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Abstract
In this paper, we propose a general class of indices that can be used for comparing the per-
formances of organizations providing a given public service to citizens, such as universities,
hospitals, nursing homes, employment agencies or other institutions. In particular, we handle
the case where evaluation is performed by assessing the probability that a given event has
happened as a result of the service provided to users requiring it. Indices are designed for set-
tings where users can be divided into groups with similar characteristics in order to account
for case-mix, that is, for the different composition of users within each organization with
respect to personal features influencing the probability of the event at hand. For the proposed
class, we build a taxonomy leading to nine index types. These different types constitute a
useful toolbox to satisfy specific needs and/or criteria set by the evaluator in applied contexts.
A general inferential framework is also discussed to deal with settings where, whatever the
index chosen, its value has to be estimated from sample data. A simulation study based on a
real-world dataset is presented to assess the behavior of indices’ estimators.

Keywords Service quality evaluation · Generalized performance index · Probability-based
indicator · Index taxonomy · Case-mix

1 Introduction

As is well known, the usage of quantitative methods is nowadays ubiquitous in the context of
performance evaluation. In this paper, we deal with the broad framework of service quality
measurement, where typically interest lies in comparing the performance of organizations
(such as schools, universities, hospitals, employment agencies or nursing homes) delivering
a given public service to categories of citizens, be they students, patients, the unemployed,
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the elderly and so on. Our work follows other recent contributions in Annals of Operations
Research, characterized by comparative performance evaluation analyses in the fields of
sports (Chessa et al., 2022; Carpita et al., 2023), business and economics (Boubaker et al.,
2023) and social well-being (Fortuna et al., 2022).

In the field of service quality measurement, three key determinants are usually defined:
efficacy, efficiency and equity/accessibility (Aday et al., 1999; Kruk & Freedman, 2008).
In particular, when the quantitative assessment of efficacy is undertaken, metrics adopted to
compare organizations (henceforth termed agencies) should be influenced only by how the
service is provided, and not by the characteristics of people availing of services (henceforth,
users). In this setting, the fundamental concept of case-mix comes into play. In detail, the
case-mix of an agency is the composition of its users with respect to those personal features
influencing the outcome variable comparisons are based upon (Berlowitz et al., 1996). In
observational settings, such a composition is typically different for every agency. Thus,
adjusting for case-mix is crucial whenever data collected on a set of users are employed for
the comparative assessment of the agencies serving them. This strategy is also supposed to
prevent service providers from relying on unfair practices like adverse selection (Romano,
2000). For example, when hospital wards performing life-saving surgery are evaluated by
means of mortality rates, it is fundamental to somehow account for patients’ health condition
at admission. Otherwise, comparisons would be affected by the different difficulty level
handled by each ward, and hospital managers would be tempted to avoid taking the most
serious cases whenever possible.

In the above context, case-mix adjusted performance indices are usually obtained via stan-
dardization techniques. The usage of these techniques spans several decadeswithin numerous
fields, including demography, epidemiology, education and health insurance (Wolfenden,
1962; Kitagawa, 1964; Inskip et al., 1983; Draper & Gittoes, 2004; Schokkaert & Van de
Voorde, 2009). In essence, standardization techniques consist in comparing factual (i.e.,
observed) outcomes with counterfactual (i.e., hypothetical) ones within groups of users that
are homogeneous with respect to characteristics influencing the outcome variables (Chu,
1994): examples include the definition of the Ten Group Classification System (TGCS) of
patients in obstetric care (Maso et al., 2013) or of Resources Utilization Groups (RUGs) of
the elderly for the evaluation of Nursing Homes (NHs) involved in eldercare (Fries et al.,
1994). In particular, RUGs are good proxies of the clinical complexity of NH residents, since
they collect patients sharing the type of impairment and requiring the same overall care load.
Thus, they represent a useful tool to address case-mix in various evaluation exercises, includ-
ing those targeting the overall ability of NHs to assure survival of their residents in a certain
time span after admission. For such an exercise, a standardized performance index would be
built by aggregating RUG-specific contrasts between the survival probability of residents of a
given NH and the marginal survival probability, that is, the one obtained by averaging across
residents of all NHs in the same RUG group. With this regard, a crucial matter concerns how
such contrasts should be built, that is, which contrasting function should be adopted. Indeed,
different choices emphasize different aspects of the problem. Incidentally, we remark that
standardization techniques can be de facto thought of as causal inferencemethods, as recently
noticed by Longford (2020). The parallel with the causal framework was highlighted also
by Wray et al. (1997), who framed case-mix as a source of confounding for the treatment-
outcome relationship, with the treatment being the supplying agency’s conduct in responding
to user needs.

In this paper, we focus on probability-based indices, that is, on a setting where the evalu-
ation of agencies is based on the probability that a given event has happened to their users as
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a result of the provided service. In addition to the above-mentioned exercise concerning sur-
vival of patients in NHs, other examples may include university students obtaining a degree,
or patients successfully recovering after a given hospital treatment. In such a framework, our
ultimate goal is to provide guidance for a conscious choice of the contrasting function. To
this end, we propose a general class of case-mix adjusted performance indices and develop
a taxonomy for the elements in the class which is based on two key features of the contrast
functions. Such a taxonomy leads to a nine-fold classification, that can be referred to for
better characterizing the evaluative properties of any given index in the class. In this way,
analysts can properly choose an index according to the specific evaluative needs and criteria
they want to consider for the real-world application at hand. Besides, a general framework
for the estimation of index values (as well as of their uncertainty measures) is illustrated for
applications using sample data from observational studies.

The remainder of the paper is organized as follows. In Sect. 2, we briefly describe a
motivating example in the context of NH performance evaluation. In Sect. 3.1, we lay out
the general class of indices, while in Sect. 3.2 we introduce the proposed taxonomy. In
Sect. 3.3, we show how our classification scheme depends on what we call the departure
paradigm, that is, on the metric invoked (often implicitly) by analysts when evaluating the
extent to which a probability varies with respect to another one. In Sect. 4, we illustrate
some numerical examples with particular reference to the one discussed by Castro et al.
(2015), which is re-analyzed in light of the introduced concepts (Sect. 4.1). In Sect. 5, we
turn our attention to estimation and provide an approximate inferential framework for any
element in the class, based on linearization techniques. A number of challenges related to the
estimation of second-order moments are analyzed and addressed via further approximation
(Sect. 5.1). The reliability of the whole estimation approach is assessed in Sect. 6 through
a simulation study based on the real-world dataset introduced in Sect. 2. In Sect. 7, some
concluding remarks are offered.

2 Motivating example

In Umbria, a region of Central Italy, the evaluation of the performance of NHs hosting
residents in need of care is routinely conducted by the regional government, following inter-
national standards (Montanari & Doretti, 2019). Data on NH residents are gathered using
an international health protocol named Suite interRAI (Carpenter & Hirdes, 2013); see e.g.
Montanari et al. (2022) for details. In this context, patient survival is one of the major moni-
toring targets. With this respect, in order to deal with case-mix the Umbrian government has
adopted the RUG classification introduced in Sect. 1, in line with the prevailing approaches
withinNH care (Punelli &Williams, 2013; Broussard&Reiter, 2020). As alreadymentioned,
RUGs constitute the most common elderly classification scheme for case-mix adjustment,
since patients in the same RUG have similar clinical complexity levels.

