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Abstract

We manage decisions under “objective” ambiguity by considering gener-
alized Anscombe-Aumann acts, mapping states of the world to generalized
lotteries on a set of consequences. A generalized lottery is modeled through a
belief function on consequences, interpreted as a partially specified random-
izing device. Preference relations on these acts are given by a decision maker
focusing on different scenarios (conditioning events). We provide a system
of axioms which are necessary and sufficient for the representability of these
“conditional preferences” through a conditional functional parametrized by
a unique full conditional probability P on the algebra of events and a car-
dinal utility function u on consequences. The model is able to manage
also “unexpected” (i.e., “null”) conditioning events and distinguishes be-
tween a systematically pessimistic or optimistic behavior, either referring to
“objective” belief functions or their dual plausibility functions. Finally, an
elicitation procedure is provided, reducing to a Quadratically Constrained
Linear Program (QCLP).

Keywords: Anscombe-Aumann acts, Conditional Choquet expected value,
Belief and plausibility functions, Ambiguity, Conditional preferences

1. Introduction

In many decision problems under uncertainty in economics, we need to
choose between uncertain consequences in a set X that are contingent on
the states of the world in a set S. We distinguish between an “objective”
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uncertainty related to X (i.e., exogenously quantified and given to the deci-
sion maker, in the spirit of [58]) and a “subjective” uncertainty related to S
(i.e., encoded in the decision maker’s preferences, in the spirit of [52]). This
configures a two-stage process where first the state of the world is chosen by
Nature, and then the consequence is chosen through “objective” uncertainty,
in the spirit of [2].

Very often, due to partial knowledge, uncertainty cannot be encoded
in a single probability measure, but we rather have a class of probabil-
ity measures. This problem goes back to de Finetti’s coherence [19]: a
partially specified (conditional) probability, provided it is coherent, can be
extended to any larger domain by preserving coherence. The extension of
a coherent (conditional) probability is not unique in general but the set
of all the possible extensions can be found through linear programming
[3, 4, 8, 13, 14, 15, 18]. The class of (conditional) probabilities extending
the initial assessment can be summarized by means of its lower and upper
envelopes. Generally, the lower envelope of a class of probability measures
is only a superadditive capacity. Nevertheless, under suitable conditions
the lower envelope can be a belief function or even a necessity measure
[10, 11, 16, 27, 44]. However, given a lower probability it is always possi-
ble to look for a belief function outer approximating it [45]. In this paper
we restrict to the case where the lower envelope is a belief function ob-
tained either directly as lower envelope of probability measures or as an
outer approximation of it. Actually, the approach could be generalized to 2-
monotone capacities, but we restrict to belief functions since we start from
two motivating examples where the lower envelopes turn out to be belief
functions and furthermore this restriction leads to a simpler treatment and
interpretation.

We refer to situations where ambiguity is related to the “objective” prob-
abilistic assessment, as that due to a partially known randomizing device
(like an urn or a roulette wheel), that results in a class of probability mea-
sures whose lower envelope is a belief function [22, 55], like in the well-known
Ellsberg’s urn paradox [28].

Following [1, 48, 57], in these cases we will speak of “objective” ambigu-
ity, which is expressed in the Dempster-Shafer theory as in [9, 25, 37]. The
objects of decisions can be modeled as generalized Anscombe-Aumann acts
[2], mapping S to the set B(X) of belief functions over X, forming the set
F = B(X)S . Then, an act associates to each state of the world a generalized
lottery over the set of consequences and the generalized lottery is described
by either a belief function (as in [37, 38]) or its dual plausibility function.

A crucial aspect of making decisions under uncertainty is the possibility
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of reasoning under hypotheses. For this reason, we consider a conditional de-
cision model involving the above generalization of Anscombe-Aumann acts,
assuming that the decision maker is able to provide a family of preference
relations {-H}H∈℘(S)0 on F indexed by the set ℘(S)0 = ℘(S) \ {∅} of non-
impossible events. Every preference relation -H can be interpreted as com-
paring acts under the hypothesis H.

