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Abstract: Soil moisture is an integral quantity parameter in hydrology and agriculture practices.
Satellite remote sensing has been widely applied to estimate surface soil moisture. However, it is
still a challenge to retrieve surface soil moisture content (SMC) data in the heterogeneous catchment
at high spatial resolution. Therefore, it is necessary to improve the retrieval of SMC from remote
sensing data, which is important in the planning and efficient use of land resources. Many methods
based on satellite-derived vegetation indices have already been developed to estimate SMC in various
climatic and geographic conditions. Soil moisture retrievals were performed using statistical and
machine learning methods as well as physical modeling techniques. In this study, an important
experiment of soil moisture retrieval for investigating the capability of the machine learning methods
was conducted in the early spring season in a semi-arid region of Iran. We applied random forest
(RF), support vector machine (SVM), artificial neural network (ANN), and elastic net regression (EN)
algorithms to soil moisture retrieval by optical and thermal sensors of Landsat 8 and knowledge
of land-use types on previously untested conditions in a semi-arid region of Iran. The statistical
comparisons show that RF method provided the highest Nash–Sutcliffe efficiency value (0.73) for soil
moisture retrieval covered by the different land-use types. Combinations of surface reflectance and
auxiliary geospatial data can provide more valuable information for SMC estimation, which shows
promise for precision agriculture applications.

Keywords: soil moisture; remote sensing; machine learning; semi-arid region of Iran

1. Introduction

Soil moisture (SM) is a significant component of the hydrological cycle regulating runoff, vegetation
production and evapotranspiration [1]. Soil moisture is a major soil indicator to define and identify
agricultural drought. Estimation of soil moisture has applications for identifying early-stage water
deficit conditions and evolving drought events for crop yield uncertainty and food security conditions,
agricultural insurance, policymaking and decision-making, and crop planning [2,3] especially for
the arid and semi-arid parts of the globe. Agricultural drought has a catalytic effect that contributes
to social and political conflicts in developing countries [4]. Therefore, soil moisture modeling and
monitoring are of increasing interest. Monitoring the spatial and temporal variations of SM is a
prerequisite both for mitigating and adapting to climate changes for the sustainability of cropping
systems as well as for developing precision agriculture and food security [5–9]. Surface soil moisture
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is generally referred to the water content of the top ~5–15 cm of the soil layer [10]. Although the
water in this thin layer of soil constitutes a minute portion of the global water reserves, it embodies
fundamental hydrological, biochemical, physiological, agricultural, and other Earth processes [10,11].
Accurate information about the spatial and temporal variations of surface soil moisture are crucial for
policy formulation and land-water management.

Soil moisture can be estimated with field measurements by a range of methods. Among the
field soil moisture sensors, dielectric soil-moisture probes are applied in unsaturated soil conditions,
including time domain reflectometers (TDR), frequency domain reflectometers (FDR), and capacitance
probes (CP) [12,13]. These in situ measurements are the most accurate methods to measure SMC and
can also be entirely automated [14]. Installation and maintenance can, however, be very labor-intensive,
and measurements are accurate only at the point of measurement [15]. Obtaining SMC estimates
from earth observation satellites [10,16,17] and land–atmosphere processes models [18] is thus
necessary for acquiring spatial and temporal coverage for, e.g., real-time management and precision
agriculture. However, parametric uncertainty and disturbances related to, e.g., atmospheric conditions,
vegetation, and surface roughness, are still subjects of investigation for identifying suitable models for
estimating SM [14].

The favored source for mapping surface wetness from satellite sensors is optical data.
The advantage of using optical data as opposed to active microwave is that a large data archive
of high-resolution data exists and is updated to be collected operationally, e.g., series of Landsat
observations since 1972 [19]. Moisture content in the soil also affects the spectral reflectance of the
soil, however, the manner in which it affects so varies across the electromagnetic spectrum [20].
Theoretically, changes in soil reflectivity occur when air particle interfaces are replaced by liquid–water
particle interfaces [21]. Remote sensing in the visible-near infrared (Vis-NIR) spectrum is a less
effective spectral domain for soil moisture measurement because of the confounding effects factors [22].
Nevertheless, there have been successful results to apply visible and infrared wavelengths in soil
moisture estimation from remote sensing data [20]. The previous results indicate that it is possible
to estimate surface soil moisture (0–7.6 cm) from visible and near-infrared reflectance [20]. However,
estimating soil moisture regimes rather than precise water content is perhaps more preferred. In this
study, we consider the potential combinations of reflectance bands rather than a single band to estimate
surface soil moisture, four popular machine learning techniques were performed on the 5-band
data set. Also, thermal emissivity data (3.5 and 14 µm) have been used for estimating SMC [13].
The possibility to develop ratios and normalized difference (ND) algorithms for quantitively estimate
water content in leaves has been investigated [23–25]. A variety of ND indices and biophysical
parameters (e.g., leaf area index (LAI)) have been suggested and tested for estimating SMC [26–30],
but there are still several unresolved questions regarding the applicability of various reflectance
spectra bands (e.g., red, near-infrared (NIR), and short-wave infrared (SWIR) in the optical domain) to
estimate SMC directly [29]. Regression methods remain popular because of their simple methodology,
long history of application, and successful application to a wide variety of processes by both practitioners
and academicians. However, for traditional regression analysis, some statistical assumptions required
to be made may lead to limited use, such as outlier data, nonlinearity, heteroscedasticity, and,
multicollinearity. Numerous machine learning methods have emerged to overcome the above
problems such as neural network, random forest, decision trees. Machine learning refers to automatic
or semi-automatic exploration and analysis of large data sets, in order to discover meaningful
correlations, patterns, and rules among data [31]. Machine learning approaches are now commonplace
which have been successfully applied for predicting soil moisture using remotely sensed data in the
semi-arid region [28,32]. However, there are still many special cases of interest in terms of using
machine learning in remotely sensed soil moisture products. The development of machine learning
(ML) has led to renewed attempts to estimate soil moisture from remote sensing [28,29]. One advantage
with SM is that non-traditional spatial data sources, for instance, land-use/cover as existing at the
landscape scale [33], can be used in the modeling. ML methods are site-specific and when the model
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has been calibrated, it can only be applied for similar cases as those used for the calibration phase [10].
However, this type of approach can be an important source of information to estimate soil moisture at
unsampled areas and for site-specific applications [34,35].

The agricultural sector plays a strategic role in the economy for arid countries more prone to be
sensitive to climate events. In arid regions, droughts are recurring climatic events, often threatening
agricultural systems and food security [36,37]. The definition of policies and development of best
practices management options for dealing with water stress in such regions require the adoption
of scenarios of likely future SM conditions as well as real-time or near real-time monitoring and
sharing of SM over extended regions. This can only be achieved by adopting freely available remote
sensing data and a model that translates the satellite data to SM estimates with an accuracy that is
sufficient to support management. This study attempts to semi operationally assess the spatially and
temporally continuous estimates of surface soil moisture content using machine learning models which
are formulated for visible, thermal infrared remotely sensed data and easily accessible auxiliary data to
support and to improve the framework of agriculture management. The primary goal of this study was
to develop an alternative remote-sensed approach with rapid, less expensive, and reliable techniques
as opposed to ground-based methods to spatially quantify SM by routinely available satellite imagery.
This approach must be repeatable and, ideally, able to provide automated spatiotemporal soil moisture
mapping over large areas.