The dataset considered here refers to the years 2018–2019 and contains indicators of sur-
vival (after 1 year) and RUGmembership for 1748 residents hosted in 47 Umbrian NHs. The
number of residents in each NH ranges from 15 to 84 (with an average of 37.2). There are 30
RUGs in total, and the number of residents assigned to the same RUG varies between 7 and
193 (average 58.3). Survival is quite variable acrossRUGs, denoting a rather high relevance of
case-mix with respect to this variable. Specifically, marginal (across NH) RUG-specific sur-
vival rates vary from0.533 to 0.960,with a standard deviation of 0.094.Also, of the 1410 strata
formed by NH-RUG crossing, only 653 (46%) contain at least one resident, which denotes a
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quite high degree of sparsity in the data. In this setting, case-mix adjusted NH performance
indices could be built as described in Sect. 1, that is, via the aggregation of RUG-specific
contrasts between agency-specific and across-agency-averaged survival probabilities.

3 A class of probability-based performance indices

3.1 Definition of the class

In order to introduce the general class of performance indices, some preliminaries are
required. First, we assume that the evaluation process is carried out via assessing, for each
agency, the probability that a given event has happened as a result of the service provided
to users (for example, survival of an NH resident 1 year after baseline). As a consequence,
the outcome variable into play is binary: either the event happened (success) or not (failure).
Secondly, we assume that the homogeneous groups of users for identifying the case-mix of
each agency are given (for example, the RUG classification for the elderly hosted in NHs).
Thirdly, for an effective case-mix adjustment, it is also assumed that the probability of suc-
cess depends on the variable used to describe case-mix, as in our motivating example where
patients survival depends on the RUG group.

Starting from the above setting, some pieces of notation are needed. Specifically,we let h ∈
H = {1, . . . , H} and j ∈ J = {1, . . . , J } be two subscripts indexing supplying agencies
and case-mix adjusting groups, respectively. Also, we let phj denote the success probability
for one of the Nhj users of the j th group handled by the hth agency, whereas p. j indicates
the group-specific success probability after marginalization across all agencies. The vector
p = (p.1, . . . , p.J ) collects these marginal probabilities for all groups. The two marginal
counts Nh. = ∑J

j=1 Nhj and N. j = ∑H
h=1 Nhj and the corresponding proportions Whj =

Nhj/Nh. and Qhj = Nhj/N. j are also defined. In particular, Whj denotes the distribution of
users of the hth agency across the J groups, that is, the agency-specific case-mix distribution.
Conversely, Qhj denotes the distribution of users in the j-th group across the H agencies.

Armed with this notation, we introduce the generalized Adjusted Performance Index
(API). For every agency h ∈ H , the index value is given by

API(G)
h = 1 +

∑

j∈Jh

WhjG(phj , p), (1)

where Jh = { j ∈ J : Nhj > 0} is the subset of groups for which the hth agency handles
at least one user, and G(phj , p) is a generic contrast function such that:

(i) G(phj , p) = 0 whenever phj = p. j ;
(ii) G(phj , p) is an increasing function in its first argument phj , given its second argument p.

Indeed, these two properties of the G function ensure that higher values of the generalized
index in (1) are associated to better performances (ability to achieve success). Adding 1
to the summation assures that API(G)

h takes values around 1. Such a level corresponds to an
agency whose probability of success is equal to the marginal one for all its groups. Roughly
speaking, index values lower than 1 denote a performance which is worse than the marginal
one, whereas values greater than 1 denote a better performance with respect to the marginal
one.

It is worth to underline that the use of the agency-specific distribution Whj ascribes API(G)
h

in (1) to the class of indirect standardization methods. These are opposed to direct standard-
ization, for which the marginal distribution W. j = N. j/N (where N = ∑

j N. j ) would be
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used instead.While strengths and limitations of these two standardization methods have been
for long analyzed in the literature (Inskip et al., 1983; Curtin, 1995; Julious et al., 2001; Pouw
et al., 2013) and remain beyond the scope of this paper, we just remark that only indirect
standardization is applicable when some agencies lack data for some case-mix groups. This
is often the case when the sample size is small and/or the number of groups is large like
in the motivating dataset of Sect. 2. In practice, lack of data is neutralized by the fact that a
null weight Whj = 0 is assigned to these groups. Consequently, the distinction betweenJh

andJ (that would necessarily appear in (1) if the W. j distribution would be used) is formal
but not substantial. This remark is rather important, since it highlights that our approach is
independent of the kind of case-mix distribution in use. Thus, the key arguments illustrated
in what follows would in principle hold in a direct standardization setting, too.

For every group j ∈ Jh , theG(phj , p) functionwithin the summation in (1) characterizes
the contrast between the agency-specific (phj ) and marginal (p. j ) success probability. For
example, two possible functions operating with differences are Gd(phj , p) = phj − p. j and
Gdn (phj , p) = (phj − p. j )/

∑
j∈Jh

Whj p. j , leading to

API(Gd )
h = 1 +

∑

j∈Jh

Whj (phj − p. j ) (2)

and

API
(Gdn )

h =
∑

j∈Jh
Whj phj

∑
j∈Jh

Whj p. j
. (3)

Another function, operating with relative deviations, is Gr (phj , p) = (phj − p. j )/p. j =
phj/p. j − 1, resulting in

API(Gr )
h =

∑

j∈Jh

Whj
phj
p. j

. (4)

In practice, in many cases contrasts are not a function of other arguments than phj and p. j ,
that is, G(phj , p) ≡ G(phj , p. j ).

3.2 Index taxonomy

We now introduce a taxonomy for the elements belonging to the API class, which generates
a nine-fold classification system. To this purpose, we introduce the concepts of balancing
and level-invariance. To better motivate the whole approach, we first offer a non-technical
introduction to these concepts, framed in the context of the motivating example of Sect. 2.
Then, we show how they can be expressed in terms of the contrast function G, the key object
characterizing API(G)

h in Eq. (1).
To capture the idea behind level-invariance, we recall that NH performance indices dis-

cussed in Sect. 2 were defined by aggregation of RUG-specific contrasts betweenNH-specific
and marginal one-year-ahead survival probabilities. In many settings, these probabilities are
likely to be relatively high, more than 0.5, say. Therefore, in order to compare and/or rank
NHs, an analyst might want to choose one of the following alternatives:

(i) to raise the impact on API(G)
h of RUGs with lower marginal probabilities, that could be

deemed more informative than others (that is, the real “battlefield” where competition
among NHs takes place);
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(ii) to lower the impact on API(G)
h of RUGs with lower marginal probabilities, so that the

evaluation exercise is built around the bulk of remaining RUGs (possibly deemed more
representative);

(iii) not to distinguish among RUGs with respect to their marginal survival probability.

We term the indices satisfying the above requirements, respectively:

(i) negatively level-dependent: contrasts around lower marginal survival probabilities are
emphasized;

(ii) positively level-dependent: contrasts around higher marginal survival probabilities are
emphasized;

(iii) level-invariant: contrasts around lower and higher marginal survival probabilities are
equally emphasized.

With respect to balancing, we can define negative (positive) imbalance as the overall
tendency of an index to emphasize NH performance levels that are, ceteris paribus, worse
(better) than the marginal one. Thus, an analyst may want to choose one of the following
alternatives:

(i) to raise the impact onAPI(G)
h of contrastswhereNHsurvival probabilities are lower than the

marginal ones, so that aworse-than-average performance in aRUG is not counterbalanced
by a better-than-average performance of the same intensity in another RUG;

(ii) to raise the impact on API(G)
h of contrasts where NH survival probabilities are higher

than the marginal ones, so that a better-than-average performance in a RUG is not
counterbalanced by a worse-than-average performance of the same intensity in another
RUG;

(iii) not to distinguish among contrasts with worse-than-average and better than-average NH
survival probabilities, so that compensation might in principle be possible when the
intensity of the contrasts is the same.

