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Abstract
In this paper, we apply dynamic factor analysis tomodel the joint behaviour of Bitcoin,
Ethereum, Litecoin and Monero, as a representative basket of the cryptocurrencies
asset class. The empirical results suggest that the basket price is suitably described by
a model with two dynamic factors. More precisely, we detect one integrated and one
stationary factor until the end of August 2019 and two integrated factors afterwards.
Based on this evidence, we define a multiple long-short trading strategy which proves
profitable when the second factor is stationary.

Keywords Cryptocurrencies · Cointegration · Dynamic factor models · Forecasting
analysis · Pair-trading

JEL Classification C32 · C38 · C53 · C58

1 Introduction

Since their initial creation, most cryptocurrencies, in particular Bitcoin, proved to be
highly volatile investment assets. For example, at the beginning of 2 January 2013,
Bitcoin had a value of about 13 USD, reached a value of more than 19,000 USD in
December 2017 and fell down to 7000 USD by the end of 2019.
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Statistical analysis of cryptocurrencies has revealed a number of stylized facts,
i.e. statistical findings that appear regularly in the time series under analysis; a non-
exhaustive list of empirical studies is represented by Zhang et al. (2018, 2019),
Bariviera et al. (2017), Hu et al. (2019) and Giudici and Pagnottoni (2020) which
mainly focus on individual behaviour of cryptocurrencies. Findings similar to those
of traditional financial assets include the non-stationarity of prices, which display an
integrated I (1) behaviour and, as a consequence, the stationarity of price differences;
besides, returns show weak autocorrelation, while their absolute values are strongly
autocorrelated.

The abnormal and unexpected returns of Bitcoin after 2016 have produced a surge in
scientific researchon the economics of cryptocurrencies. Several studies investigate the
relationship between cryptocurrencies and other financial assets, such as commodities,
currencies and market indexes, e.g. Dyhrberg (2016), Ciaian et al. (2016), Kang et al.
(2019); besides, hedging and safe-haven properties of cryptocurrencies against the risk
of stock markets has been investigated by Tiwari et al. (2019), Shahzad et al. (2019)
and Bouri et al. (2017).

Many empirical papers also address the dependence on other candidate factors;
Kristoufek (2015) elaborates on the relationship of Bitcoin prices with the number of
transactions as well as with several crypto-related factors, such as the mining difficulty
and the hashrate. Ciaian et al. (2016), Figá-Talamanca and Patacca (2019, 2020),
Cretarola et al. (2020), Ahn and Kim (2019) and Eom et al. (2019) investigate whether
Bitcoin returns and volatility are associated with investor attention, sentiment or by
specific measures of market attractiveness.

Structural breaks and/or bubbles in the dynamics have been evidenced, among
others, in Garcia et al. (2014), Cheah and Fry (2015), Fry and Cheah (2016), Corbet
et al. (2018), Bouri et al. (2019), Cretarola and Figà-Talamanca (2019, 2020), Chaim
and Laurini (2019) and Agosto and Cafferata (2019).

Most of the above contributions focus on Bitcoin either because of data availability
or as a benchmark for the whole sector. Indeed, the price dynamics of several cryp-
tocurrencies display commonmovements to that of Bitcoin, e.g. Ciaian andRajcaniova
(2018), Blau et al. (2020). Notably, in Yaya et al. (2019), the dependence between the
price dynamics of Bitcoin and other cryptocurrencies is identified within the theory of
fractional cointegration. Furthermore, Figà-Talamanca et al. (2020) evidence common
regimes in the dynamics of several cryptocurrencies, by applying the theory of Hidden
Markov models.

By taking advantage of the mutual dependence across several cryptocurrencies, it is
reasonable to explore the possibility of forming market neutral strategies, where gains
and losses depend only on the relative behaviour of assets.Market neutral strategies are
well known to investors in stocks and other conventional assets. They are based on the
principle that although the behaviour of each individual assetmight not be forecastable,
the relative behaviour of assets can be forecasted. Several statistical techniques help
in forming market neutral strategies. Most strategies are based on some variant of
cointegration or factor models. See Pole (2011) and Avellaneda and Lee (2010) for an
introduction to market neutral strategies.

An attempt in this direction is given in Leung and Nguyen (2019): the authors,
after evidencing the presence of statistical cointegration among several cryptocurren-
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cies, detect the linear relationship between the cryptocurrencies under analysis and
investigate the output of a spread statistical arbitrage which takes advantage of this
specific association. Cointegration-based and other arbitrage strategies are analysed
in Lintilhac and Tourin (2017), Bistarelli et al. (2018, 2019) by exploiting Bitcoin
price differences across online trading exchanges, rather than considering multiple
cryptocurrencies.

In this paper, we also build on statistical cointegration in order to create a market
neutral strategy by investing in a basket of cryptocurrencies. However, our trading
investment is based on the assumption that the multivariate price dynamics of the
assets is suitably modelled by a dynamic factor model and proves profitable when the
dynamics is described by one integrated and one stationary factor.