2. Materials and Methods

2.1. Study Area

The study area represents the semi-arid region of west Khorasan-Razavi province in Iran
(Northeastern), located completely on Quaternary alluvial sediments (Figure 1). The Northeastern
semi-arid region also has frequent droughts that can be characterized by the absence of soil moisture
information. Droughts are extreme climate events, which often affect SMC in Iran [37]. There were the
worst droughts during the period of 1998–2001 and again in 2014 in the Middle-East [38]. The study
area includes the Sabzevar county and city, an area of approximately 1100 km2 intensively used for
residential, semi-industrial, and agricultural purposes. The land-use is mainly forested areas (less than
1% of canopy cover) (42%), agricultural (14%), and settlement (1.5%), and the remaining natural and
planted forests of Haloxylon spp, that is a commonly used plant as sand-fixing. The study area is
erosion-sensitive and with potential environmental limitations on vegetation and agriculture [39–41]
and it is mountainous towards the North and large plain characterizes the South; the elevation of the
study area varies between 891 and 2085 m, with a mean value of 1229 m above sea level (Figure 1).
Although the slope angles vary from 0 to 43 degree, the majority of the terrain is only sloping between
0 and 2 degrees. Long term average annual precipitation at the Sabzevar Weather Station is 188.6 mm.
The rainiest month is March with an average of 37 mm while August and September are the driest
rainy months (<1 mm). The annual mean air temperature is about 17.4 ◦C and the average relative air
humidity is 41% [42].
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Figure 1. SMC data in the study area. Location of the 49 point samples (10-fold cross-validation
framework) and 9 external testing point samples that cover different land-use types in the Sabzevar area.
The external testing of the model was distributed throughout the study area in three different
topographical conditions. Locations are shown on Landsat 8 OLI image dated 7 March 2017,
and 26 May 2017.

2.2. In Situ Soil Moisture Data Collection and Satellite Images

2.2.1. Experimental Design of Soil Samples

Soil moisture in situ measurements were obtained using a portable multi-sensor capacitance
probe (PR2, Delta-T Devices Ltd., Cambridge, UK), which can measure volumetric soil moisture (%vol)
at six depths: 10, 20, 30, 40, 60, and 100 cm. The PR2 probe has a measure range of 0–100% (m3/m3)
and a precision of ±6%; ±0.06 m3/m3 (range of 0 ◦C to 40 ◦C) in generalized soil calibration [43].
This sensor was selected n study because of its profile resolution, easy installation, and favorable soil
conditions [44]. An important side of soil moisture variability is its effect on the required number
of soil samples at different locations to properly estimate the true value of soil moisture through
remote sensing data. The experimental design of soil samples (moisture content) is generally based on
land-use or soil types in the experiment area [45,46]. For this research, data on landuse types were
obtained at 30 m resolution from previous research (Figure 2) [47]. Land-use data provided by Adab,
Farajzadeh, Filhkash, and Esmaili [47] are more detailed for soil moisture estimation than for others.
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The landuse map derived from Landsat 7 ETM+ images consists of eight land-use categories obtained
by the maximum likelihood classifier method (Kappa statistic = 0.846, see Table 1). The SMC samples
were collected from six typical land-use systems described in the study area (Table 1). Gardens were
excluded from SMC sampling because the area of this type is negligible (Figure 2). The study area was
divided into three geographical sectors, namely the north sector, west, and east sector. The west sector
and east sector close to the plains and alluvial fans as major agro-ecoregions are dominant. However,
the northern sector is mainly located in the rough topographic relief which is mixed rangeland,
forested area, and irrigated field crops.

Table 1. Classes names of Landuse for the study area.

Categories ** Forested Areas
(Less than 1%)

** Forested
Areas (1–5%)

** Forested
Areas (5–25%)

Irrigated
Cultivated

Areas

Rainfed
Cultivated

Areas

Rangeland
Areas

(5–25%)
Gardens

Urban and
Suburban

Areas

Area (Ha) 47,497.25 16,591.59 12,505.52 3208.48 13,062.5 18,639 43.78 1503.9
Frequency per
category (%) 42 14.6 11 2.8 11.5 16.2 * 0.03 1.5

** Natural and planted forests of Haloxylon spp –Forested and Rangeland areas = canopy cover * Relative cover less
than 1%.

Sampling points were also determined based on a map of World Reference Base (2006) Soil
Groups produced by SoilGrids project [48]. The major soil reference groups for the study area are
Aric Regosols, Calcaric Regosols, Haplic Calcisols, Haplic Fluvisols, and Haplic Fluvisols (Calcaric)
(Figure 2). These reference groups are classified according to soil properties, characteristics, horizons,
and profiles. Soil moisture samples should measure from different altitudes to get the most soil moisture
variation which might be influenced by elevation because elevation reflects microclimate condition.

In this case, after overlapping soil layer, land-use layer, and elevation data, sample locations were
distributed randomly due to accessibility to sample throughout the study area of 1135.3 km2. A total of
58 sampling points were identified in the study area which 49 locations used for 10-fold cross-validation
of the model (Figure 1). The remaining sampling points (n = 9) were set aside to be used as an external
test data set to estimate the capability of the model on new data (for more details Section 2.6 Model
validation and assessment). Soil moisture probe is then placed at the points of interest by augering
with minimal soil disturbance. Each measurement represents a point measurement of the moisture in
the upper 10 cm of soil. The SMC field measurements were corresponding with the satellite passing
date of Landsat-8 schedule as best as logistically feasible. The field measurements included two-time
steps of point sampling carried out under wet and dry climate conditions. The first field measurements
were performed on three days 6–8 March (days of year calendar (DOY) 65–67) and the second one on
26 May (DOY 146) of 2017.

2.2.2. Landsat 8 Satellite Data

The Landsat 8 satellite consists of two sensors, the operational land imager (OLI) and thermal
infrared sensor (TIRS) with the revisit time (at lower latitudes) of 16-days. Two satellite scenes
from 7 March and 26 May 2017 were downloaded, and were georeferenced to the WGS84 datum,
UTM projection Zone 40. The study area falls within the Worldwide Reference System (WRS) path = 160
and row = 35. Landsat data were obtained from the United States Geological Survey (USGS) Earth
Resources Observation and Science (EROS) Center archive (http://earthexplorer.usgs.gov/). Originally,
the distributed Level 1 TIR (Band 10 LWIR and Band 11 LWIR) data was already resampled from
100 m to 30 m resolution by cubic convolution resampling [49]. The spectral bands used in this study
included MS bands (blue (0.45–0.51 µm), green (0.53–0.59 µm), red (0.64–0.67 µm), near-infrared
(NIR; 0.85–0.88 µm), shortwave infrared 1 (SWIR 1; 1.57–1.65 µm), SWIR 2 (2.11–2.29 µm)), and thermal
bands (LWIR1 (10.60–11.19), and LWIR2 (11.50–1251)).

http://earthexplorer.usgs.gov/
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Figure 2. Major soil reference groups and land-use classes of the study area and the location of the
point samples on different land-use types. Precision separation of irrigated and rainfed areas might be
under bias (For more details [50]).

2.3. CHIRPS and SMAP Datasets

For further analysis, Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS)
and Soil Moisture Active Passive (SMAP) satellite have been used to compare their agreement with the
soil moisture derived from the present study. The CHIRPS quasi-global rainfall dataset systematically
developed by the USGS in collaboration with the EROS center, have been distributed over the past
decade by integrating satellite imageries and in situ gauge-collected observations at 0.05◦ spatial
resolution [51]. NASA’s SMAP provides information about soil moisture contained in surface layers of
the soil with a 9-km spatial resolution at a global extent by combining L-band passive (radiometer,
1.41 GHz) and active (radar, 1.26 GHz) microwave. Time series of precipitation and Level-3 (L3) surface
soil moisture were used across the study area in 2017 and were obtained through the Google earth
engine (GEE) online platform (https://earthengine.google.com/).