The suited indices are termed:

(i) negatively unbalanced: contrasts with lower-than-average NH survival probabilities are
emphasized;

(ii) positively unbalanced: contrasts with higher-than-average NH survival probabilities are
emphasized;

(iii) balanced: contrasts with higher- and lower-than-average NH survival probabilities are
equally emphasized.

In terms of the contrast function G, level-invariant indices are those where G assigns
the same relevance to a given probability departure, whatever the level of the corresponding
marginal probability. In other words, for level-invariant indices departures having the same
intensity and direction lead to the same value of the group-specific contrast G(phj , p), for
any given value of the marginal probability (p. j ) in p. In contrast, positively (negatively)
level-dependent indices have a G function emphasizing the magnitude of departures from
higher (lower) marginal probability levels.

With regard to balancing, balanced indices are those with aG function assigning the same
relevance to positive and negative departures of phj from p. j . The balance property assures
that two departures from any given value of the marginal probability produce opposite values
of G, whenever these have the same intensity but opposite directions. Conversely, the G
function of positively (negatively) unbalanced indices increases the magnitude of departures
towards higher (lower) levels from the marginal probabilities.
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Table 1 The general taxonomy
for case-mix adjusted
performance indices

Type Description

A Negatively unbalanced and negatively level-dependent

B Negatively unbalanced and level-invariant

C Negatively unbalanced and positively level-dependent

D Balanced and negatively level-dependent

E Balanced and level-invariant (neutral)

F Balanced and positively level-dependent

G Positively unbalanced and negatively level-dependent

H Positively unbalanced and level-invariant

I Positively unbalanced and positively level-dependent

According to this twofold classification system, nine types of indices can be definedwhich
we denotewith letters fromA to I. Their description is summarized in Table 1.An indexwhich
is both balanced and level-invariant is termed neutral. The main feature of neutral indices is
that they are capable of fully capturing performance offsets across case-mix adjusting groups.
Indeed—net of differences in case-mix distributions—for neutral indices the contribution of
positive and negative probability departures of the same intensity always cancels out, even
when these involve two groups with different marginal probability levels. In contrast, when
an index is balanced but level-dependent, such a compensation occurs onlywhen themarginal
probabilities are equal. For this reason, we deem neutral indices a “natural” choice within
the whole API class; see the numerical example in Sect. 4 for further details.

3.3 Dependence on the departure paradigm

A generic departure of a probability phj from its corresponding marginal p. j can be read
according to various metrical paradigms. The three most common ones are: i) absolute devi-
ations phj − p. j , ii) variations phj/p. j , and iii) relative deviations (phj − p. j )/p. j . As a
consequence, the meaning of the word intensity in Sect. 3.2 is not univocal: two departures
towards opposite directions or from different starting levels might have the same intensity
under a certain paradigm but not under another one. For instance, under the absolute deviation
paradigm the departure of phj = 0.4 from p. j = 0.2 has the same intensity of the departure
of phj = 0.6 from p. j = 0.4. However, this is not the case under the other two paradigms.
Clearly, the concept of performance offset invoked in Sect. 3.2 to characterize neutrality is
also influenced in turn.

In light of the considerations in the above paragraph, the mathematical formalization of
the concepts of balancing and level-invariance (as well as their negations) must be paradigm-
specific. In what follows, we report suitable definitions for the three major paradigms
introduced, limiting our attention to admissible departures from p. j , that is, departures
resulting in a phj probability in the 0–1 range. These definitions are based on the coher-
ence conditions in Sect. 3.1, i.e., that (i) G(phj , p) = 0 if phj = p. j and (ii) G(phj , p) is
increasing in phj given p.
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For the absolute deviation paradigm, we define the balancing condition as

G(p. j + ε, p) + G(p. j − ε, p)

⎧
⎪⎨

⎪⎩

< 0 : Negative imbalance

= 0 : Balance

> 0 : Positive imbalance

(5)

∀ p. j and ∀ ε > 0, where, as mentioned before, p is the vector collecting group-specific
marginal probabilities, its j th component being p. j .

Similarly, the level-invariance condition is defined by

G(p. j ± ε, p) − G(p′
. j ± ε, p′)

⎧
⎪⎨

⎪⎩

≶ 0 : Negative level-dependence

= 0 : Level-invariance

≷ 0 : Positive level-dependence

(6)

∀ (p. j , p′
. j ) : p. j > p′

. j and ∀ ε > 0, where p′ is the same as p except for p′
. j replacing

p. j in the j th element.
For the variation paradigm, the analogous definitions are

G(p. jε, p) + G(p. j/ε, p)

⎧
⎪⎨

⎪⎩

< 0 : Negative imbalance

= 0 : Balance

> 0 : Positive imbalance

(7)

∀ p. j and ∀ ε > 1, and

G(p. j · ε±1, p) − G(p′
. j · ε±1, p′)

⎧
⎪⎨

⎪⎩

≶ 0 : Negative level-dependence

= 0 : Level-invariance

≷ 0 : Positive level-dependence

(8)

∀ (p. j , p′
. j ) : p. j > p′

. j and ∀ ε > 1.
Finally, for the relative deviation paradigm we set the balancing condition to

G(p. j (1 + ε), p) + G(p. j (1 − ε), p)

⎧
⎪⎨

⎪⎩

< 0 : Negative imbalance

= 0 : Balance

> 0 : Positive imbalance

(9)

∀ p. j and ∀ ε > 0, whereas the level-invariance condition is

G(p. j (1 ± ε), p) − G(p′
. j (1 ± ε), p′)

⎧
⎪⎨

⎪⎩

≶ 0 : Negative level-dependence

= 0 : Level-invariance

≷ 0 : Positive level-dependence

(10)

∀ (p. j , p′
. j ) : p. j > p′

. j and ∀ ε > 0.

4 Numerical examples

InTable 2,we report examples ofG functions that define indices belonging to all the nine types
quoted in Table 1 within each of the three major departure paradigms. Obviously, alternative
sets could be considered in principle. All the reported functions are such that dependence on
the second argument p operates through p. j only, that is, G(phj , p) ≡ G(phj , p. j ). Their
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Table 2 Some numerical examples ofG functions generating all types of indices for the threemajor paradigms

j = 1 j = 2 API(G)
h − 1

Type G(phj , p) ≡ G(phj , p. j ) h = 1 h = 2 h = 1 h = 2 h = 1 h = 2

Absolute deviations: ε = 0.1 (± 10 percentage points)

p11 = 0.1, p.1 = 0.2, p21 = 0.3; p12 = 0.6, p.2 = 0.5, p22 = 0.4

A log{(1 + phj )/(1 + p. j )} −0.087 0.080 0.065 −0.069 −0.011 0.006

B log{phj − p. j + 1} −0.105 0.095 0.095 −0.105 −0.005 −0.005

C 1 − {(1 − phj )/(1 − p. j )}2 −0.266 0.234 0.360 −0.440 0.047 −0.103

D phj /p. j − 1 −0.500 0.500 0.200 −0.200 −0.150 0.150

E phj − p. j −0.100 0.100 0.100 −0.100 0.000 0.000

F −(1 − phj )/(1 − p. j ) + 1 −0.125 0.125 0.200 −0.200 0.038 −0.038

G (phj /p. j )
2 − 1 −0.750 1.250 0.440 −0.360 −0.155 0.445

H (phj − p. j + 1)2 − 1 −0.190 0.210 0.210 −0.190 0.010 0.010

I p2hj − p2
. j −0.030 0.050 0.110 −0.090 0.040 −0.020

Variations: ε = 2 (doubling/halving)

