharge is not recorded. In the first part of our 
analysis, we have considered data from these 42 discharged residents as missing at 
random (MAR; Little and Rubin 2002) and the statistical models have been fitted 
on the n = 1, 509 remaining residents. In Sect. 4.4 we run a sensitivity analysis to 
evaluate the appropriateness of this assumption. The variables Age and Initial RUG 
Weight (IRW) are inserted as continuous variables, while Gender and the Initial 
Macro RUG Group (IMRG) as categorical variables.

4.1 � Results from logistic mixed models

We fit several LMMs to the binary response variables Death and Worsening 
using the glmer function of the lme4 package in R (Bates et al. 2015). The NH 
categorical variable is inserted as fixed effect or random effect in order to evaluate 
which approach would best fit these data.

Model selection is guided by the Bayes Information Criterion (BIC) and the 
Akaike Information Criterion (AIC). To reduce computational burden, the fast 
PIRLS algorithm (nAGQ=0 option of glmer) is used. We did not find sensi-
ble differences in parameter estimates obtained using the Laplace approximation 
(nAGQ=1) and with an increasing number of quadrature points (nAGQ between 2 
and 5). Among the explicative variables, besides those already mentioned, we also 
consider the interaction between gender and age (Gender×Age), and nonparametric 
functions of age and of IRW—spline(Age) and spline(IRW)—as approximated via 
B-splines. Table 2 reports the values of BIC and AIC for a set of alternative models 

MQqij
(yij ∣ xij;�) =

MQ0.5(yij ∣ xij;�) + yij

2
.

(14)y∗
ij
= log

[
MQqij

(yij ∣ xij;�)

1 −MQqij
(yij ∣ xij;�)

]
,
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for the outcome variable Death (first two columns) and Worsening (second two col-
umns). The smallest value for each column is in bold.

Looking at BIC and AIC for the response Death, the smallest value suggests to 
select the model with Gender, Age, IRW, and without a random NH effect. For the 
response Worsening, the minimum value of BIC suggests to select the model with 
Age and IRW as fixed effects, and with the NH random effect, while the minimum 
value of AIC suggests to also add Gender among the fixed effects. We decide to 
select as our final working model for both outcome variables the one that includes 
additive fixed effects of Gender, Age and IRW and additive random effects for the 

Table 2   BIC and AIC for logistic (mixed) models for outcomes Death and Worsening

The smallest value for each column is in bold
∗random=NHs denotes random intercept models where the hierarchy is induced by NHs. Models in 
which this term is not present are standard logistic regression models

Death Worsening

 Models* BIC AIC BIC AIC

∼ Gender + Age + IMRG + IRW + NHs 1848.06 1555.51 2166.27 1873.71
∼ Gender×Age + IMRG + IRW, random=NHs 1585.75 1527.24 1919.27 1860.76
∼ Gender + Age + IMRG + IRW, random=NHs 1580.88 1527.69 1914.50 1861.31
∼ Gender + spline(Age) + IMRG + IRW, random=NHs 1588.19 1529.68 1921.80 1863.28
∼ Gender + Age + IMRG + spline(IRW), random=NHs 1588.19 1529.68 1921.80 1863.28
∼ Gender + Age + IMRG, random=NHs 1583.33 1535.45 1907.78 1859.90
∼ Gender + Age + IRW, random=NHs 1547.93 1521.33 1879.00 1852.40
∼ IRW, random=NHs 1569.16 1553.21 1896.15 1880.19
∼ Gender + Age, random=NHs 1586.44 1565.16 1878.02 1856.74
∼ Age + IRW, random=NHs 1542.90 1521.62 1873.84 1852.57
∼ Gender + Age + IRW 1541.26 1519.99 1881.76 1860.49

Table 3   LMM: parameter 
estimates for the outcomes 
Death and Worsening

Standard errors of estimates are in parentheses (significance codes: 
‘.’ 0.1, ‘*’ 0.05, ‘**’ 0.01, ‘***’ 0.001)