2.4. Pre-Processing of Data

Digital numbers (DNs) of the Landsat imagery were converted to surface reflectance using the
ATmospheric CORrection (ATCOR3) model of PCI Geomatica 2018 software [52]. ATCOR is an add-on
module of PCI Geomatica, which applies MODTRAN 4 RTM to generate look-up tables for different
atmospheric input parameters. The visibility values for the image acquisition time were obtained
from the Sabzevar Weather Station, and as Sabzevar locates in the continental areas with urban and
industrial aerosol sources, an urban aerosol atmospheric model with mid-latitude winter and spring
standard atmospheres were selected. The calibration files for Landsat 8 were retrieved from the image
metadata file for the band-specific gain and bias values. Topographic correction is very important in
the study area with rugged terrain. In this study, ATCOR-3 was applied for rugged terrain effects on
Landsat 8 data acquired over the study area by incorporating ASTER DEM data and their derivatives
such as aspect, slope, sky view factor, and cast shadow. DNs of the thermal infrared sensor were
also corrected into surface temperature with ATCOR module. The ATCOR Surface Temperature
workflow uses input thermal bands in scaled radiance (raw DN values), a DEM and terrain derivatives,
and, optionally, thermal flux settings from Sabzevar Weather Station (e.g., elevation reference field,
air temperature field, and water vapor partial pressure field, and air temperature gradient) to generate
a surface temperature of the thermal image. The relationship between the fraction of green vegetation
cover and SMC was analyzed through the croplands. The fraction of the vegetation classes were
classified by SPEAR Tools, ENVI 5.3 on 7 March 2017. Normalized difference vegetation index (NDVI)

https://earthengine.google.com/
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usually applies for vegetation delineation, with values in the ranges from 0.05 (for sparse vegetation)
to 0.7 (for dense vegetation cover) [53].

Geometric correction of satellite imagery was not performed on the data because level 1TP
products are geometrically corrected using ground control points (GCPs) with less than a half-pixel
circular error [54]. However, the Landsat 8 satellite images were geometrically double-checked by
selecting control points (CPs) from well-defined locations such as crossovers of roads and other
well-defined features from the Google Earth image. The total root mean square error (RMSE) of the
registered Landsat 8 satellite images was 0.52 pixel.

2.5. Statistical Evaluation of the Input Data

Predictor variables were first statistically processed and screened to ensure their quality using
XLSTAT software, Add in soft, New York, NY, USA before they were used to estimate SMC. The Grubbs
test was used to identify the high level of presence of outliers among variables which may have a
large impact on the model. Data normalizing has not been used in this study because the value range
of predictor variables may not be the same due to intra-month fluctuations of remote sensing data.
Normal distribution of the SMC data and predictor variables have been then checked by means of the
jarque-bera (JB) test [55]. The JB statistic test compares the discrepancy between the distribution of
data and an ideal Gaussian distribution [56]. To understand the statistical relationship of the eight
predictor inputs on surface soil moisture, cumulative sums (CUSUM) statistic was used to measure the
linearity and nonlinearity fashion. The CUSUM statistic measures the strength of linear association,
which is defined as a running sum of the number of observations above and below the fitted regression
line between dependent and independent variables. It is expected the points above and below the line
are randomly scattered, when the relationship is linear and therefore the CUSUM statistic is small.
One-way analysis of covariance (ANCOVA) is also used for assessing the influence of landuse as a
categorical variable on SMC.

The presence of outliers data may give rise to a biased model [57] and a less accurate estimate of
soil moisture. Therefore normal distribution test and outliers test of the variables have been checked
by means of the jarque-bera test and Grubbs test (Table 2). As it turns out some variables do not
conform to normal distribution (p > 0.05) but met the absence of outliers assumption (p > 0.05).
This micro-variability would be considered acceptable for the desired level of soil moisture estimation
that can be detected at the scale of sampling based on the current study. From a descriptive point
of view, it can be stated that the data are sound without major biases and acceptable for machine
learning modeling (Table 2). The range of coefficient of variation (CV) for soil moisture is 0.72,
considerably high, representing that soil moisture in the datasets has a great level of dispersion around
the average and therefore sampling points relatively covered a variety value of soil moisture content.
Despite considerable variation in soil moisture among sites, the relative variability (i.e., CV) of spectral
reflectance of bands across sites was relatively similar, with red band and SWIR2 showing the highest
CV and LST the lowest. This provided some degree of confidence in the soil moisture estimation.

Table 2. Descriptive statistics of variables and statistical tests used for SMC estimation.

Variables Min Max Mean Coefficient
of Variation

Skewness
(Pearson)

Kurtosis
(Pearson)

Jarque-Bera
Asymp. Sig

Grubbs Test
Asymp. Sig

LST 11.9 19.6 14.9 0.13 0.53 −0.65 0.196 * 0.89 *
Blue 2.8 16.8 6.7 0.46 1.95 3.44 <0.0001 0.03

Green 5.0 25.0 10.3 0.44 1.97 3.38 <0.0001 0.04
Red 5.0 32.6 12.8 0.49 1.92 3.15 <0.0001 0.06 *
NIR 6.8 40.1 22.1 0.46 0.28 −1.45 0.083 * 1 *

SWIR1 9.1 39.8 19.1 0.39 1.33 1.39 <0.0001 0.23 *
SWIR2 7.2 37.4 15.6 0.47 1.74 2.50 <0.0001 0.1 *

Soil moisture (%) 0.0 30.5 11.0 0.72 0.66 −0.29 0.154 * 0.6 *

* The samples follow normal distribution and there are no notable outliers in the data (data is close to α = 0.05),
as the computed p-value is greater than the significance level alpha = 0.05.
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2.6. Database for Machine Learning Regressions

In this paper, we applied the most commonly used machine learning methods, including random
forests (RF), artificial neural networks (ANN), support vector machines (SVM), and elastic net regression
(EN). The output cell size of SMC predictors was again set to 30 × 30 m and the snap raster was
realigned to the resampled to ensure cell alignment. The area grid was 1164 rows by 1523 columns
(i.e., the total number is 1,255,859 cells with excluding no-data pixels in the Extent domain of study
area). A total of 10,046,872 predictor cells were created and all layers were then subsequently converted
to points, from which appropriate CSV format files were created and the spatial databases of each factor
used in the Orange 3.24.1 open-source machine learning software (http://www.ailab.si/orange) [58] to
run MLs, and later re-conversion to incorporate them into the GIS database. The estimation of soil
moisture data for the study area was converted to a raster grid with 30 × 30 m cells for the study area.
Due to the huge amount of predictor data that is generated by GIS software, Arc GIS 10.7, there was a
need to automate the process. Figure 3 represented the flowchart of the methodological approach used
in the present study. The flowchart consists of four main steps: (1) data preparation including input
variable selection (VIS/NIR/and SWIR domain, land surface temperature and Landuse) and output
variable (surface soil moisture), (2) data splitting in machine learning, (3) machine learning algorithms,
and (4) statistical validation of SMC maps produced by the machine learning algorithms (see Figure 3).
Details of each step are described in the following sections.

Figure 3. Flowchart of the proposed SMC retrieval algorithm.