p11 = 0.1, p.1 = 0.2, p21 = 0.4; p12 = 1, p.2 = 0.5, p22 = 0.25

A 1/√p. j − 1/√phj −0.926 0.655 0.414 −0.586 −0.256 0.035

B −√
p. j /phj + 1 −0.414 0.293 0.293 −0.414 −0.061 −0.061

C log{2phj /(phj + p. j )}p. j −0.081 0.058 0.144 −0.203 0.031 −0.073

D log{phj /p. j }/p. j −3.466 3.466 1.386 −1.386 −1.040 1.040

E log{phj /p. j } −0.693 0.693 0.693 −0.693 0.000 0.000

F log{phj /p. j }p. j −0.139 0.139 0.347 −0.347 0.104 −0.104

G log{(p. j + phj )/2p. j }(1 − p. j ) −0.230 0.324 0.203 −0.144 −0.014 0.090

H phj /p. j − 1 −0.500 1.000 1.000 −0.500 0.250 0.250

I phj − p. j −0.100 0.200 0.500 −0.250 0.200 −0.025

Relative deviations: ε = 0.2 (20% increase/decrease)

p11 = 0.16, p.1 = 0.2, p21 = 0.24; p12 = 0.6, p.2 = 0.5, p22 = 0.4

A log{phj /p. j }/p. j −1.116 0.912 0.365 −0.446 −0.376 0.233

B log{phj /p. j } −0.223 0.182 0.182 −0.223 −0.020 −0.020

C log{(1 + phj )/(1 + p. j )} −0.034 0.033 0.065 −0.069 0.015 −0.018

D (phj /p. j − 1)/p. j −1.000 1.000 0.400 −0.400 −0.300 0.300

E phj /p. j − 1 −0.200 0.200 0.200 −0.200 0.000 0.000

F phj − p. j −0.040 0.040 0.100 −0.100 0.030 −0.030

G {(phj /p. j )
2 − 1}(1 − p. j ) −0.288 0.352 0.220 −0.180 −0.034 0.086

H (phj /p. j )
2 − 1 −0.360 0.440 0.440 −0.360 0.040 0.040

I p2hj − p2
. j −0.014 0.018 0.110 −0.090 0.048 −0.036
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coherence with index types can be checked by verifying (via first-principle math) the set of
equalities/inequalities in (5)–(10). For instance, it is easy to prove that the first index in the
relative deviation group is an A-type index for this paradigm. Indeed, it emphasizes relative
deviations towards lower-than-average values, as well as from lower average values. The
respective inequalities are

G(p. j (1 + ε), p) < −G(p. j (1 − ε), p)

for every feasible (p. j , ε) pair (ε > 0), and

G(p. j (1 + ε), p) < G(p′
. j (1 + ε), p′) and G(p. j (1 − ε), p) > G(p′

. j (1 − ε), p′)

for every feasible (p. j , p′
. j , ε) triplet where ε > 0 and p. j > p′

. j .
As mentioned before, indices can change their nature when the paradigm is modified.

For example, the index based on Gd(phj , p) = phj − p. j (i.e., API
(Gd )

h in (2)) is an E-type
index for absolute deviations, an I-type index for variations and an F-type index for relative
deviations. Analogously, the index defined by Gr (phj , p) = phj/p. j − 1 (API(Gr )

h in (4)) is a
D-type index for absolute deviations, an H-type index for variations and an E-type index for
relative deviations.

In columns 3–8, Table 2 also offers the values of the G(phj , p. j ) functions in a setting
where there are two agencies, each having users divided into two groups of the same size.
This setting rules out the variability due to different case-mix compositions, thereby allowing
to appreciate the most relevant features of indices of each type. For these two groups, we
have p.1 = 0.2 and p.2 = 0.5, meaning that the first group includes “more difficult” users
(that is, users associated to lower success probabilities on average), while the second one
includes “easier” users. Moreover, the two agencies are such that the first one has a worse-
than-average performance in the difficult group and a better-than-average performance in
the easy group, with the opposite being true for the second agency. The intensities of these
probability departures (anyhowmeasured) are equivalent. Specifically, for absolute deviations
we set ε = 0.1, corresponding to an increase/decrease of ten percentage points in each success
probability p. j ; for variations and relative deviations, we set ε = 2 (doubling/halving p. j ) and
ε = 0.2 (20% increase/decrease with respect to p. j ), respectively. In this way, performance
offsets for both agencies are created within each paradigm.

The last two columns in Table 2 contain the values of API(G)
h −1 for the two agencies,

with the subtractions of 1 made in order to make symmetries more evident. The analysis of
these values provides many useful insights for every paradigm. The two key facts to notice
are that: (i) level-invariant indices B, E and H take the same value for the two agencies,
and (ii) balanced indices D, E and F sum to 0. As a consequence, only neutral indices E
assign an equal-to-average performance level to the two agencies, thereby acknowledging—
as expected—the induced performance offsets. In this sense, we argue that neutral indices
can be thought of as a “natural” choice within each paradigm.

While E indices return null values in Table 2, B (H) indices result in negative (positive)
values. They can be thought of as having an overall tendency to emphasizing departures
towards low (high) values, in line with their nature. This tendency extends also to other
Indices: it is reflected by the fact that negatively unbalanced indices A, B and C sum to
negative values across the two agencies, while positively unbalanced indices G, H and I sum
to positive values. Finally, a comment on D and F indices is in order. D indices favor the
second agency and disadvantage the first one by putting more emphasis on departures in the
first group, where the first agency performs worse than the average and the second performs
better. For F indices, the reverse holds. In any case, the balance property ensures that these
discrepancies from the null value have the same intensity.
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Table 3 The example discussed in Castro et al. (2015)

Surgeon A (h = 1) Surgeon B (h = 2)
j = 1 j = 2 j = 3 j = 4 j = 1 j = 2 j = 3 j = 4

Whj 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

p. j 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

phj 0.2 0 0 0 0 0 0.2 0

phj − p. j 0.1 −0.2 −0.3 −0.4 −0.1 −0.2 −0.1 −0.4

phj /p. j 2 0 0 0 0 0 0.67 0

4.1 An example from the literature

The adoption of a specific departure paradigm is a subjective and often implicit choice. To
better illustrate the relevance of this point—and how it might lead to controversial interpre-
tations in some circumstances—we reanalyze the example discussed by Castro et al. (2015),
where the usage of traditional risk-adjusted mortality rates is criticized in the spirit of other
earlier contributions (Moreno & Apolone, 1997; Moreno et al., 1998; Metnitz et al., 2000).
As is well-known, these rates are based on contrasting actual and expected mortality rates.
The second ones are obtained by averaging marginal mortality rates with agency-specific
case-mix distributions, and they represent the mortality levels that would occur if agencies
had an “average behavior”. Notice that in this example the outcome “mortality” instead of
“survival” is considered, so better performances correspond to lower values of the indices.

The data of this example are summarized in Table 3. Specifically, Castro et al. (2015)
consider a setting where there are H = 2 surgeons (corresponding to agencies) operating
on two sets of patients (corresponding to users). These two sets share the same case-mix
distribution Whj , which is a uniform distribution across J = 4 risk groups (first row of the
table). The vector of (group-specific) marginal mortality rates is p = (0.1, 0.2, 0.3, 0.4)
(second row). For surgeon A, all mortality rates but the first ( j = 1) are null, whereas for
surgeon B the only non-null rate is the third ( j = 3). In both cases, the non-null rates are
equal to 0.2 (see third row).