Death Worsening

Intercept −6.319 ∗∗∗ −4.211 ∗∗∗

(0.707) (0.600)
Gender (male) 0.235 0.199

(0.155) (0.136)
Age 0.042 ∗∗∗ 0.034 ∗∗∗

(0.007) (0.006)
IRW 1.627 ∗∗∗ 0.554 ∗∗

(0.239) (0.221)
Std. Dev of random effects 𝜎u 0.185 0.344 ∗∗∗

�2 (Likelihood ratio test for 
significance of 𝜎u)

0.652 10.085 ∗∗
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NH. The reason for this choice is that Gender is in general a characteristic of the 
residents felt to be important to account for by practitioners, while the NH random 
effect is kept also for the outcome Death for sake of comparison with results from 
the other approaches, FMLM and M-quantile regression.

The parameter estimates for the final selected models are shown in Table 3. We 
note a positive relation between the probability of Death and the values of Age and 
of IRW. Similar effects are observed for the probability of Worsening, even though 
they are less strong. The estimated standard deviation of the random effects is larger 
for Worsening, by this highlighting a stronger NH effect for this outcome. Indeed, 
the estimate of �u is significantly different from zero only for this outcome. In fact, 
the likelihood ratio test for a zero variance component is not significant for the 
outcome Death, even comparing it with the 1

2
�2
0
+

1

2
�2
1
 distribution as suggested in 

Pinheiro and Bates (2000, Sect. 2.4.1). This provides evidence of a first finding of 
the analysis, i.e. that there is no suggestion of a significant NH effect on Death. This 
is also supported by the information criteria that take smaller (larger) values for the 
model with only fixed effects for the outcome Death (Worsening). See last line of 
Table 2.

Since the distribution of the random effects is central to the analysis at hand, 
we further explore it by using FMLMs: using these models allows us to evaluate 
whether the assumption of Normality is suitable for it and whether the lack of a NH 
effect for the outcome Death is due to a miss-specification of such a distribution. 
The findings of this analysis are reported in the following section.

4.2 � Results from finite mixtures of logistic regression models

We fit several FMLMs using non-parametric maximum likelihood (Aitkin 1996) as 
implemented in the allvc function of the npmlreg package in R (Einbeck et al. 
2018). The covariates in the model are those selected above for the final chosen 
LMM, while the number of mixture components ranges from 1 to 10. To select such 
a number, we pair likelihood-based indices like AIC and BIC with another entropy-
based measure, which accounts for the sharpness of the underlying NH clustering 
process. Indeed, NHs can be assigned, via their posterior probability distribution, 
to one of the groups defined by the random effect components. Specifically, for 
G = 1,… , 10 we compute the Normalized Entropy Criterion (NEC)

 Celeux and Soromenho (1996), where �(�;G) denotes the log-likelihood of the 
model with G components and, letting 𝜋̃ik = P(ui = uk ∣ yi1,… , yini , xi1,… , xini ),

is an average entropy measure. As with AIC and BIC, lower values of NEC should 
be preferred. Notice that NEC1 is not defined, being conventionally set to 1.

NECG =
ENG

�(�;G) − �(�;1)

ENG = −
1

m

m∑

i=1

G∑

k=1

𝜋̃ik log 𝜋̃ik
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Fig. 2   AIC, BIC and NEC of FMLMs for the outcome death (left panel) and worsening (right panel)
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Figure 2 displays AIC, BIC and NEC as a function of G for the outcome Death 
(left panel) and Worsening (right panel). The three criteria agree on selecting G = 2 
components for the outcome variable Worsening. For the outcome Death, on the 
other hand, AIC and BIC do not find evidence of a NH effect ( G = 1 ), while NEC 
would lead to select G = 2 components. To further investigate the structure of the 
data and the shape of the NH distribution, we look at parameter estimates and NH 
effect for G = 2.