2.7. Machine Learning Regressions

2.7.1. Tuning Machine Learning Models

The next important stage in using MLs is the optimization of model itself. Tuning plays an
important stage in the performance of MLs especially when the tuned model is going to use for semi
operational mapping of surface soil moisture. Choosing appropriate hyper-parameters will result in
high accuracy which may truly be translated as the success of the model. Each ML has a different setting

http://www.ailab.si/orange
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of hyper-parameters that govern the learning model. However, it is unknown beforehand which values
of the tuned parameters for the models are suitable for the SMC estimation. For that reason, to achieve a
high prediction performance with the models, some parameters need to be tuned in the training process
of the established model. Although k-fold cross-validation is the most suitable technique for training a
successful ML, but the full advantage of accuracy cannot be taken by ML without tuning the model
by specific external testing data. External testing data use in generalization which is the main point
in tuning MLs model parameters. Because it tells us how well the learning model applies to specific
data not used by the model. In the present study, the best model hyperparameters were chosen after
making a judgment about several settings with expert intervention. In order to be able to assess the
generalization capability of the MLs, 10-fold cross-validation of the model (49 samples), and external
testing (9 samples) was applied to machine learning regressions (See Figure 1 for more details).

The MLs developed in this study were also evaluated on external testing that does not contain
any pattern used in 10-fold cross-validation. The same data were used for 10-fold cross-validation and
external testing of the MLs. The proposed model is first trained and validated with data in March 2017
and then tested on data from May 2017 to gain a confident estimate of the models’ performance. In this
way, the prediction of SMC for unused point samples in May 2017 in the models can be analyzed.
In other words, possible external testing helps us to sure the robustness of the final model in intra-and
inter-season. Therefore, when modeling soil moisture, it is necessary to evaluate the accuracy of the
model by external testing. In this study, 15% of the whole datasets being used for external testing
the ML. The training subsets were used to train the machine learning regression (MLR), while the
validation subsets to compute the cross-validation of the trained model. The validation subsets served
as independent noise data to test the generalization capabilities of the trained MLR, especially when
the training data are limited. The MLR was also compared by a k-fold cross-validation framework,
sometimes called rotation estimation, as the heuristics technique [59]. The cross-validation estimator
delivers nearly unbiased estimate information on model accuracy since the model is tested with k-folds
not involved for model development [60]. The performance of the RF, ANN, SVM, and EN models on
the full data set has been evaluated in this study by 10-fold cross-validation [61]. This cross-validation
was applied to show that the experiment results of the algorithm are repeatable and not dependent on
a particular subsample of the database. K-fold cross-validation includes randomly dividing the data
into 10 k equal sized subsamples or folds. Iteratively, 8 subsets were applied to train the model, 1 as a
validation dataset to stop the training procedure, and 1 as a test set to evaluate the performance of the
model. This procedure has been repeated 10 times for each fold sequentially, which means each of the
10 subsets was applied once as a test set [62].

2.7.2. Artificial Neural Networks (ANNs)

A multi-layer perception (MLP) is a class of feedforward neural network (FNN) which has
been selected to estimate surface soil moisture content. The configuration of the ANN has to be
designed by the trial-and-error procedure because there are no definitive rules to find out the optimum
configuration [63]. The following hyperparameter settings have been introduced: 6, 4, or 3 input
neurons, 3 hidden layers, a regularization parameter of 8, and a maximum of 200 iterations. In this study,
the identity activation function is used for all of the neurons in the hidden layer which is equal to fitting
a linear regression model (note that an identity function is always employed as the activation function in
the output layer). The backpropagation (BP) algorithm is a common gradient-based algorithm used for
training FNNs. In order to solve some of BP problems, metaheuristic algorithms have been represented
to train FNNs [64], namely the limited memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS)
algorithm as the family of quasi-Newton, stochastic gradient descent (SGD), and Adam method [65].
The Broyden–Goldfarb–Shanno (BFGS) is used in this study, which is one of the promising methods
for training neural networks and it is the best popular quasi-Newton algorithm [66] for general
optimization as well as general machine learning [67]. BFGS method is not dominated by noise and
has great advantages over the conventional backpropagation (BP) algorithm, including superlinear
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convergence, good approximation and generalization abilities, high accuracy, and less prone to
overfitting [68–70]. Regularization used in this study which can use in filtering out noise from data,
and eventually avoid overfitting by adding bias to penalize extreme parameter weights [71].

2.7.3. Support Vector Machines (SVM)

SVMs are a class of supervised learning algorithms, which is derived from statistical learning theory
and were first introduced by Vapnik [72]. In some ways, SVMs are closely associated with ANNs [73].
The SVMs have been successfully applied for both classification and regression proposes [73,74].
SVM uses a kernel function for transforming the input data and then apply linear regression to the
transformed data [75]. SVM involves two steps, including, (1) selecting an appropriate kernel type and
setting kernel parameter (kernel width G) and (2) specifying the penalty parameter C [76]. A set of
varying hyperparameters, with the best results obtained with regression cost (C) of 0.5, complexity
bound (V) of 1.00, sigmoid kernel with g 0.98, c 0.10, numerical tolerance of 0.03, and a limited value of
iterations, equal to 200, have been selected.

2.7.4. Elastic Net Regression (EN)

Regularized regression techniques were developed to overcome the weaknesses of ordinary least
squares method regression [77]. In such a method, a penalty parameter, representing a bias to be
added to the regression coefficients in the equation, is introduced as a regularization parameter [78].
The significance of imposing the penalty is to shrink the coefficient values towards zero or near zero
which effectively allows less independent variables to have a coefficient close to zero or equal zero [78].
A linear regression model that applies the L1 regularization technique is called Lasso (least absolute
shrinkage and selection operator) and a model that uses L2 is called ridge. Elastic net regression
can improve the predictive performance of Lasso regression by combining the grouping effect of
ridge regression with the lasso regression. Thus, elastic net has two tuning parameters: α controlling
the balance between L1 (lasso) and L2 (ridge) penalties, and λ controlling overall strength of the
penalty [78]. The elastic net regression adopted in this study with the hyper parameter settings: α= 0.15
and L1:L2 ratio of 0.71:0.29. These tuning parameters were obtained using both k-fold cross-validation
and external testing data set.

2.7.5. Random Forest (RF)

RF is a nonparametric method that is robust to noise in predictors and thus does not require a
preselection of variables [79,80]. RF has several main advantages over another statistical modeling,
such as the ability to find high dimensional non-linear relationships, using of categorical and continuous
predictors, resistance to overfitting, and relative robustness to noise in predictors and therefore does
not need a preselection of variables, and only a few user-defined parameters [80,81]. Numerous trees
are composed by the algorithm and the final predictions involve the average of the results from all
developed trees in the forest [82]. It is necessary to define a priori three user-defined parameters before
running the model, namely the number of trees in the forest, the number of attributes for consideration
at each split, and growth control which represents the depth of individual trees and split subsets.
Applying RF the following hyperparameters have to be set: number of trees, number of random
attributed at each split, the seed for random generator, and depth limit of individual trees. They have
been set equal to 50, 5, 5, and 30, respectively; furthermore, limit the depth of individual trees (pruning)
has been adopted to avoid over-fitting.

2.8. Model Validation and Assessment

Model validation deals in this study with regression metrics and statistical tests. In order to
assess the performance of the developed models quantitatively, evaluation metrics involving the mean
bias error (MBE), mean absolute error (MAE), root mean square error (RMSE), index of agreement
(D-index), and Nash–Sutcliffe model efficiency coefficient (NSE) have been used. MBE is primarily
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used to indicate the average bias in the model. The positive MBE indicates an overestimation in
the predicted SMC while a negative MBE shows an underestimation [83]. The MAE is the simplest
measure of estimate accuracy which measures the average magnitude of the errors in prediction data,
without considering their direction. It is the absolute value of the difference between the predicted
values and the observed ones. MAE may be preferred because it is a simple error metric and is less
sensitive to outliers than RMSE [83,84]. RMSE measures the variation between predicted values by a
model and the measured values. The lower RMSE indicates good agreement between estimation data
and observation data. Both MAE and RMSE represent average model prediction error from 0 to∞ in
the same units as the response variable.