According to the above data setting, the two surgeons show the same expected mortality
rate (

∑4
j=1 Whj p. j = 0.25), as well as the same actual rate (

∑4
j=1 Whj phj = 0.05). As

a consequence, traditional risk-adjusted measures based on contrasting these two numbers
mark the two surgeons with the same performance level, regardless of the chosen contrasting
function. The critique moved by Castro et al. (2015) lies in the fact that “surgeon B’s deaths
are more likely to be justified than the ones that occurred to surgeon A” (since they were
realized in a riskier group) and “a suitable performance metric should account for this and,
clearly, traditional risk adjusted mortality rates are not such a metric”.

We argue that the above point by Castro et al. (2015) implicitly invokes a relative deviation
paradigm. For example, a neutral index for such a paradigm like the one in (4) (see Table 2)
favors surgeon B at the expense of surgeon A. Indeed, the two averages of the phj/p. j

contrasts (fifth row of Table 3) are 0.5 for surgeon A and 0.167 for surgeon B (we recall that,
since we are dealing with mortality, higher index values correspond to worse performances).

Nevertheless, one might also argue that the null rate of surgeon A in group j = 3 should
contribute to lower the index (and thus to increase the performance level) more than the null
rate of surgeon B in group j = 1 since, again, it occurred in a riskier group. Such a dynamic,
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however, is not captured by the phj/p. j ratios, where we have

p13/p.3 = 0/0.3 = 0 = 0/0.1 = p21/p.1.

It is captured, instead, by the phj − p. j differences, for which p13 − p.3 = −0.3 and
p21 − p.1 = −0.1; see the fourth row in Table 3. It is easy to verify that the difference-based
indices (2) and (3) - neutral for the absolute deviation paradigm—take the same value (0.8
and 0.2, respectively) for both surgeons, denoting the same performance level. As a matter
of fact, these indices are indeed two traditional risk-adjusted mortality rates comparing, on
different scales, actual (

∑
j∈Jh

Whj phj ) and expected (
∑

j∈Jh
Whj p. j ) rates.

In our view, this example shows that there are no “right” or “wrong” indices in a general
sense. Instead, we argue that the numerical specifics of a given problem might trigger, often
unconsciously, the adoption of a certain metrical paradigm. Since every paradigm has some
“naturally associated” indices (typically, the neutral ones), results from other indices might
seem counter-intuitive in the first place. In summary, we believe that the analyst should
explicit:

(i) the assumed paradigm, i.e, theway compensations (offsets) between positive and negative
departures from marginal success probabilities are thought of;

(ii) whether negative departures from marginal probabilities should outweigh positive
departures of the same magnitude (or viceversa);

(iii) whether departures from lower levels of the marginal probabilities should be more
relevant than those from higher levels (or viceversa).

If the answer to (ii) and (iii) is “no”, then a neutral index for the adopted paradigm is usually
appropriate; otherwise, unbalanced and/or level dependent indices should be considered.
Ultimately, every choice can be “right”, as long as it is consciously motivated.

5 Estimation

As mentioned in the previous section, subject-matter considerations might lead to choose a
paradigm, an index of a given type for that paradigm and, in turn, a coherent G function.
Beyond these decisions, the problem arises of estimating the resulting API(G)

h index from
sample data. We here take a probabilistic approach and introduce a random variable Yhji
representing the binary outcome of a user i among those served by the hth agency and
belonging to the j th group (i ∈ {1, . . . , Nhj }). We model the Yhji variables as uncorrelated
Bernoulli variables with success probability equal to phj , treating the observed outcomes as
realizations from them. This framework allows to interpret phj as a group-specific quality
measure, while also accounting for the uncertainty induced by accidental (i.e., external to
case-mix) factors that possibly affect the outcome process. Notice, however, that we do
not demand to observe data at the individual level: for each agency, group-specific observed
success rates (for groupswith at least one user) suffice. These observed rates can be considered
as estimates from unbiased estimators p̂h j of the associate phj probabilities. Clearly, such a
rationale extends to estimators of marginal probabilities, that can be collected in the across-
group vector p̂ = ( p̂.1, . . . , p̂.J ). In this setting, the natural estimator of the API(G)

h index (1)
is

̂API
(G)

h = 1 +
∑

j∈Jh

WhjG( p̂h j , p̂). (11)
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It is worth to remark that index estimates might not be mathematically defined in finite
samples depending on the functional form of the G function, in particular when some prob-
ability estimates take one of the extreme values (0 or 1). For example, the estimate of (4)
is not defined if p̂. j is null for some groups in Jh . In cases like this, a reasonable solution
consists in postulating G( p̂h j , p̂) ≡ 0 for those groups, since all the involved p̂h j equal
the corresponding marginals p̂. j , be they 0 or 1. In other words, all the agencies will show
the same observed performance, so it makes sense to nullify the contribution of the asso-
ciate G( p̂h j , p̂) terms, in accordance with property i) in Sect. 3.1. In other cases, ad hoc
adjustments need to be taken; see for example the problem discussed in Sect. 6.1.

In its most general formulation, the estimator in (11) involves non-linearities induced
by the G function. While its exact distribution and moments are typically cumbersome,
asymptotic properties can be derived via linearization methods. These are summarized by
the following theorem:

Theorem 1 Assume individual observations are realizations of uncorrelated binary variables
Yhji , with E(Yhji ) = phj , and G is a C2 function in its arguments. Then, as Nh. → ∞ and
N. j → ∞ for all j ∈ J , thêAPI

(G)

h estimator is consistent and asymptotically unbiased for
API(G)

h ; moreover,

̂API
(G)

h − API(G)
h

V̂0
(
̂API

(G)

h

)1/2
d−→ N (0, 1), (12)

where V̂0(̂API
(G)

h ) is a consistent estimator of the limiting variance

V0
(
̂API

(G)

h

) =
∑

j∈Jh

{R2
hj + 2Rhj Sh. j Qhj }V ( p̂h j ) +

∑

�∈J
S2h.�V ( p̂.�), (13)

with

V ( p̂h j ) = phj (1 − phj )

Nhj
, V ( p̂.�) =

H∑

m=1

Q2
m�

pm�(1 − pm�)

Nm�

, (14)

Rhj = Whj Ahj and Sh.� = ∑
j∈Jh

Whj Bhj .�, being

Ahj = ∂G( p̂h j , p̂)

∂ p̂h j

∥
∥
∥
∥
p̂h j=phj , p̂= p

Bhj .� = ∂G( p̂h j , p̂)

∂ p̂.�

∥
∥
∥
∥
p̂h j=phj , p̂= p

.

Proof is reported in “Appendix 1”.According to the theorem,̂API(G)

h is asymptotically normally
distributed with limiting variance given by (13). Notice that only the marginal counts Nh.

and N. j (for all j ∈ J ) are required to tend to infinity for asymptotic theory to apply; the
Nhj counts are not.

Equation (13) can be easily generalized to obtain the limiting covariance between the
estimators of two different agencies, that is

Cov0
(
̂API

(G)

h ,̂API
(G)

h′
) =

∑

j∈Jh

Rhj Sh′. j Qhj V ( p̂h j ) +
∑

j∈Jh′
Rh′ j Sh. j Qh′ j V ( p̂h′ j )

+
∑

�∈J
Sh.�Sh′.�V ( p̂.�).