Precisely, we estimate the model on moving windows which include three years of
previous daily observations starting on January 2019, of Bitcoin, Ethereum, Litecoin
and Monero prices. Building on the above result, we suggest a trading strategy on
multiple pair spreads, and we provide an empirical investigation of the final value
of the strategy as well as of its time changes over the period from January 2019
to November 2019. Our findings suggest that the strategy is particularly profitable
when the second factor is stationary, i.e. until the end of August 2019. The paper
is organized as follows: in Sect. 2 we perform the preliminary statistical analysis to
confirm stylized facts, in particular cointegration, for the basket under investigation; in
Sect. 3, we introduce dynamic factor models as a general framework while in Sect. 4
we suggest and estimate a specific price dynamics. In Sect. 5, we define the proposed
marked neutral strategy, detail its theoretical properties and provide empirical results.
Finally, in Sect. 6 we give some concluding remarks.

2 Preliminary analysis

We consider, among the 20 cryptocurrencies with the highest market caps according
to https://coinmarketcap.com/ on December 2019, those which existed and traded by
January 2016: we end up with a sample for the price of four cryptocurrencies: Bitcoin
(BTC), Ethereum (ETH), Litecoin (LTC) andMonero (XMR), observed from January
2016 to the end of November 2019. The first three years of data are considered for
estimation purposes only, while observations from January to November, 2019 serve
as test-dates in order to evaluate the profitability of the market neutral strategy to be
defined thereafter.

Table 1 summarizes descriptive statistics, and Figure 1 represents the prices
behaviour of the four cryptocurrencies for the whole dataset.

In line with the study of stylized empirical facts for general financial markets (Cont
2001; Cont and Tankov 2004), we perform the Augmented Dickey Fuller (ADF)
and the Kwiatkowsky–Phillips–Schmidt–Shin (KPSS) tests on prices and price dif-
ferences: the former tests the null hypothesis of unit root while the latter tests the
null of trend stationarity against the alternative of a unit root. We then apply the
Ljung-Box autocorrelation test to the whole basket of returns. Results, summed up in
Table 2, show that all cryptocurrencies are integrated of order one (I (1)) while their
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Table 1 Summary Statistics of Cryptocurrencies prices from January 1, 2016 to November 30, 2019

BTC ETH LTC XMR

Min. 364.33 0.94 3.00 0.43

Q1 818.41 12.79 4.05 11.27

Median 4035.57 175.05 48.82 54.56

Mean 4830.50 226.47 57.59 79.10

Q3 7833.04 298.33 78.77 105.11

Max. 19497.40 1396.42 358.34 469.20

St. Dev. 3974.16 248.35 60.12 87.70

Fig. 1 Price behaviour for Bitcoin (top-left), Ethereum (top-right), Litecoin (bottom-left) and Monero
(bottom-right) from January 1, 2016 to November 30, 2019

differences are stationary (I (0)). Besides, the weak autocorrelation of returns and the
strong autocorrelation of their absolute values are confirmed by the Ljung-Box test.1

As a preliminary check on whether a dynamic factor model may be suitable to
describe the price dynamics of the basket, we also perform a cointegration analysis on
the four cryptocurrencies; Table 3 displays the outcomes of the Johansen cointegration
test2, see Johansen (1991).

It is clear that the four cryptocurrencies are cointegrated with three cointegrating
vectors and consequently, they share one common integrated I (1) factor.

3 Dynamic factor models

Classical factor models have a long history which goes back to the formalization
of psychometric models. Spearman (1904) introduced a one-factor model of mental

1 We don’t report the results in the paper but they are available upon request.
2 We applied the function jcitest.m, with trace test specification, provided in the Econometrics Toolbox of
Matlab®.
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Table 2 ADF and KPSS tests of cryptocurrencies daily prices (Panel a) and price differences (Panel b)
from January 1, 2016 to November 30, 2019

BTC ETH LTC XMR

Panel a: prices

ADF-Test p value 0.4312 0.2319 0.1546 0.1382

KPSS-Test p value <0.010 <0.010 <0.010 <0.010

Panel b: price differences

ADF-Test p value <0.001 <0.001 <0.001 <0.001

KPSS-Test p value >0.100 >0.100 >0.100 >0.100

Note that 0.001 and 0.100 are, respectively, the minimum and the maximum p values provided by Matlab®

adftest.m and kpsstest.m functions

Table 3 Johansen cointegration
test between Bitcoin, Ethereum,
Litecoin and Monero prices:
data are from January 1, 2016 to
November 30, 2019

r stat value c value p value

0 105.0086 40.1751 0.0010

1 57.8639 24.2747 0.0010

2 15.7722 12.3206 0.0130

3 0.5850 4.1302 0.6356

abilities, Thurstone (1938, 1947) introduced the firstmulti-factormodel, andHotelling
(1933) described principal components analysis. Classical factor models as described,
for example, in Anderson (2003), are strict factor models with a finite number of
variables. In a strict factor model, residuals aremutually uncorrelated and uncorrelated
with factors. This implies that all correlations are due to factors.