The Nash–Sutcliffe efficiency (NSE) and index of agreement (D-index) coefficients as normalized
error-index statistic have been used in this study to seek the model on the basis of its reliability.
D-index was proposed by [85] as a standardized measure of the degree of model prediction error which
is dimensionless and in the range of 0–1. The index of agreement does not measure correlation or
association between two series of variables. Instead, it provides a measure of the agreement to which
the model predictions match exactly the observed data with no proportionality [86]. However, it is
very sensitive to extreme values due to the squared differences. Nash and Sutcliffe [87] proposed an
alternative goodness-of-fit index to overcome the limitations of the correlation coefficient, which is
referred to as the efficiency index (NSE). NSE represents the relative magnitude of the residual variance
compared to the measured data variance. The NSE theoretically varies on the range −∞ to 1 and higher
values of NSE show a better agreement between predicted values and observations, a model with
NSE of 0.0 is no more accurate than predicting the mean value, and negative values represent that the
model is worse than the mean value as a predictor. Model performance is considered “acceptable”
when NSE ≥0.50, and D ≥0.70 [88]. Once the highest accuracy model according to evaluation metrics
on the validation data has been identified, another field test data has been selected to evaluate the
model performance; this procedure has been set up to check the accuracy of SMC prediction with the
same model. The model has been then finalized to make SMC predictions for the entire extent of the
study area and thus generate a map of the predicted soil moisture.

3. Results

3.1. Linearity Test between Soil Moisture and Optical Domain

The statistical comparison between single bands and SMC shows that the reflectance in visible
wavelengths decreases as moisture content in areas (Table 3). There is also a tendency that wetter soils
correlate to lower temperatures. The results for the (SWIR) spectral regions show no clear tendencies.
The test for non-linear correlations indicates that only the blue band and surface temperature are
linearly correlated to SMC. These suggest that spectral surface reflectance of the samples over different
wavelength is influenced by surface soil moisture in non-linear form during the wet and cold season.
It becomes clear from Table 3 that there is an effective absorption for wet soils in the visible domain.
In contrast, it is found that the correlation between NIR and soil moisture is positive (also given in
Table 3). The results of the ANCOVA show a significant relationship between landuse and SMC
(p < 0.05). Forested areas (5–25%) have the highest SMC (20%) and Irrigated cultivated areas and
Forested areas (Less than 1%) have the least SMC (7%). Higher soil moisture in the Forested areas
(5–25%) may be due to relatively low potential evaporation from the soil surface. Haplic Fluvisols
(Calcaric) exhibits high soil moisture values with an average of 30% moisture content. These soils
are characterized by young alluvial soils mainly found along rivers or other low terrain positions,
which show stratification or other evidence of recent sedimentation. aplic Fluvisols (Calcaric) are located
in more humid areas in the study area because they receive runoff water additional to their portion
of precipitation. The lowest value of moisture content (less than 10%) was found in Haplic Calcisols
which is characterized by soils of (semi-) arid regions with enrichment of secondary carbonates.
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Table 3. CUSUM statistic and Correlation (Pearson) among the wavelength reflectance, land.
Surface temperature and soil moisture content from total measured data.

Variables CUSUM Statistic p-Value Pearson Correlation

LST 0.7334 −0.267
Blue 0.8547 −0.370

Green 0.0006 * −0.231
Red 0.0006 * −0.257
NIR 0.0064 * 0.346

SWIR1 <0.0001 * 0.028
SWIR2 <0.0001 * −0.096

* Nonlinear is significant at a level of 0.05.

3.2. Estimating Soil Moisture by Implementing Machine Learning Models

The soil moisture information provided by the MLs is used to produce a box plot in conjunction
with Landuse classification map (Figure 4). It can be seen that there are some distinct differences
between the land-use classes in terms of soil moisture. Visual inspection of box plots showed that there
was generally the same SMC prediction between EN and ANN from entire landuse classes. The mean
comparison of EN against ANN showed that these techniques gave the same range of soil moisture
prediction for the Landuse classes. The box plots also represented RF having a slight edge over SVM.
Box plots indicate that forested area (less than 5%) and rangelands (5–25%) have the lowest mean
of soil moisture and slightly different from the other land-uses. The entire standard deviation of the
mean soil moisture clearly discriminates RF and SVM from the EN and ANN (blue highlighted area in
Figure 4). Values of the first (25%) and the third (75%) quantiles of soil moisture for EN and ANN
have the same values for the eight land-use classes, while the entire range of SMC values (from the
lowest to the highest value in the data set for the soil moisture) is not notable. The boxplot of SMC
in Figure 4 shows that the rainfed cultivated areas and forested area (1–5%) tend to be more SMC
than the other land-use classes. The standard deviation of the mean of the SMC derived from ANN
and Elastic Net regression models are broader, indicating very high variations of SMC in terms of
soil moisture estimation (thin blue line in Figure 4). However, the standard deviation of the mean
for SVM and RF is distributed narrow, presenting more pixel values in the low range of SMC which
indicates a low variation of soil moisture. Overall, the ratio of the variance to the mean represents that
both RF and SVM generally estimate SMC with less dispersion with values of 0.25 and 0.32 across all
categories. In contrast, the dispersion values for ANN and elastic net regression models are 0.78 and
0.76, respectively.

After implementing models, ANN, SVM, RF, and EN regression have predicted soil moisture
content of the study area showing the spatial distribution of soil moisture at 30 m resolution. The models
have been applied to the landuse data and the Landsat 8 OLI and TIRS data on image dated 7 March
2017, that captured the entire study area to map soil moisture content (Figure 5). Relatively high
SMC were found in slope with a gentle gradient in the lower parts of South of the area and near to
the agricultural and urban and suburban areas and also coalescing alluvial fans connecting to the
mountain, however, mountain lands in North of the area experienced very low SMC (less than 6%),
dominated by less foliage with rock exposure, and steep slope in this area. The results show that the
spatial pattern of dry and wet trends is mostly the same but the range of values is slightly different.
Almost all the models have totally agreed upon the low SMC to find the high land area and highest
levels of SMC on areas of river floodplains and alluvial fans on 7 March 2017; this behavior has been
mainly shown by ANN and elastic net regression model. The SMC map of ANN and Elastic Net
regression (Figure 5) is too small to show a few soil moisture saturated individual grid cells. These cells
of wet areas show a close correspondence with the local poorly drained areas in the study area. This is
due to local control of terrain which has an influence on the wet pattern of soil moisture where areas of
high local convergence may be the cause of a temporary increase of water content following rainfall in
the soil.
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Figure 4. Box plot of SMC models with columns split by ‘landuse’ on 7 March 2017. X-axis represents
SMC (unit %). Box plots represent sample medians (yellow vertical line), mean (the dark blue vertical
line), border values for the standard deviation of the mean, the blue highlighted area is the entire
standard deviation of the mean, the thin blue line represents the area between the first (25%) and the
third (75%) quantile, while the thin dotted line represents the entire range of values (from the lowest to
the highest value in the data set for the SMC).