(15)
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5.1 Variance and covariance estimation

Consistent estimation of the right-hand side of (13) can be achieved by plugging-in estimated
values p̂h j and p̂.� in place of the true probabilities phj and p.� appearing in the Rhj and Sh.�

terms as well as in the two variances in (14). Unbiased estimation of the latter variances is
obtained with the usual sample size corrections, that is, replacing Nhj and Nm� with Nhj − 1
and Nm� − 1, respectively. This setting extends to estimation of the covariance in (15).

When Nhj = 1 for some groups j of the hth agency and/or Nm� = 1 for some groups �

of any of the other agencies (m 	= h), the above corrections are not feasible. This is likely to
occur when the overall sample size is small and the number of groups is relatively high. As
a matter of fact, in these cases the limiting variance in (13) is systematically underestimated,
since the estimate of V ( p̂h j ) and/or that of some components of V ( p̂.�) is null.

To mitigate systematic underestimation of the index variance, we propose a strategy based
on Strata Collapsing (SC), a well-known technique developed in the sample survey litera-
ture (Hansen et al., 1953; Rust & Kalton, 1987; Arnab, 2017). In practice, for each agency,
pairs of similar case-mix adjusting groups are aggregated whenever at least one of the two
groups contains just one unit. Two groups are similar when they have approximately the same
marginal success probabilities. In this regard, we suggest to perform a preliminary ordering
of groups according to the estimated p̂ = ( p̂.1, . . . , p̂.J ) vector. In so doing, group ordering
is constant and not influenced by agency-specific success rates, that are possibly unstable
due to small sample size. Two aggregated groups form a collapsed group with weight given
by the sum of their weights, and with a pooled success rate. The variance of the collapsed
group can be estimated with the usual sample size correction, with a possible positive bias if
the aggregated groups are not similar enough.

The approach outlined above yields a conservative solution for the estimation of the first
summation in the right-hand side of (13). However, there still might be groups with a single
user for agencies other than h, that might induce underestimation of some of the V ( p̂.�) terms
in the second summation. For this reason, we suggest to use the approximation

V ( p̂.�) ≈ p.�(1 − p.�)

N.�

, (16)

which is prompted by recent studies on the behavior of the sum of a sequence of independent
binomial random variables with distinct success probabilities (Butler & Stephens, 2017).
The result is applicable since uncorrelated Bernoulli random variables, by standard results,
are also independent. Clearly, an unbiased estimator of the right-hand side of (16) is p̂.�(1−
p̂.�)/(N.�−1),which is basedonmarginal sample sizes.Henceforth,we refer to this combined
variance estimation approach, i.e., using SC to estimate the first summation in the right-hand
side of (13) and Binomial Approximation (BA) to estimate the second summation, as to SC-
BA approach. Such an approach can also be applied to estimation of the limiting covariance
in (15), where similar sample size issues might occur.

6 Simulation study

The estimation framework presented in Sect. 5 hinges on a number of approximations involv-
ing both identification and estimation of the moments of API estimators. Thus, it is important
to investigate the reliability of these approximations in finite samples. To this end, we here
present a simulation study concerning the estimators of the neutral (E-type) indices for the
three departure paradigms analyzed in Sect. 3. These are the API

(Gd )

h and API(Gr )
h indices in (2)
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and (4) for the absolute deviation and relative deviation paradigms, respectively, as well as

API(Gv)
h = 1 +

∑

j∈Jh

Whj log
phj
p. j

, (17)

which is a neutral index under the variation paradigm; see Table 2. Since index types change
with the paradigm (Sect. 3.3), we remark that this simulation study is not limited to neutrality.
In detail, API(Gd )

h also acts like an I-type and F-type index, while API(Gr )
h like a D-type and

H-type one; see Sect. 4. As for API(Gv)
h , it is a B-type index for the relative deviation paradigm

(Table 2). Moreover, it is easy to show that it becomes an A-type index when the absolute
deviation paradigm is adopted.

6.1 Specifics of the study

As mentioned in Sect. 1, the simulation study is designed around the real-world dataset
introduced in the context of the NH performance evaluation problem. While such a dataset
has been already illustrated in Sect. 2, we just add that 312 (48%) of the 653 non-empty
strata formed by NH-RUG crossing contain exactly one resident. Thus, the SC-BA approach
outlined in Sect. 5.1 for (co)variance estimation appears to be necessary.

The statistical properties of the index estimators are achieved under the assumption of
uncorrelated user-level random variables. Thus, it is first necessary to verify whether the
absence of correlation between individual success indicators invoked in Sect. 5 is met in our
data. To this purpose, a series of logistic mixedmodels (McCulloch& Searle, 2002; Faraway,
2016) can be used. In the statistical software R (R Core Team, 2021), these models can be
fitted via the glmer command of the lme4 package (Bates et al., 2015). In detail, individ-
ual indicators are regressed against RUG and NH membership, which can be alternatively
included as fixed or random effects. A model including both membership effects as random
effects can also be adopted. In any case, random effects are modeled via a normal distribution
with null mean and unconstrained variance; we denote by σ 2

α and σ 2
β the variances of the

NH and RUG random effects, respectively. Within this scheme, adjusted intraclass corre-
lation coefficients indicate the degree of correlation between units in the same NH and/or
RUG. These coefficients are given by ρα = σ 2

α/(σ 2
α + π2/3) and ρβ = σ 2

β /(σ 2
β + π2/3),

where π2/3 is the distribution-specific error variance for the logistic model in the absence of
overdispersion (Nakagawa & Schielzeth, 2010; Nakagawa et al., 2017). For all the models
fitted on the data at hand, the estimates of these intraclass coefficients are small (below 6%),
indicating an almost negligible degree of correlation. However, it is worth to underline that
the estimates of σ 2

α and σ 2
β always show a noticeable NH and RUG effect.

In order to implement our study, we draw simulated datasets that are generated from a
set of strata-specific survival probabilities phj obtained from the corresponding p̂h j rates
observed in the original data. However, to avoid unrealistic values, extreme 0 and 1 rates
(typically due to low sample sizes in some strata) are modified and set, respectively, to p̂. j/2
and ( p̂. j +1)/2, where p̂. j ( j ∈ J ) are the observed RUG-specific marginal rates. To sketch
the asymptotic properties of the index and (co)variance estimators, increasing sample sizes
are considered by multiplying the original stratum-specific cardinality Nhj by a Sample Size
Factor (SSF) taking values 1, 2, 4, 8 and 16. In this way, the structure of the original dataset
in terms of agency-specific case-mix distributions is not altered. Clearly, when SSF is greater
than 1 there is no need of the collapsing method for variance estimation. For each sample
size scenario, N = 5000 datasets are drawn and estimates of the indices as well as of their
estimators’ variances and covariances are computed.
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Note that thêAPI
(Gv)

h estimator of index (17) suffers from the indefiniteness issues men-
tioned in Sect. 5. In detail, when the estimate of phj is null for some strata, thewhole estimator
is not defined because of the presence of the logarithm function. Given the structure of the
simulated data described above, this problem is likely to affect many strata, especially for
the lower values of the SSF. To solve it, we adopt an heuristic approach based on replacing
p̂h j = 0 with an arbitrary positive constant δ to be fine-tuned. Clearly, smaller values of δ

correspond to a lesser extent of data manipulation, but when δ is too small log(δ/ p̂. j ) will
be way lower than the bulk of the other log( p̂h j/ p̂. j ) terms, which results in considerable
downward bias for the overall estimator in finite samples. As a consequence, a compromise
has to be found. In our study, we explore two alternatives by setting δ = 0.05 and δ = 0.10.
This choice seems reasonable since RUG-specific marginal survival probabilities are always
greater than 0.5. The two estimators deriving from this approach are denoted bŷAPI

(Gv ,5)
h and

̂API
(Gv ,10)
h .