In order to identify a strict factor model, additional assumptions are needed. The
setting of classical strict static factor models is one of independent samples extracted
from a population with a multivariate Gaussian distribution and observations are i.i.d.
vectors. Time-varying behaviour is not accounted for when samples are taken at dif-
ferent points in time. Dynamic factor models generalize the above setting by allowing
to specify dynamics for the factors and for the processes themselves.

While modern static multi-factor models were initially proposed in the early 30s
by Hotelling (1933), the first dynamic factor models were introduced in econometrics,
by Geweke (1977) and by Sargent and Sims (1977), more than forty years later. The
subsequent development of dynamic factor models followed two lines:

• dynamic factor models of stationary processes;
• dynamic factor models of integrated processes.

3.1 Dynamic factor models of stationary processes

Sargent and Sims (1977) and Geweke (1977) proposed dynamic factor models to
describe the behaviour of I stationary variables, when observed up to time T , by
means of K factors. The authors assume that I is finite, K << I and T very large.
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In addition, factors and residuals are uncorrelated and that residuals are mutually
uncorrelated though possibly autocorrelated.

The above assumptions were relaxed in Engle and Watson (1981), Sargent (1989)
and Stock and Watson (1989) by allowing for a small number of variables; param-
eter estimates are obtained by maximizing the likelihood and factors are recovered
through the Kalman filter. An alternative estimation procedure, when a small number
of variables is considered together with a large number of observations, is to consider
dynamic factor models as instances of state-space models (see Lütkepohl and Poskitt
1991).

In general, we can specify a dynamic factor model as follows:

rt = β ft + εt

�(L) ft = �(L)ηt

�(L) = 1 − �1L − · · · − �pL
p

�(L) = 1 − �1L − · · · − �q L
q

(1)

where r = {rt }t=1,2,...,T is a vector processes with I components, the βi are I × K
matrices, f = { ft }t=1,2,...,T is the vector of K stationary process (the factors) and L
is the lag operator. The error process ε = {εt }t=1,2,...,T is a white noise with a full
covariance matrix, η = {ηt }t=1,2,...,T has a full-rank covariance matrix and is serially
uncorrelated and ε and η are mutually uncorrelated at all lags. That is, the common
dynamic structure comes only from the factors while the idiosyncratic components
can be correlated but no autocorrelation is allowed.

3.2 Dynamic factor models of integrated processes

Themodel specification for dynamic factor models of integrated factors does not differ
from (1) but allows for the possibility of considering non-stationary, i.e. integrated,
factors. The estimation of such models introduced in Peña and Poncela (2006) gen-
eralizes the estimation methodology for the case of stationary factors put forward in
Peña and Box (1987). The paper proposes a test for the number of common factors
based on the analysis of the eigenvalues of the generalized covariance matrices and
factors are estimated with maximum likelihood. Further, Peña and Poncela (2004)
analyse the forecasting performance of such models.

The notion of a factor model of integrated processes is rooted in the concept of coin-
tegration. There is a vast literature on cointegration and on determining the number
of cointegrating relationships. Following Engle and Granger (1987), who were jointly
awarded the 2003 Nobel Memorial Prize in Economic Sciences for the discovery of
cointegration and autoregressive conditional heteroskedasticity (ARCH) behaviour,
two or more integrated time series are cointegrated if there is a linear combination∑I

i=1 αi xi t of the series that is stationary. The linear combinations
∑I

i=1 αi xi t that
are stationary are called cointegrating relationships. As observed in Galeano and Peña
(2000), the idea that two or more time series can be individually integrated but that
a linear combination of the series is stationary had already been put forward by Box
and Tiao (1977) in introducing canonical correlation analysis. The state-of-the-art
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cointegration test is the Johansen test (Johansen 2000). A concise yet exhaustive pre-
sentation of cointegration is given in Hendry and Juselius (2000) and Hendry and
Juselius (2001).

The first link between cointegration and dynamic factor models appeared in Stock
and Watson (1988). This landmark paper demonstrates that if a set of I time series
is cointegrated with K cointegrating relationships, then there are Q = I − K inte-
grated common trends and the I series can be described as regressions on the common
trends. Later, Escribano and Peña (1994) established that common trends are equiv-
alent to common dynamic factors in the sense that the existence of K cointegrating
relationships is equivalent to the existence of I − K dynamic integrated factors.

The outcomes of the cointegration analysis performed for the analysed cryptocur-
rencies together with the above remarks motivate the following section where a
dynamic factor model with one integrated factor is suggested for modelling the basket
price dynamics.

4 A dynamic factor model for cryptocurrencies

As already remarked, many cryptocurrencies are currently available for trading on
online exchange platforms. It has been claimed in Ciaian and Rajcaniova (2018) and
Blau et al. (2020) that the whole sector is possibly driven by the dynamics of Bitcoin
(in particular in the short-run) or, alternatively, by a single common factor. Indeed, the
price dynamics of several cryptocurrencies show a similar path, as evidenced in Fig.
1.