Figure 5. Estimated SMC (%) from Landsat 8 OLI and TIRS data (30 m) using Training datasets for
the study area at 06:43 AM UTC, on 7 March 2017. (a) Artificial Neural Network (b), Elastic Net
regression (c), Support Vector Machine, and (d) Random Forest. SMC maps overlaid on hillshade using
30 percent transparency.
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The obtained models have been iterated to estimate SMC at the next time step on 26 May 2017,
as testing data sets (Figure 6). Analyzing the results during testing, it can be observed that ANN and
Elastic Net regression models have represented very wet conditions compared to SVM and RF which
can be seen for training data sets as well. For SMC testing dataset the ANN and Elastic Net regression
models have estimated the SMC of 0–100% while the SVM and RF models estimated the SMC of 3–10%
and 0–20%, respectively. This spatial variability could be due to both model structure and data noise.
Therefore, even for the same data sets, different models may have different implications for the model
fit to the data and will perform poorly in generalization.

Figure 6. Estimated SMC (%) from Landsat 8 OLI and TIRS data (30 m) using the testing dataset
for the study area at 06:42 AM UTC, on 26 May 2017. (a) Artificial Neural Network (b), Elastic Net
regression (c), Support Vector Machine, and (d) Random Forest. SMC maps overlaid on hillshade using
30 percent transparency.

3.3. Validation of Machine Learning Models

A comparison between the results from the testing data set (Table 4) shows that the estimated SMC
for RF model has a RMSE of 4.60%, Nash-Sutcliffe efficiency 0.73, an index of agreement 0.91, and a
smaller bias (MBE = 2.16) compared to other ML models. The RF model consistently outperforms
all other models. Values from the RF model are acceptable comparing to those from the other three
models for testing datasets; therefore, it has been chosen as the best method to predict SMC at the
unsampled locations in this study. Visual analysis of SMC has shown that RF can be considered
a robust spatial predictor model that could estimate SMC in different topographic features and
slope and aspect topography (Figure 5). The results show that there are large differences in error
rates among the four data mining techniques. There are also relatively big spatial differences in
SMC among the four techniques, specifically, the spatial differences of SVM and RF are thoroughly
obvious. Furthermore, the correlation of models increased when landuse included in MLs (ANN = 0.49,
SVM = 0.44, RF = 0.56, and Elastic Net regression = 0.55) compared to that obtained without integration
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landuse data (ANN = 0.48, SVM = 0.4, RF = 0.5, and Elastic Net regression = 0.5), which has suggested
that auxiliary geospatial data produced better SMC prediction than was expected using the optical
values alone.

Table 4. Prediction error metrics of the ANN, SVM, RF, and Elastic Net regression. 7 March 2017 10-fold
cross-validation dataset, and 26 May 2017 external testing datasets.

Methods
MBE MAE RMSE d NS

March May March May March May March May March May

SVM 0.25 3.19 5.51 7.28 7.20 8.56 0.46 0.31 0.19 0.06
ANN −0.20 −15.0 5.85 15.08 7.27 16.5 0.63 0.52 0.17 −2.46

RF −0.90 2.16 5.0 3.46 6.25 4.60 0.72 0.91 0.39 0.73
EN −0.30 −18.7 5.55 18.7 6.76 19.7 0.67 0.44 0.28 −3.94

The scatter plots between observed and retrieved soil moisture covered by six dominant land-use
types using ML models are shown in Figure 7. According to the scatter plots, SMC could be predicted
with moderate accuracy for the RF (r = 0.56), while the SVM had the lowest accuracy of estimation.

Figure 7. Scatter plots of SMC variable derived for 7 March 2017 from Landsat 8 and land-use data
versus observed SMC variable calculated from field measurements extracted for six dominant land-use
types in the study area.
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4. Discussion

4.1. Correlation of Soil Moisture and Predictor Variables

Nonlinearity between soil moisture content and spectral reflectance in topsoil was significantly
observed over the Green, Red, NIR, SWIR1, and SWIR2 wavelength, and linearity observed for Blue
wavelength and LST. Soil spectral reflectance decreases at 0.4 µm to 1 µm wavelengths when moisture
content increases [89]. An earlier study has shown that the decrease of spectral reflectance upon wetting
of soil is non-linear because of the hydraulic behavior of water in unsaturated sand [90]. Soil reflectance
was observed to be nonlinearly correlated with soil moisture, which was well correlated by a curvilinear
exponential model between the 1100 and 2500 nm wavelengths [91]. Even though green and red
wavelengths have a nonlinear relationship with SMC, the Pearson correlation coefficient represents a
fairly weak negative relationship of visible wavelength with SSM [23,92]. SSM experiences a fairly
weak positive relationship with NIR wavelength (Table 3) and this trend is consistent with the results
of other studies that used reflectance of MODIS data in a tropical area [92]. This is likely the result
of [27] that found the positive correlation between NIR wavelength and SMC for bare soil area and
negative correlation with vegetated soil, however, the existing studies showed an exponential negative
relationship between soil moisture and NIR reflectance [23]. Estimating surface soil moisture is more
complicated over NIR reflectance for a mixture of bare soil and vegetation because the relationship
between NIR reflectance and moisture measured in the field for vegetation and bare soil is totally
different [27]. The NIR reflectance of vegetation is higher than that of bare soil [93]. These differences
results were coming from different examined soil samples which collected from miscellaneous landuse
characteristics. Nagy et al. [26] found that the increase of soil moisture content did not result in linear
changes in reflectance value at 950 nm and 450 nm and the equations for SMC estimation were set up
separately for different soil texture. The linear correlations between spectral features and SMC over
25–30% and less than 5% of moisture content is not significant [26].

In this study, Pearson’s coefficient did not capture the linear correlation between SWIR1 and
SWIR2 wavelength and SMC. However, the best correlation between reflectance and SMC was found
for the reflectance of short-wave infrared bands SWIR1 and SWIR2 for bare soil and vegetated soil [27].
It has been shown that soil spectral reflectivity is recognized as a function of water content but spectral
reflectivity can be affected by intrinsic soil factors such as the amount of organic matter, particle size
distribution, mineral composition, surface roughness, and color of soil elements [94,95]. Land surface
temperature shows to have a week negative influence over soil moisture (Table 3) which highlighted
the more complex behavior of the SSM-LST relationship due to the complexity of land surface and for
a mixture of bare soil and vegetation [94,96,97].

The results of the study show a significant relationship between landuse and SMC (p < 0.05).
Land-use is very significant in determining the spatial variability of SMC because it influences vegetation
cover and infiltration and runoff rates, evapotranspiration processes, soil surface characteristics [98,99].
Landuse can even eliminate the effects of related parameters of the topography on SMC [100].
Several studies provide solutions for estimating soil moisture by reflectance images and auxiliary
geospatial data [101,102]. Higher soil moisture in the Forests of Haloxylon spp (5–25%) may be due to
relatively low potential evaporation from the soil surface. It was observed in a previous study that the
amount of clay and silt increases rapidly when sand dunes are stabilized by Haloxylon spp because
of suspended particle accumulation and fine particulates which are produced by the weathering
mechanism of sand [103]. Increasing clay and silt content also had a slightly positive correlation with
soil water content [104]. Topsoil (0–5 cm) moisture content in the youngest Haloxylon ammodendron
was significantly less than older plantations [104] because soil surface experiences high evaporation
potential due to high solar radiation.
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4.2. Perspective of Machine Learning Algorithms in Soil Moisture Content

Soil moisture retrievals were computed using four different machine learning algorithms in a
semi-arid area, using optical and ancillary data at high spatial resolution. Based on the performance
indices reported in Table 4, it is noted that the RF model estimated soil moisture has RMSE less than
4 for all the selected samples during the testing phase. These comparative results are consistent
with those of [105] who used VNIR hyperspectral imaging over the plot set up with an area of one
square meter and the results indicated that RF outperformed SVR, ANN, and EN in estimating SMC.
Although the other studies reported slightly better estimation accuracy [106] of SVM, this may be due
to the different scales of the study areas, topography conditions, soil characteristics, sampling densities,
incorporating the missing environmental data or quantity and quality of the auxiliary data used
to estimate SMC [107,108]. It was indicated that the uncertainty of SMC does not vary with the
spacing of point samples in southeastern Australia [109], however, it was represented that uncertainty
decreases as the sampling density increased in the Australian National Airborne Field Experiments
2005 (NAFE’05) [107]. From these studies, it can be concluded that the performance of models to
estimate SMC is very site-specific and the complex characteristics of uncertainty and the sampling
configuration are very dependable on the study scheme. Although the accuracy of the capacitance
probe for field soil moisture measurement is still under investigation, the integration of PR2 Profile
probe with remote sensing data is capable of monitoring surface soil water content especially when the
amount of surface soil water is required on a site-specific [110]. Since a universal relationship between
SMC and remote sensing data does not exist, it must be explored empirically by calibration data.