Table  4 reports the parameter estimates of the models for the two outcome 
variables when G = 2 . It can be noted that the parameter estimates for the 
covariates with fixed effects are very similar to those reported in Table 3. Each 
of the two mixture components is identified by a location of the random intercept 
(Location 1 and 2) in the Table: the larger value implies that the probability 
of Death or Worsening is higher, conditional on the values of the explicative 
variables. This means that, given two residents with the same values of the 
explicative variables, the largest intercept yields a greater chance of Death or 
Worsening than the lowest one. So, the mixture component for which k = 2 
identifies the NHs with a higher chance of Death or Worsening given the Age, 
Gender and IRW of the resident.

Now, for each NH, the posterior probabilities of belonging to the first and 
to the second component of the mixture can be computed with Eq. (6). Using 
these probabilities, the posterior expected value of the random intercept can be 
computed as well using Eq. (7). Then, we can compare the distributions of these 
quantities to those obtained with the LMM in the previous section. Figure  3 
reports the prior (panel a) and the posterior (panel b) distribution of ui ’s under 
the FMLM and the posterior distribution of ui ’s (panel c) for the LMM, after 
centering the random effects on 0 for comparison. The plots are very similar 
for the two outcomes. We can note the presence of a smaller mass that deviates 
from the larger one, thus highlighting the presence of a small group of NHs 

Table 4   FMLM: parameter 
estimates for the outcomes 
Death and Worsening. Standard 
errors of estimates are in 
parentheses (significance codes: 
‘.’ 0.1, ‘*’ 0.05, ‘**’ 0.01, ‘***’ 
0.001)

Death Worsening

Gender (male) 0.235 0.199
(0.155) (0.136)

Age 0.042 ∗∗∗ 0.035 ∗∗∗

(0.007) (0.006)
IRW 1.624 ∗∗∗ 0.581 ∗∗

(0.238) (0.217)
Mass 1 −6.397 ∗∗∗ −4.462 ∗∗∗

(0.708) (0.596)
Mass 2 −5.742 ∗∗∗ −3.788 ∗∗∗

(0.720) (0.594)
Mixture Proportions

Location 1 0.879 0.747
Location 2 0.121 0.253



769

1 3

Performance evaluation of nursing homes using finite mixtures…

with a higher probability of Death and of Worsening. Looking at the posterior 
probabilities of belonging to the first and to the second component, the latter is 
the modal one for NHs 6, 12 and 34 with respect to the outcome Death and for 
NHs 1, 6, 8, 9, 10, 11, 12, 23, and 31 with respect to the outcome Worsening. 
This can be a useful tool for assessing NH performance and, in particular, to 
detect particularly alarming NHs.

In panels (b) of Fig.  3 we can see the distribution of the posterior intercepts 
obtained from the mixture and in panels (c) the histogram obtained by assuming 
Normality in the LMM. This comparison is particularly useful as a diagnostic tool 
for normality of random effects. It is clear from plots (b) that the distribution of the 
random effects is heavily skew in both cases and that the assumption of Normality 
for them is not suitable in this context. Note that the asymmetry of the distribution 
of the NH effects remains also as the number of mixture components increases, as 
it is evident in Figs. 6 and 7 in the Appendix where the a-priori distribution for all 

Fig. 3   FMLM: estimated prior (a) and posterior (b) distribution for ui’s. LMM: posterior distribution for 
ui ’s (c)
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values of G and for both responses are reported. For these reasons in the next section 
we propose a more robust approach to evaluate the performance of the NHs.