On the other hand, “subjective” uncertainty is assumed to be proba-
bilistic, so, we model it with a full conditional probability in the sense of
[19, 20, 26, 50], that allows conditioning on “null” events (i.e., events with
zero probability), but possible. Notice that, as shown in [42], “null” events
play a crucial role in the analysis of a game (see also [46]), thus full condi-
tional probabilities are the most suitable “subjective” uncertainty measures
for a “probabilistic” agent.

Here, the numerical model of reference is the following conditional func-
tional CEUP,u defined, for every f ∈ F and every H ∈ ℘(S)0, as

CEUP,u(f |H) =
∑
s∈S

P ({s}|H)

(
C

∫
udf(s)

)
, (1)

where P (·|·) is a full conditional probability on ℘(S)×℘(S)0 and u : X → R
is a utility function. The above conditional functional consists in a mixture
with respect to a full conditional probability of Choquet expected utilities
[9] contingent on the states of the world. In particular, due to the proper-
ties of the Choquet integral [53], every state-contingent Choquet expected
utility is actually a lower expected utility with respect to the probabilities
in core(f(s)). The present model generalizes the conditional version of the
Anscombe-Aumann model given in [46] by introducing “objective” ambigu-
ity.

We provide a set of axioms for the family {-H}H∈℘(S)0 that is proved
to be necessary and sufficient for the existence of a unique full conditional
probability P (·|·) and a cardinal utility function u such that the correspond-
ing CEUP,u conditional functional represents the preferences, i.e., for every
f, g ∈ F and every H ∈ ℘(S)0,

f -H g ⇐⇒ CEUP,u(f |H) ≤ CEUP,u(g|H).

It turns out that a rational agent in this model behaves as a CEUP,u max-
imizer, so, as a maximizer of a “subjective” conditional expected value of
state-contingent “objective” lower expected utilities.

Hence, the present model encodes the behavior of a decision maker that
is systematically pessimistic in resolving his/her uncertainty on X.
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A similar model can be stated in a way to cover a systematically opti-

mistic behavior, by considering a conditional functional ĈEUP,u relying on
a mixture, with respect to a full conditional probability, of state-contingent
upper expected utilities. The state-contingent upper expectations are com-
puted with respect to plausibility functions, that are dual to the belief func-
tions in the range of an act. In fact, for each act and any state of the world
we get a generalized lottery expressed by a plausibility function. Then, a ra-

tional agent in this case behaves as a ĈEUP,u maximizer, so, as a maximizer
of a “subjective” conditional expected value of state-contingent “objective”
upper expected utilities.

A similar decision setting, limited to the unconditional case, has been
considered by [57], where the author takes acts mapping states of the world
to non-empty compact convex polyhedral sets of probability measures over
consequences. In the same paper the author considers a representation func-
tional different from ours, but still relying on a mixture with respect to a
“subjective” probability measure.

Important efforts have been addressed in the decision theory literature
to model “subjective” ambiguity, that is to ambiguity in “subjective” uncer-
tainty evaluations (see, e.g., the survey papers [29] and [34]). For instance,
in the seminal papers [54] and [35], the classical Anscombe-Aumann set-
ting is considered, but there ambiguity is “subjective”, since the mixture
of state-contingent expected utilities is done through the Choquet integral
with respect to a capacity over S in the first model, while a class of “sub-
jective” probabilities is considered in the second model. Still working in the
classical Anscombe-Aumann setting, we find the models [5, 6, 43]. Other
lines of research take care of “subjective” ambiguity in a Savage’s setting,
through acts that map states of the world to non-empty sets of consequences
[32, 47]. All the quoted decision models essentially focus on unconditional
decisions.