6.2 Simulation results

The first slice of results is summarized by Figs. 1 and 2. These figures consist of a 2 × 2
panel where the four plots are split in two parts to include two estimators. Specifically, Fig. 1
refers tôAPI

(Gd )

h (bottom part) and̂API
(Gr )

h (top part), while Fig. 2 tôAPI
(Gv ,5)
h (bottom part) and

̂API
(Gv ,10)
h (top part). All plots report the SSF on the x-axis and various estimator performance

metrics, as a function thereof, on the y-axis. In detail, the top plots show the trends of Monte
Carlo (MC) bias (left panel) and variance (right panel). The bottom-left plots focus on ratios
between the average (across runs) of the variance estimates and the MC variance, while the
bottom-right ones depict empirical coverage of 95% Confidence Intervals (CIs) based on the
normal approximation. In each plot, the grey stripe comprehends the values of the y-axis
quantity for all the H = 47 NHs: the border lines represent minimum and maximum values,
while the inner line corresponds to median values.

The top plots of Fig. 1 provide empirical evidence about the consistency of thêAPI
(Gd )

h

and̂API
(Gr )

h estimators, with both bias and variance approaching zero as the SSF grows. As a
matter of fact, these estimators exhibit very little bias and variance even at the lower values
of the SSF. Moving to variance estimation, a certain amount of over-estimation is present for
SSF=1, as shown by the bottom-left plot. In principle, this might be due to the approximations
induced either by linearization or by the SC-BA approach; see Sect. 5. With this regard, it
is important to mention that thêAPI

(Gd )

h estimator does not require linearization since it does
not involve any kind of non-linearity. Thus, it is an unbiased estimator and exact expressions
for its variance and covariance are available. Since the performances of the estimators of
V (̂API

(Gr )

h ) and V (̂API
(Gd )

h ) are similar, we argue that the effect of linearization for̂API
(Gr )

h is
restrained. Despite variance over-estimation, a modest degree of under-coverage—possibly
deriving from limited adherence to the normal distribution—is spotted for lower values of
the SSF; see the bottom-right plot in the figure.

With respect to thêAPI
(Gv ,5)
h and̂API

(Gv ,10)
h estimators (Fig. 2), for SSF=1 and SSF=2 it is

possible to observe a non-negligible negative MC bias as well as an increase in MC variance
(please acknowledge the difference in the scales between Figs. 1 and 2). Nevertheless, con-
sistency is achieved essentially at the same rate aŝAPI

(Gd )

h and̂API
(Gr )

h . These worse estimator
performances are clearly due to the ad hoc replacement of the null p̂h j estimates with δ;
see the discussion at the end of Sect. 6.1. In this regard, it is immediate to see that̂API(Gv ,10)

h

outperformŝAPI
(Gv ,5)
h : as expected, a higher value of δ makes the replacing log(δ/ p̂. j ) terms

less extreme in magnitude. It is also important to clarify that variance estimation ignores the
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Fig. 1 Simulation results for̂API
(Gd )

h and̂API
(Gr )
h

ad hoc replacements. In other words, a unique variance estimator is adopted, which explains
why the variance ratios are higher for the less variable estimator, i.e.,̂API(Gv ,10)

h . Incidentally,
this fact contributes to mitigate under-coverage due to downward bias, which instead is rather
relevant for̂API(Gv ,5)

h . Alternative strategies including δ adjustments also in variance estima-
tion were tested. However, results from these strategies (not shown) highlight a considerably
poorer performance of variance estimators for the first two SSFs.

Figure 3 shows further evidence from the simulation study. In particular, it focusses on the
estimated pairwise comparisons between NHs, reporting summaries of the H(H − 1)/2 =
1081 Pairwise Differences (PDs) between the estimated indices. The figure contains a 3× 2
panel, with the left-hand column pertaining tôAPI

(Gd )

h and̂API
(Gr )

h and the right-hand column
devoted tôAPI

(Gv ,5)
h and̂API

(Gv ,10)
h . In each column, the included plots depict: (i) the percentage

of estimated PDs concordant with the true ones, (ii) the percentage of estimated PDs that are
concordant with the true ones and also Statistically Significant (SS), and (iii) the percentage
of SS PDs that are discordant with the truth. Similarly to Figs. 1 and 2, these percentages
are plotted as a function of the SSF, and grey stripes with black lines for minimum, median
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Fig. 2 Simulation results for̂API
(Gv,5)
h and̂API

(Gv,10)
h

and maximum values are pictured. However, these now summarize the distributions across
the N = 5000 simulation runs of the summary statistics for the 1081 PDs. Inference on PDs
is performed by testing, through a standard z-test, the hypothesis that they are null at the
5% significance level. To this end, the covariance terms in (15) are estimated as described in
Sect. 5.1 alongwith the variances, so that the estimated variance of each PD can be computed.
Like for variance estimation, for̂API

(Gv ,5)
h and̂API

(Gv ,10)
h the covariance estimator ignores the

δ adjustments.
Overall, the trends in the first rowof Fig. 3 showa remarkable level of concordancewith the

truth. With this regard, we point out that there are no relevant differences among estimators.
Indeed, the effect of the negative bias characterizinĝAPI

(Gv ,5)
h and̂API

(Gv ,10)
h vanishes when

differences are taken.When statistical significance comes into play (second row), as expected,
lower percentages are attained at smaller SSFs. Conversely, when SSF is greater than 8 the
obtained values are considerably closer to those of the first row, especially for̂API

(Gv ,5)
h and

̂API
(Gv ,10)
h . Finally, the percentages of SS PDs discordant with the truth (third row) are always

very small, whichmakes the likelihood of drawingwrong inferences on pairwise comparisons
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Fig. 3 Correctness of pairwise comparisons for the four estimators

123



Annals of Operations Research

desirably low. In other words, when a PD is SS, it almost always shows the correct ranking
between the two NHs involved.

7 Conclusions

When the evaluation of the performance of a set of agencies operating on different users
is undertaken based on binary outcomes, suitable indices exist for settings where users are
divided into groups in order to account for case-mix, that is, for the different composition of
users with respect to personal characteristics influencing the outcome variables.Motivated by
a real-word example as well as by the recent discussion on the appropriateness of traditional
performance measures like risk-adjusted rate ratios/differences, we introduce a class of case-
mix adjusting probability-based performance indices and a taxonomy for the elements in the
class. Our taxonomy is built around the concepts of balancing and level-invariance, leading
to a nine-fold classification scheme. We show by means of an application how this range of
index types can flexibly satisfy the diverse evaluative needs that might rise. We also illustrate
how themathematical formalization of these concepts—and thus our classification scheme—
depends on the so-called departure paradigm, that is, on the metric adopted to quantify the
distance between agency-specific and marginal probabilities of the outcome of interest. In
our view, acknowledging and understanding such a dependence can help analysts address a
number of interpretive issues, possibly including those related to the abovementioned critique
to traditional rate contrasts. We focus on the three major departure paradigms: absolute
deviations, variations and relative deviations; the proposed class of indices encompasses
indices of all nine types for these three paradigms.