4.3 � Results from M‑quantile regression models

M-Quantile regression models for binary data are fitted to the two outcome 
variables—Death and Worsening—using as covariates the variables Gender, Age 
and IRW. Therefore, NH membership is not included in the model either as a 
fixed or as a random effect. In fact, as discussed above, here we take a different 
perspective and evaluate the presence and magnitude of a NH effect directly from 
the data without assuming a distribution and looking at where units lay at the 
different levels (M-quantiles) of the conditional distribution of the response. We 
fit the models using ad-hoc functions developed by the Authors in R and available 
from the Authors upon request. In order to estimate M-quantile coefficients qij’s, 
197 equally spaced values of q between 0.01 and 0.99 are used. Table 5 reports 
the estimates of the fixed effects of the covariates for q = 0.5 , while Figs. 8 and 9 
in the Appendix show the estimated regression coefficients for the covariates for 
each value of q with the corresponding 95% confidence bounds for the outcome 
Death and for Worsening, respectively. Standard errors and confidence bounds 
are obtained by means of 5000 bootstrap samples drawn using a nonparametric 
block-bootstrap approach that resamples with replacement within each NH. 
The value of the tuning constant c is set to 1.345 as it is customary in many 
applications (see e.g. Chambers et  al. 2016). Again, very similar results are 
obtained for the effect of the covariates. Recall that for q = 0.5 and c → ∞ 
M-quantile regression is equivalent to logistic regression. Note that for this data 
there is no evidence of M-quantile crossing, and this does not provide evidence of 
model misspecification.

To measure the NH effects on the probabilities of Death or of Worsening, 
the following procedure has been implemented. For every resident, the M-quan-
tile coefficient is computed by means of Eq. (14) using the fine grid of q val-
ues. Then, by averaging the M-quantile coefficients of the residents in the same 
NH, we obtain an average score for each NH and we call it MQ-score. The larger 
the value of this MQ-score for a NH, the higher the probability of Death or of 

Table 5   M-quantile model: 
fixed effects for binary response 
Death and Worsening. Standard 
errors of estimates are in 
parentheses (significance codes: 
‘.’ 0.1, ‘*’ 0.05, ‘**’ 0.01, ‘***’ 
0.001)

Death Worsening

Intercept −6.163∗∗∗ −4.199∗∗∗

(0.720) (0.591)
Gender (male) 0.212 0.204

(0.156) (0.134)
Age 0.041∗∗∗ 0.034∗∗∗

(0.008) (0.006)
IRW 1.532∗∗∗ 0.566∗∗∗

(0.239) (0.215)
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Worsening for its residents, conditional on their values of the covariates. So, the 
MQ-score allows to compare the NHs with respect to the ability of avoiding the 
decease of the resident or the worsening of his/her health conditions taking into 
account the NH case-mix.

Figure  4 shows the MQ-scores of the NHs ordered by size with the 
corresponding block-bootstrap overlap intervals for pairwise comparisons 
(Goldstein and Healy 1995). When the intervals of two NHs do not overlap, 
their MQ-score difference is significant at approximately a 5% level of the first 
type error. The MQ-score ranges from a minimum of 0.334 to a maximum of 

Fig. 4   MQ-score of NHs for Death (a) and Worsening (b) and corresponding bootstrap based pairwise 
overlap intervals. NHs are arranged by the rank of the MQ-score

Table 6   NH MQ-scores and 
pairwise overlap interval limits 
for the binary responses Death 
and Worsening: first and last six 
positions in the ranking

Death Worsening

 NHs Est low upper NHs Est low upper

4 0.334 0.312 0.383 4 0.317 0.291 0.359
16 0.334 0.312 0.389 16 0.345 0.299 0.415
40 0.341 0.311 0.391 41 0.362 0.317 0.423
36 0.351 0.310 0.404 47 0.365 0.293 0.434
18 0.361 0.331 0.421 35 0.366 0.313 0.419
32 0.377 0.356 0.435 33 0.379 0.337 0.417
... ... ... ...
6 0.482 0.450 0.529 34 0.502 0.436 0.575
17 0.496 0.436 0.571 23 0.518 0.430 0.600
45 0.515 0.450 0.631 9 0.531 0.461 0.583
34 0.533 0.463 0.613 6 0.555 0.518 0.598
10 0.576 0.460 0.690 10 0.656 0.549 0.758
12 0.596 0.503 0.693 12 0.673 0.586 0.742
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0.596 for the response Death, and from a minimum of 0.317 to a maximum of 
0.673 for the response Worsening. Table 6 reports details of the first and last six 
positions in the ranking with respect to the MQ-score of the NHs for the two 
binary responses. All pairwise comparisons between the last six and the first 
six positions in the rankings are significant, apart from the 23 to 47 pair in the 
ranking for Worsening.