We build on these findings by assuming that the prices of a basket of cryptocurren-
cies may be described through a dynamic factor model. If this is the case, it would be
reasonable to explore the possibility of forming market neutral strategies, where gains
and losses depend only on the relative behaviour of the assets.

The dataset is split into two subsamples with the first three years of data (January 1,
2016–December 31, 2018) used only for model estimation and the remainder (January
1, 2019–November 30, 2019) as test dates for the performance of the market neutral
strategy suggested in Sect. 5.

4.1 Model specification and fitting

Assume we are given with I different cryptocurrencies; based on our preliminary
analysis, we model their mutual relationship through a dynamic factor model.

More precisely, we assume that, for i = 1, 2, . . . , I and t = 1, 2, . . . , T :

pi,t = αi +
K∑

k=1

βik fk,t + εi,t ,

fk,t = λk fk,t−1 + ηk,t , k = 1, 2, . . . , K

εi,t = φi,1εi,t−1 + φi,2εi,t−2 + . . . + φi,pi εi,t−pi + ui,t .

(2)
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where pi,t is the price at time t of the cryptocurrency i and fk,t , for k = 1, 2, . . . , K are
the common factors. For each cryptocurrency i , εi,t is a centered process, representing
the error term at time t , which may be autocorrelated and is suitably described by
an autoregressive AR(pi ) process; the error terms ui,t and ηk,t , k = 1, 2, . . . , K are
normally distributed i.i.d processes.We further assume, in linewithKoopandKorobilis
(2010), the independence between the factors and the error processes ui , ηk, ηh , for
i = 1, 2, . . . , I and k, h = 1, 2, . . . K , with k �= h, and between the error process ui
and u j , for i, j = 1, 2, . . . , I , with i �= j .

Factors can be confidently estimated by means of principal components analysis
in the limit case of an infinite market, in practice a very large market. When a limited
number I of assets is given, dynamic factor models are usually estimated as state space
models (Lütkepohl and Poskitt 1991). We used the Matlab® software for Bayesian
models provided by Koop and Korobilis (2009), which adopts the latter methodology,
since in the empirical application we have I = 4.

When focusing on the first three years of our specific sample (T = December
31, 2018), the Johansen cointegration test confirms the existence of a common non-
stationary factor, hencewe expect one common factor, say f1, to be integrated I (1), see
Escribano and Peña (1994). In order to detect the correct number of common factors,
we estimate, as a first step, the model in (2) with just one factor f1; then we compute
the covariance matrix of residuals εi,t , i = 1, 2, . . . , 4 and corresponding eigenval-
ues, given by (1184763.89, 6946.14, 185.03, 14.32), which suggest the presence of a
second relevant factor.

Therefore, we will assume k = 2 throughout our empirical investigation; the con-
sidered model specification is finally given by:

pi,t = αi + βi1 f1,t + βi2 f2,t + εi,t ,

f1,t = λ1 f1,t−1 + η1,t ,

f2,t = λ2 f2,t−1 + η2,t ,

εi,t = φi,1εi,t−1 + φi,2εi,t−2 + . . . + φi,pi εi,t−pi + ui,t .

(3)

Stationarity or non-stationarity for the factors is established by the estimated values
of the autoregressive parameters λ1, λ2. As already noticed, the cointegration analysis
suggests that f1 is integrated I (1), hence we expect λ1 = 1 and f1,t = f1,t−1 + η1,t .

By iteration, we get E
[
f1,t

] = f1,0:=μ, which may be different from 0, and
Var( f1,t ) = tσ 2

η1
where σ 2

η1
= Var(η1,t ). As a consequence E

[
pi,t

] = αi + βi1μ.
Summing up, model (3) is fitted by applying the following estimation procedure:

• The model in (3) is estimated on demeaned prices to get parameters3 βi j , and the
time series for the two hidden factors.

• μ is estimated as the sample mean of the first factor and αi , i = 1, 2, . . . , I are
obtained by solving αi = p̄i,t − βi1μ where p̄i is the sample mean of the process
pi .

3 We make use of Matlab® software for Bayesian models provided by Koop and Korobilis (2009); param-
eters are initialized with the values obtained by performing a standard Principle Component Analysis.
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Fig. 2 Factors f1 and f2 from January, 2016 to December, 2018

Table 4 Parameter estimates from January, 2016 to December, 2018

BTC (i = 1) ETH (i = 2) LTC (i = 3) XMR (i = 4)

αi 4045.7660 238.8579 53.1539 82.4727

βi1 0.9911 0.0700 0.0170 0.0260

βi2 0.1406 5.2255 0.0351 -0.0542

The estimated hidden factors f1, f2 are plotted in Fig. 2: the first factor is an I (1)
process as suggested by our model specification, since the Augmented Dickey fuller
test confirms that the estimated value of λ1 is not significantly different from the unit
(λ1=0.9962, ADF p value=0.27124) while the second factor is a stationary process
(λ2 = 0.9823, ADF p value=0.00564), independent of f1. Corresponding parameter
estimates αi , βi j , i = 1, 2, 3, 4 and j = 1, 2 are reported in Table 4; the estimated
value for μ is negligible.