It can be obviously seen in previous researches that ANN model and SVM model have been
the most popular method to predict the soil moisture content due to solving non-linear relation
between input and output with high accuracy [28]. However, the present study showed that the
predictive results of ANN and SVM on the testing dataset are vulnerable which is affected by the
uncertainties on nonlinear relation. ANN and SVM structure with the best performance is difficult
to be determined [111] however RF is fast to train and tune as compared to other ML methods [112]
because RF only has a few tuning parameters. In the present study, we found larger spatial differences
in some cases among the machine-learning algorithms. EN offers the most comfortable usage technique
because very few parameters have to be optimized and calculation times are marginal for big data
such as remote sensing data. However, these advantages are covered by poor prediction performance.
Random Forest in contrast is easy to use since only two parameters need to be set by the user. It was
noted that RF model is suitable when sample plots and variation are relatively large (i.e., LAI with more
than one growth period) [113]. As shown in this study, surface soil moisture was measured in the fields
in two periods with high variation. An important characteristic of RF is that it is relatively resistant to
overfitting problems [114] and the RF algorithm has well proven to handle high-dimensional data sets
and, thus, has a high tolerance for data faults [115]. However, it may be difficult to find an efficient
train RF model with a small sample size [116]. The learning of ANN is based on large samples and
the performance of the ANN is affected by the complexities of the network structure and the sample.
The higher learning accuracy by increasing more neurons may lead to weaker generalization ability.
Therefore ANN makes prone to over-learning and reducing the ability for generalization [113] as it was
shown for the testing dataset in this study (Table 4). The ANN model is more suitable when sample
plots and variations are relatively low (i.e., LAI for a single growth period) [113]. Based on our results,
the SVM model is the second appropriate for soil surface moisture estimations. At some point, a small
sample size might be not enough for optimal training of SVM [113].

4.3. Soil Moisture Status over Croplands

SMC is thought to be controlled by soil texture, vegetation type, and microclimate. Figure 8
represents the soil moisture within three vegetation vigor classes (Dense, Moderate, and Sparse).
As shown in Figure 8, the soil moisture has not a clear association with three vegetation vigor
classes. Because the vegetation status (e.g., type, age, growth stage, and frequencies and durations
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of irrigation and leaf area index) are not uniform among different fields. Relative high soil moisture
was observed for some croplands with sparse vegetation. This soil moisture status is clearest in
Figure 8 where the croplands might be under a heavy irrigation event at the time the Landsat data was
acquired on 7 March 2017. However, some parts of cropland with moderate to dense vegetation were
experienced low soil moisture. In a general concept, high correlations were found in densely vegetated
areas (normalized difference vegetation index) and SMC [117], however from Figure 8, this study
represented that heavily vegetated areas do not always have a high amount of SMC. This finding is
generally consistent with the results of Tianjiao, et al. [118], who noticed that different physiological
characteristics of vegetation types have different effects on soil moisture content in a semiarid climatic
zone. Dense vegetation also reduced the stability of soil moisture [119] that can be seen in dense
vegetation areas in Figure 8. Also, some of the field areas in the study area were not irrigated
during the growing cycle and were expected to be less moist. Cropland areas in the study area are
dominated by expensive crops (e.g., Pistachios) and the relative soil moisture values of dense vegetation
areas were generally less than 10%. Therefore water stress can influence heavily vegetated covers
in the area over the study period. Different crop types have different water demands and respond
differently to water stress that causes heterogeneity of surface soil moisture after uniform irrigation [29].
This soil moisture spatial heterogeneity for dense vegetation appeared in the form of cropping patterns.
Vegetation influences soil moisture and researchers have found that different plant species can influence
the spatial and temporal properties of the soil water content [118,120,121]. These studies clarified that
plant species can consume amounts of soil water and cause soil drying [119,122,123]. Other factors
such as soil texture, surface roughness, and the temperature of the upper soil layer affect soil moisture
on the upper 5 cm of the soil [124]. Topographic variability, which influences soil properties and
exposure to wind and solar radiation [125]. Therefore the global function of SMC index maps
obtained on the different areas is not necessarily useful because they are extracted from a different
environment, and calculated by various parameters. This issue complicates the monitoring of the SMC
in a specific site.

Figure 8. Cont.
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Figure 8. Soil moisture status in three NDVI classes: (a) dense, (b) moderate, and (c) sparse vegetation,
over the croplands (Red box) in the study area on 7 March 2017.

4.4. Further Analysis of SMC with Operational Satellite-Derived Precipitation and Soil Moisture Products

In this study, soil moisture estimates of the Landsat 8 from 7 March 2017 and 26 May 2017
were compared with the SMAP 9-km soil moisture product. Even though the coarser-resolution soil
moisture estimates from SMAP cannot be used for pixel to pixel comparison, but the dry-down and
wetting trends can be assessed for validating the algorithm. Therefore an average for the entire pixel
of soil moisture estimation from landsat was used to compare with SMAP. However, an incorrect
consistency of spatial resolution may have been introduced biases into the results. The CHIRPS gridded
precipitation dataset with 0.05◦ spatial resolution were also used in order to facilitate the analysis of
the SMC generated maps because precipitation is a proxy for soil moisture. Figure 9 represents daily
precipitation data created by CHIRPS for the study area and particularly L3 SMAP products were also
added to the time-series for evaluating the ability of the Landsat 8 SMC estimates in capturing the
surface soil moisture due to precipitation. Figure 9 clearly indicates that the Landsat 8 SMC estimates
at two days (black dot points) follow the precipitation events (e.g., wetting events at the beginning and
dry downs at the end of the year).
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Figure 9. Comparison between SMAP soil moisture product and Landsat 8 soil moisture in days of the
year (DOY) 66 and 146 (7 March and 26 May) of 2017. Relationship between daily precipitation events
and soil moisture. Daily soil moisture conditioned on previous day precipitation.

The beginning of the wet season recorded accumulated precipitation of about 47 mm, since the
ending of February, soil moisture trend for both SMAP and Landsat 8 derived soil moisture has started
to increase compared to a dry season to less than 5% at the end of May. The effects worsened during the
dry season with a rainfall deficit continuing to decrease soil moisture until the end of the season with
about 0%. The corresponding L3 SMAP and Landsat 8 soil moisture estimates are slightly different.
However, both soil moisture products exhibit a similar trend when the surface soil is mostly wet
and dry. It is possible that some agricultural lands become wet from irrigation in the study area,
despite there being no significant rainfall event.