Note that using the FMLM approach, the NHs classified in the second group 
(larger probability of Death or of Worsening) also have a very large MQ-score. In 
fact, for the Death outcome we find NHs 6, 12 and 34 in the last six positions of 
Table 6; while for the outcome Worsening NHs 6, 9, 10, 12 and 23 are the worst 
with respect to  the posterior expected value of the random effect in the FMLM 
and with respect to the MQ-score as well.

Finally, the average M-quantile coefficient of all residents is 0.427 for the 
response Death and 0.455 for the response Worsening. Taking these values as fixed 
and considering the 95% bootstrap confidence intervals for the NH MQ-scores, 
NHs 4, 16 and 40 are significantly below the average M-quantile coefficient, while 
NHs 6, 12 and 34 are significantly above it for the response Death; for the response 
Worsening, NHs 4, 16, 33, 35, 39, and 41 are significantly below the average overall 
M-quantile coefficient, while NHs 6, 10, and 12 are significantly above it. In this 
way it is possibile to single out instances of best practices or cases of unsatisfactory 
performances.

4.4 � Sensitivity analysis for residents’ discharge

Until now, the response values that are missing because of discharge of residents 
have been taken as MAR, as no information is available in the data on the reasons of 

Fig. 5   MQ-scores of NHs obtained under the MAR assumption (blu circles), under the assumption that 
discharges are all deceased or worsened (red lines), and under the assumption that discharges are all sur-
vived or not worsened (green lines). NHs are arranged by the rank of the MQ-score under the MAR 
assumption
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the discharge. In this section we perform a sensitivity analysis to evaluate the impact 
of discharges on the estimates and the robustness of the results quoted in the previous 
sections. To this end, for the response Death we consider two scenarios: in the first 
one, a discharge is assumed to correspond to a death; for example, the NH resident 
is discharged because he/she needs hospitalization or a level of care that the NH is 
not able to provide; in the second setting, a discharge is assumed to correspond to a 
survival, as when there is an improvement that no longer requires staying in the NH. 
Similarly for the response Worsening, in the first setting a discharge is considered as 
a worsening, while in the second setting as a non-worsening.

Clearly, without further information, the two extreme scenarios discussed above 
are not necessarily a good approximation of the reality for the two outcomes, as 
the MAR assumption might not be either. Nevertheless, these scenarios provide two 
patterns that can be compared to the findings obtained under MAR. In this way, the 
overall validity of the latter can be assessed to some extent. With this regard, Fig. 5 
shows the behavior of the NH MQ-scores ordered under the MAR assumption (blue 
circle line), with the limit of the pairwise comparison overlap intervals (dotted line). 
In addition, the red line shows the corresponding values under the first setting (dis-
charge as death on the left or worsened on the right), while the green line shows the 
corresponding values under the second setting (discharge as survival on the left or 
improvement on the right). Now, the blue, red and green lines follow similar pat-
terns and are all within the confidence bounds for all NHs but NH 34. In fact, NH 34 
has the highest rate of discharged residents, and uncertainty on its performance may 
require attention by the regional health management.

5 � Discussion and conclusions

In this paper we focus on the evaluation of the performance of institutions delivering 
services. The aim is to develop tools that allow monitoring the institutions, 
compare them from an efficacy point of view, and inform policy makers. In this 
regard we use statistical models for evaluating the performance of institutions 
with respect to outcome variables that are dichotomous, taking into account user 
case-mix adjustments to allow fair comparisons. Using data regarding users of the 
services delivered by the institutions, it is possibile to estimate the contribution to 
the outcomes of the institutions separated by that of the case-mix. Measuring this 
contribution would allow the ranking of the institutions from the most effective to 
the least one and single out best practices or cases of bad services. In particular, we 
review the classical approach that uses logistic mixed models and investigate robust 
alternatives such as finite mixtures of logistic models and M-Quantile regression for 
binary data.