It is clear from both the estimates and the plots that the first factor essentially
emulates the dynamics of Bitcoin: indeed β11 = 0.9911 is the largest coefficient
and it is very close to one. Figure 3, where the first factor and Bitcoin are overlaid,
confirms this evidence. Besides, the second factor is strongly related to Ethereum
(β22 = 5.2255) though its scale is larger.

In order to check whether the model in (3) is consistent with observed data we also
perform usual diagnostics on factors and residuals ui , i = 1, 2, 3, 4, detailed results
are reported in Appendix 1 (Tables 7, 8). Specifically the correlations between two
factors do not significantly differ from zero (ρ f1, f2 = 0.005) as well as the correlation
among residuals. Besides, the Ljung-Box autocorrelation test, for different values of
maximum lag H5, of the four residual processes is quite satisfactory,with the exception
of Ethereum for which the process u2 still shows some residual autocorrelation.

4 The p values are approximated since the common factors are estimated rather than observed variables.
5 We follow Tsay (2005) where it is suggested to select H ≤ ln n where n=length of the time series.
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Fig. 3 First factor f1 and Bitcoin price from January, 2016 to December, 2018

For completeness we also sum-up in Appendix 1 (Table 9) the estimates of the
AR(pi )model for the error terms εi where the autoregression order pi has been selected
by minimizing the Bayesian Information Criteria, according to Rachev et al. (2007).
It is worth noticing that above estimates are not necessary in order to build a market
neutral strategy to exploit the relationship between the analysed cryptocurrencies, as
it will be clear in the next section.

Since we are interested in building an investment strategy to take advantage of
the dynamic model defined in (3), we can, without loss of generality, scale the price
equations with the corresponding βi1 coefficients. Hence, we get:

p∗
i,t = pi,t

βi1
= αi

βi1
+ f1,t + βi2

βi1
f2,t + εi,t (4)

Notably, the scaled prices are equal to the integrated factor f1,t plus a stationary
process f2,t and a constant term, which are the same for all rescaled prices; in this
way, the gain from a simple long-short strategy with any pair of assets is only driven
by the stationary factor f2. Specifically, the difference (spread) between the prices of
cryptocurrencies i, k ∈ {1, 2, . . . , I } is given by the following equation:

dik,t = pi,t
βi1

− pk,t
βk1

=
(

αi

βi1
− αk

βk1

)

+
(

βi2

βi1
− βk2

βk1

)

f2,t + εik,t . (5)

The above difference process will be crucial in defining a market neutral strategy
on the available basket of cryptocurrencies.

5 Market neutral strategy

Let us assume that we are at time τ and that the price of our basket of cryptocurrencies
is described by the model in (3). Once model parameters have been estimated on a
time series of prices observed up to a varying time T = τ , we obtain one-day ahead
forecasted prices as:

p̂i,τ+1 = Eτ

(
pi,τ+1

) = α̂i + β̂i1Eτ

(
f1,τ+1

) + β̂i2Eτ

(
f2,τ+1

)
(6)
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where

Eτ

(
f1,τ+1

) = λ̂1 f1,τ , Eτ

(
f2,τ+1

) = λ̂2 f2,τ . (7)

Hence, the one-day-ahead forecasted difference in τ + 1 for any pair i, k ∈
{1, 2, . . . , I } of cryptocurrencies is given by

d̂ik,τ+1 =
(

α̂i

β̂i1
− α̂k

β̂k1

)

+
(

β̂i2

β̂i1
− β̂k2

ˆβk1

)

Eτ

(
f2,τ+1

)

=
(

α̂i

β̂i1
− α̂k

β̂k1

)

+
(

β̂i2

β̂i1
− β̂k2

ˆβk1

)

λ̂2 f2,τ (8)

If the above difference is strictly positive, a future revenue can be obtained by apply-
ing a long-short investment in the pair i, k. The forecasted difference only depends
on the second factor at time τ . As the first factor may be interpreted as the market
factor, the above pair trading strategy is market neutral. In order to maximize the
revenue in τ + 1, a multiple pair trading strategy is obtained by investing on several
pairs i, k ∈ {1, 2, . . . , I } which display a non-negative forecasted difference. More
precisely, if we denote with p̂(i)