Concerning the use of belief functions in decision making, we refer to
[24], which provides the most up-to-date survey on the topic. The frame-
work adopted in [24] relies on acts mapping states of the world to conse-
quences: a belief function on the states of the world (possibly induced by a
probability space and a multi-valued mapping) determines, through such an
act, a generalized lottery on consequences, in the sense of our paper. Hence,
the notion of act adopted in the quoted paper differs from that of general-
ized Anscombe-Aumann act in our sense. Nevertheless, we stress that if S
is a singleton (and so mixing and conditioning are trivial), then the maxi-

mization of CEUP,u and ĈEUP,u reduces, respectively, to the (generalized)
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maximin criterion and the (generalized) maximax criterion of [24].

The conditional functional CEUP,u, as well as ĈEUP,u, is completely
specified once the full conditional probability P (·|·) and the utility function
u have been elicited by the decision maker. In general, an agent is only
able to provide few comparisons for few conditioning events. In this case,
the first issue is to check the consistency of the given comparisons with
the model of reference. When consistency holds, it is easily seen that an
elicitation procedure relying on a finite number of arbitrary comparisons
cannot guarantee any form of uniqueness for P and u in general.

We provide an elicitation procedure that reduces to a Quadratically Con-
strained Linear Program (QCLP). Unfortunately, the quadratic forms in the
quadratic constraints of the problem are generally not positive semidefinite
nor negative semidefinite, so, the problem is generally not convex: inte-
rior points algorithms are not suitable. The problem can be solved with a
branch and bound algorithm coping with global optimization of non-linear
problems, such as the Couenne solver [17].

2. Motivating examples

We introduce two toy examples that help to motivate the study carried
out in the rest of the paper.

2.1. An investment decision problem

Let S = {s1, s2, s3, s4} be the set of states of the world, with

• s1 = “North Korea and USA enter into war next year and Italian GDP
increases next year”;

• s2 = “North Korea and USA enter into war next year and Italian GDP
does not increase next year”;

• s3 = “North Korea and USA do not enter into war next year and
Italian GDP increases next year”;

• s4 = “North Korea and USA do not enter into war next year and
Italian GDP does not increase next year”.

Then, K = {s1, s2} = “North Korea and USA enter into war next year” and
Kc = {s3, s4} = “North Korea and USA do not enter into war next year”.

Consider three unitary financial instruments that can result in a loss
of e50, in a null gain or in a gain of e100, implying X = {−50, 0, 100}.
From statistics of previous years we only have partial information on the
performances of each instrument, that are listed below:
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Instrument 1: It is only known that it guarantees a gain of e100 in 30%
of cases;

Instrument 2: It is only known that it results in a loss of e50 in 20% of
cases;

Instrument 3: No information is available.

The usual goal would be to identify each instrument with a probability
distribution on X. Nevertheless, due to the lack of complete probabilistic
information, the decision maker can adopt different behaviors to account
for this imprecision. In particular, for each instrument, he/she can consider
all the probability distributions on X compatible with the given partial
assessment. This approach goes back to de Finetti’s coherence [21] (see also
[15]), that allows to extend any coherent (partial) assessment to a probability
measure. In this light, we consider all the probability distributions on X
compatible with the above partial assessments.

Hence, instrument i determines a class of probability measures Pi on
℘(X)

P1 = {P : ℘(X)→ [0, 1]|P is a probability measure, γ ∈ [0, 0.7],

P ({−50}) = γ, P ({0}) = 0.7− γ, P ({100}) = 0.3},
P2 = {P : ℘(X)→ [0, 1]|P is a probability measure, γ ∈ [0, 0.8]

P ({−50}) = 0.2, P ({0}) = γ, P ({100}) = 0.8− γ},
P3 = {P : ℘(X)→ [0, 1]|P is a probability measure}.

For every i = 1, 2, 3, if we consider the lower envelope on the elements of
℘(X) defined as Beli = min Pi, we get a non-additive uncertainty measure
which reveals to be a belief function (whose definition and properties are
recalled in Section 3).

The use of the lower envelopes of the above sets of probabilities points
out a systematically pessimistic behavior of the decision maker in dealing
with “objective” uncertainty on X. On the other hand, a systematically
optimistic behavior is obtained by referring to the corresponding upper en-
velopes that, in this example, are plausibility functions (also introduced in
Section 3).