The application refers to Nursing Homes (NHs) for elderly that need long term 
health care. For these institutions, ability to keep residents healthy is of interest and 
in this respect the outcome variables considered in this work are binary indicators of 
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decease and of worsening over a given period of time. To adjust for the case-mix of 
residents of each NH, the use of the Resource Utilization Group (RUG) system as 
proxy of the health conditions is proposed. In particular, the RUG system classifies 
residents in homogeneous groups according to the kind of impairment of the elderly 
and the treatments received. To each RUG group a weight is attached as an indicator 
of the amount of care burden it requires.

The results obtained from fitting the statistical models discussed in the paper 
to the data from the NHs of the Italian region Umbria show that the most relevant 
predictive variable of the outcomes within the RUG framework is the weight of the 
RUG group to which each resident is assigned. Beside that, significant effects are 
shown for age and gender of residents. Conditional on the latter, we were interested 
in finding a NH effect on the outcomes which can be interpreted as its ability of 
avoiding the death or the worsening of the resident.

Using Finite Mixtures of Logistic Models, it has been possible to check that the 
assumption of Gaussian random effects used in logistic mixed models is not appro-
priate for the data at hand, so that a more robust approach based on M-Quantile 
regression for binary data has been proposed and effectively applied to obtain a 
score for each NH (MQ-scores). Similarly to random effects from logistic mixed 
models, the MQ-scores allow to rank NHs from the most effective to the least effec-
tive in delaying the deterioration of the health conditions of the elderly. However, 
no parametric assumption for the distribution of these effects has been made and, in 
addition, possible interactions of the NH group effect with the covariates is automat-
ically accounted for. A nonparametric block-bootstrap procedure has been used to 
measure the standard error of the MQ-scores and build confidence and overlap inter-
vals to make comparisons among NHs. Since M-quantile regression for binary data 
is a direct expectile-like extension of logistic regression, we believe that MQ-scores 
provide a valuable alternative to logistic mixed models for performance evaluation 
that is data driven and robust.

Fair comparisons between NHs with respect to the outcomes of decease or wors-
ening, especially when they are statistically significant, can be used for the choice 
of the facility, or for identifying best practices or cases of mismanagement or unac-
ceptable level of the care. Results obtained using the MQ-score are in line with 
the clustering obtained using finite mixtures of logistic models. These two robust 
approaches have been proved to be useful alternatives to classical mixed effects 
models with Gaussian random effects to evaluate the performance of institutions. 
The extension of both approaches to incorporate longitudinal data is a topic for fur-
ther research. Similarly, the paper by Alfò et  al. (2017) considers finite mixtures 
of linear M-quantile regression models and it would be interesting to extend their 
approach to M-quantile regression for binary data. Also, an alternative method for 
computing the M-quantile coefficient for binary data has been recently developed 
by Dawber et al. (2022) using expectile regression. Application of this alternative 
approach for evaluation purposes is also a topic for further research. Finally, the 
paper has focused on modeling the conditional expectation of the binary response 
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Fig. 6   Prior distribution of the random effects for a number of mass points (G) ranging from 2 to 10. 
Death outcome

and its extensions in an expectile-like fashion. In this respect, it is of interest to 
investigate possible extensions of new approaches in the quantile regression litera-
ture, such as that proposed by Geraci and Farcomeni (2022) for count data, for eval-
uation problems based on binary outcomes as the one faced here.
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Fig. 7   Prior distribution of the random effects for a number of mass points (G) ranging from 2 to 10. 
Worsening outcome
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Fig. 8   M-Quantile regression coefficient estimates with respect to q with bootstrap based confidence 
bounds. Death outcome
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