τ+1, i = 1, 2 . . . , I the ordinal statistics (in decreasing
order) of the scaled forecasted prices for time τ + 1, the multiple pair trading consists
essentially of short positions on the first half of cryptocurrencies (with higher fore-
casted prices) and long positions in the second half of cryptocurrencies (with lower
forecasted prices). Denote with vτ the value at time τ of the above investment port-
folio. The one-day-ahead expected value of the strategy, computed at time τ , is given
by

gτ+1 = Eτ

[
vτ+1

] =
�I/2�∑

i=1

p̂(i)
τ+1 −

I∑

i=�I/2	+1

p̂(i)
τ+1 (9)

where �I/2�, �I/2	 are, respectively, the floor and ceil rounding of I/2.
In general, we will adopt the above pair trading strategy (go long with the multiple

pair trading) whether gτ+1 > vτ or the opposite strategy (going short in the pair
trading) in case gτ+1 < vτ . In addition, in order to avoid huge transaction costs, the
above multiple pairs strategy can be optimized by trading only when the difference
between the forecasted and current value of the investment is above a fixed threshold.

Specifically, we suggest the following strategy:

• if gτ+1 > vτ + cσv
τ , go long with the multiple pair trading,

• if gτ+1 < vτ − cσv
τ , go short with the multiple pair trading,

• if vτ − cσv
τ ≤ gτ+1 ≥ vτ + cσv

τ , hold the current positions (no trade),

where c is an arbitrary chosen constant and σv
τ is the standard deviation of the trading

position value corresponding to the basket price time series observed up to time τ . If
c = 0 the trading strategy reduces to the multiple pair trading defined above.
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Table 5 Observed and forecasted data available at time τ

BTC (i = 1) ETH (i = 2) LTC (i = 3) XMR (i = 4)

βi1 0.9911 0.0700 0.0170 0.0260

pi,τ 9000.00 300.00 40.00 75.00

p̄i,τ 5000.00 150.00 20.00 40.00

p̂i,τ+1 8950.00 295.00 45.00 78.00

p̂∗
i,τ 3985.47 2071.43 1470.59 1461.54

Example 1 Assume we are in time τ , we have estimated the model in (3) up to time τ

and we have the data reported in Table 5 where all prices are given in USD.
Recall that, for i = 1, 2, 3, 4, βi1 is the coefficient of the first factor in (3); p̄i,τ is

the mean price up to time τ , pi,τ is the observed price at time τ while p̂i,τ+1 is the
one-day ahead price forecast (computed at time τ ). Finally, p̂∗

i,τ is the scaled price
defined in (4).

After computation of the ordinal statistics p̂(i)
τ+1, i = 1, 2 . . . , I , the suggested mul-

tiple pair trading strategy is based on selling the highest two ranked cryptocurrencies
(BTC, ETH) and buying the lowest two (LTC, XMR). The forecasted one-day ahead
gain gτ+1 of above positions is given by:

gτ+1 = Eτ

[
vτ+1

] = (8950.00 + 295.00 − 45.00 − 78.00)$ = 9122.00$ (10)

The decision on whether to trade the above strategy and its direction (long or short)
depends on the comparison between gτ+1 and vτ ± cσv

τ where vτ = (9000.00 +
300.00 − 40.00 − 75.00) = 9185.00 . If we have c = 0.1, σv

τ = 500.00, we get
gτ+1 = 9122.00 < vτ − cσv

τ = 9135.00; hence, we short the suggested multiple
pair trading and collect 9185.00. If we further assume that future prices at time τ + 1
are given by p1,τ+1 = 8900, p2,τ+1 = 290, p3,τ+1 = 43.00 and p4,τ+1 = 80.00,
we get vτ+1 = 9067.00 and we are allowed to close the strategy with a net gain
G = (9185 − 9067) = 118.00.

The suggested investment selection can be generalized to a dynamical settingwhere
the model in (3) is estimated on moving windows and every long-short portfolio is
liquidated on the following date. The above strategy provides a non-negative payoff,
for each date s ∈ {τ + 1, τ + 2, . . . τ + M}, on the condition that the basket prices are
properly described by model (3) in the corresponding moving window. Hence, usual
diagnosis tests should be repeated for each moving window.

If the above trading strategy is repeated for m consecutive days {τ + 1,
τ + 2, . . . τ + m} then the expected cumulative gain in τ + m is given by

Gτ+m =
τ+m−1∑

l=τ

[
gl+1 − vl

]
1trade(l) , (11)
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Fig. 4 Forecasted value of differences d̂ik,τ+m from τ + 1=January 1, 2019 to τ + M=November 30, 2019

where the indicator function 1trade(l) is defined by

1trade(l) =
{
1 if there is trade at time l

0 if there is no trade at time l.
(12)

5.1 Empirical results

In this subsection, we provide the empirical results obtained by applying the market
neutral strategy proposed above to the daily prices of Bitcoin, Ethereum, Litecoin and
Monero, from January 1, 2019–November 30, 2019, i.e. a total ofM = 334 days. Each
day the dynamic factor model is estimated on a moving window of daily observations
available for the previous three years (T = 1096 observations). Precisely, the first
window starts in January 2016 and ends in December 2018, then the window moves
one-day-ahead so that the last one runs from November 30, 2016 to November 29,
2019.