Whatever the index chosen for the evaluation exercise, the problem of estimating its value
for each agency in real-world applications arises. The inferential framework presented in
Sect. 5 relies on the absence of correlation between any pair of outcome variables at the user
level. In principle, this assumption can be relaxed at different levels by introducing varying
degrees of correlation, be they for units belonging to the same agency, group or stratum.
However, such an approach would lead to substantial complication of the formulae for index
estimators’ variances and covariances, and possibly also to problems with the simultaneous
identification of this set of correlation coefficients from sample data.While these issuesmight
represent a future stream of research, we believe that the formulae provided here should be
used once, like in our setting, correlation has been ruled out. Indeed, variance/covariance
estimation is likely to benefit from the adoption of this simplified framework.

The behavior of the estimators of the proposed indices and of their variance and covari-
ance estimators has been analyzed through an extensive simulation study. Simulation results
confirm the consistency of the proposed estimators. Furthermore, empirical evidence shows
that when the pairwise difference between two agencies is statistically significant, it almost
always provides the correct ranking between them.

In principle, our framework could be easily adapted to continuous outcomes, with proba-
bilities replaced by expectations/sample means. In that case, the SC-BA approach to variance
estimation outlined in Sect. 5.1 would clearly need adjustments depending on the probabilis-
tic distribution assumed for the underlying random variables. Such an extension would open
the way to further application contexts, where the need to account for the departure paradigm
has been sensed (though not explicitly formalized) also by other authors; see for example the
discussion about well-being composite indicators in Fortuna et al. (2022). Conversely, exten-
sion to categorical data would posit a number of additional challenges. These are essentially
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linked to the identification of the category associated to the best performance level (if any)
and to the quantification of dissimilarities among categories. With this regard, integration
with recently proposed methods in this area (van de Velden et al., 2023) would represent an
interesting development.
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A Proof of Theorem 1

For a given agency setH , consider a sequence of samples of users indexed in t = 1, 2, . . . ,∞
such that N (t)

h. = t Nh. for h ∈ H and N (t)
. j = t N. j for all j ∈ J . Extending dependence on

t to all other pieces of notation, for a given agency h we can denote by

p̂(t)
h = ({ p̂(t)

hj } j∈J (t)
h

, p̂(t)
.1 , . . . , p̂(t)

.J )�

the vector of estimators for the t th sample, and by p(t)
h the vector of the corresponding

parameters (notice that the latter depends on t only through J
(t)
h , whereas the probabilities

are assumed to be fixed). Specifically, we have

p̂(t)
hj =

∑N (t)
hj

i=1 Y
(t)
hji

N (t)
hj

, p̂(t)
. j =

∑
h∈H

∑N (t)
hj

i=1 Y
(t)
hji

N (t)
. j

=
∑

h∈H
Q(t)

hj p̂
(t)
hj .

It is immediate to see that these estimators are unbiased for the respective parameters, with
variances—given the absence of correlation among the Y (t)

hji variables—equal to

V
(
p̂(t)
hj

) = phj (1 − phj )

N (t)
hj

V
(
p̂(t)
. j

) =
∑

h∈H

(
Q(t)

hj

)2
V

(
p̂(t)
hj

)
.

Also, the only non-null covariances are Cov( p̂(t)
hj , p̂

(t)
. j )=Qhj V ( p̂(t)

hj ) for j∈J (t)
h .
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The second-order Taylor expansion of̂API(G)

th returns

̂API
(G)

th = API(G)
th +

∑

j∈J (t)
h

R(t)
hj

(
p̂(t)
hj − phj

) +
∑

�∈J
S(t)
h.l

(
p̂(t)
.� − p.�

)

+ 1

2

∑

j∈J (t)
h

W (t)
hj A

(t)
2,hj

(
p̂(t)
hj − phj

)2

+ 1

2

∑

j∈J (t)
h

W (t)
hj

∑∑

�,�′∈J
B(t)
2,hj .��′

(
p̂(t)
.� − p.�

)(
p̂(t)
.�′ − p.�′

)

+
∑

j∈J (t)
h

W (t)
hj

∑

�∈J
C (t)
2,hj .�

(
p̂(t)
hj − phj

)(
p̂(t)
.� − p.�

)

+ o
[(
p̂(t)
h − p(t)

h

)�
�

(t)
h

(
p̂(t)
h − p(t)

h

)]
,

(18)

where the coefficients for second-order derivates are

A(t)
2,hj = δ2G

(
p̂(t)
hj , p̂

(t))

δ2 p̂(t)
hj

∥
∥
∥
∥
p̂(t)
h = p(t)

h

, B(t)
2,hj .��′ = δ2G

(
p̂(t)
hj , p̂

(t))

δ p̂(t)
.� δ p̂(t)

.�′

∥
∥
∥
∥
p̂(t)
h = p(t)

h

and

C (t)
2,hj .� = δ2G

(
p̂(t)
hj , p̂

(t))

δ p̂(t)
hj δ p̂

(t)
.�

∥
∥
∥
∥
p̂(t)
h = p(t)

h

and �
(t)
h = diag(W(t)

h , IJ ), with IJ being the identity matrix of order J and W(t)
h =

diag({W (t)
hj }

j∈J (t)
h

).

Taking the expectation of bothmembers of (18) and rearranging gives, after some algebra,

Bias
(
̂API

(G)

th

) = E
(
̂API

(G)

th

) − API(G)
th

= 1

2

∑

j∈J (t)
h

W (t)
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(t)
2,hj V

(
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hj
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2
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h
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)

+
∑

j∈J (t)
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m� pm�(1 − pm�)

N (t)
. j

+
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2,hj . j ph j (1 − phj )
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+ o(t−1)

= O(t−1).

(19)
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To derive the limiting variance, it is sufficient to consider the first-order expansion

̂API
(G)

th = API(G)
th +

∑

j∈J (t)
h

R(t)
hj

(
p̂(t)
hj − p(t)

hj

) +
∑

�∈J
S(t)
h.l

(
p̂(t)
.� − p(t)

.�

)

+ o
[{(

p̂(t)
h − p(t)

h

)�
�

(t)
h

(
p̂(t)
h − p(t)

h

)}1/2]
.

Computing the variance of both sides and rearranging returns

V
(
̂API

(G)

th

) =
∑

j∈J (t)
h

{(
R(t)
hj

)2 + 2R(t)
hj S

(t)
h. j Q

(t)
hj

}
V

(
p̂(t)
hj

) +
∑

�∈J

(
S(t)
h.�

)2
V

(
p̂(t)
.�

) + o(t−1),

which agrees with (13).
Recalling the definitions of R(t)

hj and S(t)
h. j from the theorem’s statement, it is easy to show

that the right-hand side in the above equation is O(t−1) and, thus, the standard deviation of
thêAPI

(G)

th estimator is O(t−1/2). This fact combined with (19) proves that̂API(G)

th is consistent
and asymptotically unbiased, since

lim
t→∞

Bias
(
̂API

(G)

th

)

√

V
(
̂API

(G)

th

)
= 0

The convergence statement in (12) follows from the fact that, by standard results, uncor-
related binary variables are also independent. Thus, the linear approximation of̂API(G)

th can be
rewritten as a linear combination of the independent sample proportions p̂(t)

hj . For t → ∞, the
sampling distributions of these sample proportions either converge to the normal distribution
by virtue of central limit theorem (in case the W (t)

hj weights converge to a non-null constant),

or do not contribute to the limiting distribution of̂API
(G)

th (if the W (t)
hj weights converge to

zero). Finally, for any consistent estimator V̂0(̂API
(G)

h ), Slutsky’s Theorem can be invoked to
prove (12).
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