Using satellite-based soil moisture estimates in arid and semi-arid areas has several advantages:
(1) Regional coverage enables soil moisture monitoring of large part of natural ecosystems; (2) 16-day
time period improves the ability to monitor the drought-related events in seasonal coverage; (3) precise
measurement of water consumption for irrigation needs the soil moisture mapping in irrigated and
non-irrigated areas; (4) the application of algorithms enables us to apply it for up-scaling SMC to
other sensors with high temporal resolution and to capture the irrigation pattern. It must be stressed
that this study used only two months (March–May 2017) and soil moisture estimates that can have
higher uncertainties over regions of dense vegetation, and therefore validation procedure needs to be
performed using in situ observations [126]. Therefore, care should be taken in generalizing results
from the present study.

5. Conclusions

In this study, four different types of rapid nonlinear data-driven models (SVM, ANN, EN, and RF)
for predicting the near-surface (5 cm) soil moisture (SMC) were established in practice over different
land-use types by combining Landsat-8 surface reflectance data and land-use auxiliary geospatial data
on a (30 m resolution) pixel basis. Predictions show good agreement with observed soil moisture
measurements. Results from the RF, SVR, ANN, and EN modeling are compared with measurements
obtained from PR2 field data and show that RF model performed better for soil moisture forecasting than
the other three methods in testing cases. From the result of Nash–Sutcliffe efficiency, the predictive SMC
produced from RF has the highest explanatory ability (NS = 0.73). The accuracy of machine learning
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methods depends on the selection of an appropriate function and parameters. Various techniques are
often based on the vegetation index, triangle method, and trapezoid method in the optical domain
to estimate SMC rather than on the reflectance of soils. It is represented in this study that deriving
surface soil moisture from remote sensing data is still complicated, as the surface soil moisture is not
just a function of the reflectance of soil, but is affected by spatial auxiliary data such as land-use types.
This hinders solutions for estimating soil moisture using reflectance images. Clearly, the 30 m remotely
sensed images show more spatial detail in the surface soil moisture quantitative estimates and also
spatial pattern than the sparse ground measurements. This 30 m soil moisture can serve a variety
of water resource applications such as watershed modeling over semi-arid climate. More detailed
estimations of surface soil moisture will in turn benefit agriculture, with the monitoring of vegetation
stress, and provide a valuable dataset for drought monitoring in a semi-arid climate. The limitations
faced by this study were time, space, and amount of field soil moisture measurements. However,
this study covers several gaps related to the usage of surface reflectance and land-use data, even if
the potential of incorporating other variables for estimating soil moisture for future research is still
excessive. In conclusion, the high-resolution gridded soil moisture presented in this study can be
used in spatial decision support tools for precise irrigation scheduling and to indicate areas with plant
potential limited by the lack of soil moisture.
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Shangguan, W.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B.; et al. SoilGrids250m: Global gridded soil
information based on machine learning. PLoS ONE 2017, 12, e0169748. [CrossRef]

49. Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.;
Johnson, D.M.; Kennedy, R.; et al. Landsat-8: Science and product vision for terrestrial global change research.
Remote Sens. Environ. 2014, 145, 154–172. [CrossRef]

50. Jin, N.; Tao, B.; Ren, W.; Feng, M.; Sun, R.; He, L.; Zhuang, W.; Yu, Q. Mapping irrigated and rainfed wheat
areas using multi-temporal satellite data. Remote Sens. 2016, 8, 207. [CrossRef]

51. Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.;
Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for
monitoring extremes. Sci. Data 2015, 2, 150066. [CrossRef]

http://dx.doi.org/10.1016/j.eswa.2007.12.020
http://dx.doi.org/10.3390/rs10121953
http://dx.doi.org/10.5194/se-6-1157-2015
http://dx.doi.org/10.1016/j.compag.2017.05.001
http://dx.doi.org/10.3390/s100100913
http://www.ncbi.nlm.nih.gov/pubmed/22315576
http://dx.doi.org/10.1016/j.ijdrr.2016.12.012
http://dx.doi.org/10.1002/joc.1264
http://dx.doi.org/10.1007/s12571-017-0666-2
http://dx.doi.org/10.1111/j.1365-2486.2006.01134.x
http://dx.doi.org/10.1126/science.1082750
http://dx.doi.org/10.1641/0006-3568(2004)054[0547:ACSMOG]2.0.CO;2
http://dx.doi.org/10.5194/hess-21-3199-2017
http://dx.doi.org/10.1186/s40068-018-0106-0
http://dx.doi.org/10.1016/j.ejrs.2019.04.003
http://dx.doi.org/10.1371/journal.pone.0169748
http://dx.doi.org/10.1016/j.rse.2014.02.001
http://dx.doi.org/10.3390/rs8030207
http://dx.doi.org/10.1038/sdata.2015.66


Water 2020, 12, 3223 24 of 27

52. Richter, R. Atmospheric correction of satellite data with haze removal including a haze/clear transition region.
Comput. Geosci. 1996, 22, 675–681. [CrossRef]

53. Liang, E.Y.; Shao, X.M.; He, J.C. Relationships between tree growth and NDVI of grassland in the semi-arid
grassland of north China. Int. J. Remote Sens. 2005, 26, 2901–2908. [CrossRef]

54. Ghahremanloo, M.; Mobasheri, M.R.; Amani, M. Soil moisture estimation using land surface temperature
and soil temperature at 5 cm depth. Int. J. Remote Sens. 2019, 40, 104–117. [CrossRef]

55. Jarque, C.M.; Bera, A.K. Efficient tests for normality, homoscedasticity and serial independence of regression
residuals. Econ. Lett. 1980, 6, 255–259. [CrossRef]

56. Yolacan, S. A comparison of various tests of normality AU-Yazici, Berna. J. Stat. Comput. Simul. 2007,
77, 175–183. [CrossRef]

57. Zhang, K.; Luo, M. Outlier-robust extreme learning machine for regression problems. Neurocomputing 2015,
151, 1519–1527. [CrossRef]

58. Zupan, B.; Demsar, J. Open-Source Tools for Data Mining. Clin. Lab. Med. 2008, 28, 37–54. [CrossRef]
[PubMed]

59. Mitra, T.; Gilbert, E. The language that gets people to give: Phrases that predict success on kickstarter.
In Proceedings of the 17th ACM Conference on Computer Supported Cooperative Work & Social Computing,
Baltimore, MD, USA, 15–19 February 2014; pp. 49–61.

60. Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.G. Classification and Regression Trees;
Wadsworth International Group: Belmont, CA, USA, 1984.

61. Vapnik, V. The Nature of Statistical Learning Theory; Springer Science & Business Media: New York, NY,
USA, 1995.

62. Melchiorre, C.; Castellanos Abella, E.A.; van Westen, C.J.; Matteucci, M. Evaluation of prediction capability,
robustness, and sensitivity in non-linear landslide susceptibility models, Guantánamo, Cuba. Comput. Geosci.
2011, 37, 410–425. [CrossRef]

63. Ramadevi, R.; Sheela Rani, B.; Prakash, V. Role of hidden neurons in an elman recurrent neural network in
classification of cavitation signals. Int. J. Comput. Appl. 2012, 37, 9–13.

64. García-Ródenas, R.; Linares, L.J.; López-Gómez, J.A. Memetic algorithms for training feedforward neural
networks: An approach based on gravitational search algorithm. Neural Comput. Appl. 2020, 1–28. [CrossRef]

65. Merrick, L.; Gu, Q. Exploring the use of adaptive gradient methods in effective deep learning systems.
In Proceedings of the 2018 Systems and Information Engineering Design Symposium (SIEDS), Charlottesville,
VA, USA, 27 April 2018; pp. 220–224.
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