Once parameters are estimated on each moving window, the forecasted prices for
the four cryptocurrencies in the basket are computed using the rule in (6). Since our
strategy depends on the forecasted differences in (5), Fig. 4 displays these values for
all pairs in the basket.

The suggested trading strategy is repeated each day from January 1, 2019 toNovem-
ber 30, 2019, after fitting the model in (3) on a three years long moving window; the
suggested trading strategy has been shown to be (theoretically) profitable under spe-
cific assumptions: the existence of a non-stationary and a stationary factor and their
mutual independence (or, at least, weak correlation). In order to consider a dynamic
generalization of the strategy, the above hypothesis should be verified on each mov-
ing window and the actual trading should be conditioned on their validity. Hence, we
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Fig. 5 Correlation between factors f1, f2 for all moving windows (m = 1, 2, . . . , M). The threshold level
0.18 for no trade is also plotted as an horizontal line

Table 6 Summary statistics of cumulative gain Gτ+M and net cumulative gain G∗
τ+M

c = 0.00 c = 0.10 c = 0.20 c = 0.30 c = 0.50 c = 1.00

Panel a: Gτ+M

Trade n. 252.00 232.00 222.00 200.00 172.00 72.00

Mean 7625.65 7620.59 7623.34 7615.08 7554.18 7467.75

St. Dev. 5474.23 5472.13 5474.02 5467.97 5477.52 5580.96

Panel b: G∗
τ+M , taking into account transaction fees

Trade n. 252.00 232.00 222.00 200.00 172.00 72.00

Mean 3031.17 3028.80 3032.97 3027.38 2973.89 2883.38

St. Dev. 2596.05 2594.68 2598.39 2593.16 2608.96 2720.23

avoid trading when both factors f1 and f2 are integrated and/or highly correlated. In
the empirical application, the suggested market neutral strategy is applied only when
the mutual correlation between factors is below 0.186. Figure 5 shows the value of
correlation between factors f1, f2 for all moving windows (m = 1, 2, . . . , M) and the
threshold level.

In order to appreciate the influence of the arbitrary constant c on the cumulative gain
of our strategy, Table 6, Panel a, shows the summary statistics of the cumulative gain at
time τ + M , Gτ+M , corresponding to several choices of c. In addition, to evaluate the
performance of the suggested trading strategy in a real market, where transaction cost
is associated to each trade, the net cumulative gain G∗

τ+M is also reported in Table 6,
Panel b. The net gain is computed under the assumption that transaction fees are given
by the 0.10% of the investment, which corresponds to the maker fee of Coinbase7 for
the pricing tier from $100k to $1m of USD trading volume over the trailing 30-day
period.

As expected, the number of trades decreases when c increases and the cumulative
gain is maximized when c = 0 (Panel a); a wise selection appears to be c = 0.20,
which maximizes the net cumulative gain, once transactions fees are accounted for
(Panel b).

6 The correlation parameter is significant at the α = 0.05 level when above the threshold 0.06. We choose
0.18 that is equal to three times the threshold to have more tolerance.
7 https://pro.coinbase.com/fees.
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Fig. 6 Cumulative gain Gτ+m with parameter c = 0.00 and c = 0.20 (top) and forecasted value of factor
f2,τ+m (bottom) from τ + 1=January 1, 2019 to τ + M=November 30, 2019

Fig. 7 Net cumulative gain G∗
τ+m with parameter c = 0.00 and c = 0.20 from τ + 1=January 1, 2019 to

τ + M=November 30, 2019.

The time-varying dynamics of the cumulative gain Gτ+m , m = 1, 2, . . . , M when
c = 0.00 and c = 0.20 is illustrated in the top-picture of Fig. 6. Notably, no
transactions appear after September 2019; indeed, the outcomes from the Johansen
cointegration test, applied within the time frame of each moving window, suggest the
existence of two common integrated factors (rather than one), starting fromAugust 20,
2019; moreover, the correlation between the two estimated factors is above the fixed
threshold (see Fig. 5). These two evidences are in contrast with the basic assumptions
underlying the proposed strategy and suggest no trading. Finally, it is worth noticing
that the strategy is as much profitable as higher is the forecasted value of f2, plotted
in Fig. 6 (bottom picture).

Similarly, in Fig. 7 we plot the time-varying net cumulative gain G∗
τ+m , m =

1, 2, . . . , M when c = 0.00 and c = 0.20. It is evident that, in both cases, the proposed
strategy provides a net positive gain even when taking into account transaction costs.

6 Concluding remarks

In this paper, we suggest a dynamic factor model to describe the price dynamics
of a basket of cryptocurrencies including Bitcoin, Ethereum, Litecoin and Monero,
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observed daily from January 1, 2016–November 30, 2019. These were selected among
the 20 cryptocurrencies with highest market cap, according to https://coinmarketcap.
com/ on December 2019, which existed and traded for at least three years. The out-
comes of our analysis confirm the presence of cointegration as already evidenced in
Ciaian and Rajcaniova (2018) and Blau et al. (2020) and show the appropriateness of
dynamic factor models to describe the price process of the whole basket. Indeed, it is
evidenced that the basket is driven by two common, dynamic factors, the first of which
is a non-stationary I (1) process. In order to check the consistency over time of the
suggested model specification, the estimation is repeated on three-year long moving
windows. By applying usual diagnostic checks, it is proven that dynamic factor mod-
els provide a satisfactory fit throughout the analysed period. It is worth noticing that
the second factor displays a stationary behaviour on moving windows series observed
until the end of August 2019 while it is integrated I (1) afterwards. Besides, the cor-
relation between the two factors increases within the same period. We stress that our
analysis is limited to a basket of four cryptocurrencies since dynamic factor models
rely on a large set of parameters which need to be estimated on a sufficiently long
time series. Nevertheless, we conjecture that analogous results would be obtained on
a larger basket if longer time series were available.

The common factor dynamics depicted in the first part of the paper is exploited
in order to define a market neutral strategy consisting of suitably scaled long short
investments on suitably selected cryptocurrency pairs. Theoretical properties of the
suggested strategies are analysed: in particular the time-varying value for the cumu-
lative gain is computed daily from January to November, 2019. Our findings suggest
that the proposed trading strategy is particularly profitable until the second factor
remains stationary. By taking into account transaction fees, according to the trading
rules imposed by the Coinbase exchange, we also prove that the net cumulative gain
remains positive throughout the considered period. A yet more profitable trading strat-
egy might be defined by investing in multiple (rather than two) pairs, once a larger
basket is available.
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Appendix

See Tables 7, 8 and 9.
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Table 7 Correlation matrix between the two factors and residuals u from January, 2016 to December, 2018

f1 f2 u1 u2 u3 u4

f1 1.0000 0.0050 −0.0568 −0.0204 −0.0075 0.0472

f2 0.0050 1.0000 0.0600 −0.0413 0.0256 −0.0279

u1 −0.0568 0.0600 1.0000 0.1876 0.2297 −0.0673

u2 −0.0204 −0.0413 0.1876 1.0000 0.1753 0.0402

u3 −0.0075 0.0256 0.2297 0.1753 1.0000 −0.0744

u4 0.0472 −0.0279 −0.0673 0.0402 −0.0744 1.0000

Table 8 Ljung-Box p values for
u residuals from January, 2016
to December, 2018

lag=1 lag=3 lag=5 lag=7

u1 0.7417 0.9810 0.9098 0.9573

u2 0.9369 0.3721 0.0008 0.0007

u3 0.9552 0.9433 0.9825 0.0543

u4 0.8121 0.9933 0.9926 0.9988

Table 9 Parameter estimates of
φ coefficients from January,
2016 to December, 2018

Estimate SE t-statistic p value

Panel a: Bitcoin

φi,1 1.0649 0.0087 122.0500 0.0000

φi,2 −0.2402 0.0153 −15.6990 0.0000

φi,3 0.2078 0.0157 13.2280 0.0000

φi,4 −0.1638 0.0167 −9.8030 0.0000

φi,5 0.2676 0.0184 14.5420 0.0000

φi,6 −0.3373 0.0188 −17.9330 0.0000

φi,7 0.1784 0.0130 13.7630 0.0000

Panel b: Ethereum

φi,1 −0.5759 0.0127 −45.2080 0.0000

φi,2 −0.3691 0.0146 −25.2620 0.0000

φi,3 −0.0436 0.0172 −2.5329 0.0113

φi,4 0.1789 0.0172 10.3780 0.0000

φi,5 0.4026 0.0150 26.7940 0.0000

φi,6 0.4812 0.0139 34.7000 0.0000

φi,7 0.3299 0.0163 20.2530 0.0000

φi,8 0.1542 0.0155 9.9343 0.0000

φi,9 0.0812 0.0173 4.7023 0.0000

Panel c: Litecoin

φi,1 0.9706 0.0100 97.2300 0.0000

φi,2 −0.1012 0.0106 −9.5439 0.0000

φi,3 0.1866 0.0139 13.4390 0.0000

φi,4 −0.1508 0.0084 −17.9020 0.0000
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Table 9 continued Estimate SE t-statistic p value

Panel d: Monero

φi,1 0.0041 0.0111 0.3669 0.7137

φi,2 0.1080 0.0121 8.9081 0.0000

φi,3 0.0818 0.0142 5.7506 0.0000

φi,4 −0.0051 0.0122 −0.4188 0.6754

φi,5 0.0444 0.0124 3.5718 0.0004

φi,6 0.2814 0.0137 20.5970 0.0000

φi,7 0.0940 0.0124 7.5686 0.0000

φi,8 −0.0154 0.0151 −1.0236 0.3061

φi,9 0.0046 0.0144 0.3202 0.7488

φi,10 −0.1393 0.0132 −10.5760 0.0000
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