Now, consider the following investment strategies in which the adopted
financial instrument is contingent on the state of the world:

s1 s2 s3 s4

f Inst. 3 Inst. 1 Inst. 1 Inst. 2
g Inst. 3 Inst. 3 Inst. 2 Inst. 3
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Suppose the decision maker is interested in the effect of a possible war
between North Korea and USA, that is, he/she wants to considers the sce-
narios K and Kc. The question is: How should the decision maker decide
between the two investment strategies conditionally on K and Kc? A natu-
ral answer is “according to his/her preferences”. Hence, the aim is to provide
a set of axioms ruling the preferences of a “rational” decision maker.

2.2. A multi-criteria decision problem with uncertain profiles

A simple situation of multi-criteria decision is shown. Let S = {s1, . . . , sn}
be a finite set of criteria and denote by Ai = {ai1, . . . , aini} the finite set of
possible values for the criterion si ∈ S. Then, let X = A1 × · · · × An =
{x1, . . . , xm} be the finite set of profiles, where each element of X is an
n-tuple of evaluations in each criterion. Under certainty, each decision al-
ternative is identified with an element of X but, due to a lack of knowledge,
here we assume that the evaluation profile is uncertain and is identified with
a function mapping each criterion to a belief function over X. The following
example illustrates the point.

Suppose an agent needs to choose a type of restaurant in his/her town,
according to the following criteria in the set S = {s1, s2, s3}, with the cor-
responding sets of possible values Ai’s:

• s1 = quality of food;

• A1 = {poor,medium,high};

• s2 = price;

• A2 = {high,medium, low};

• s3 = time to be served;

• A3 = { > 20 mins, 10-20 mins, < 10 mins}.

The space of all certain profiles is then X = A1 ×A2 ×A3.
At the moment of the choice, the agent has restricted the set of alter-

natives to the following types of alternatives: a Chinese restaurant or an
Italian one.

Gathering all the available information resulting from evaluations of
other people, possibly coming from different sources on the Internet, the
agent arrives to the following partial probabilistic assessment.
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Chinese Restaurant: It is only known that the quality of food is poor
in 20% of cases. Furthermore, the price is high in 30% of cases, is
medium in 30% of cases, and is low in 40% of cases. The time to be
served is more than 20 minutes in 50% of cases and is less than 10
minutes in the other 50% of cases.

Italian Restaurant: The quality of food is low in 40% of cases, is medium
in 30% of cases and is high in 30% of cases. It is only known that the
price is low in 30% of cases. No information is available on the time
to be served.

Hence, denoting f = Chinese and g = Italian, for each type of restaurant
the following probabilistic information is available, where each 3-tuple is a
(possibly partially specified) probability distribution on Ai:

s1 s2 s3

f (0.2, ?, ?) (0.3, 0.3, 0.4) (0.5, 0, 0.5)
g (0.4, 0.3, 0.3) (?, ?, 0.3) (?, ?, ?)

Looking at alternative f , for every criterion si ∈ S there is a class of prob-
abilities Pf

i on ℘(X) that agrees with the partial probabilistic information
available on Ai. Also in this case the decision maker could consider the
lower envelope Belfi = min Pf

i that, again, turns out to be a belief function
on ℘(X). The same holds for alternative g.

Hence, the two alternatives can be identified with two functions mapping
criteria to belief functions over ℘(X) as follows

s1 s2 s3

f Belf1 Belf2 Belf3
g Belg1 Belg2 Belg3

Suppose the agent wants to focus either on the quality of food and the
price or on the time to be served, that is on H = {s1, s2} or on Hc = {s3}.
The question is: How should the agent decide between the two types of
restaurant focusing either on H or on Hc? Also in this case, a natural answer
is “according to his/her preferences”, so, the problem translates again in
finding normative axioms for his/her preferences, according to which the
agent is dubbed as “rational”.

3. Preliminaries

In this section we recall the necessary material on belief functions and full
conditional probabilities, the former used to express “objective” uncertainty
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on consequences, and the latter used to encode “subjective” conditional
uncertainty on the states of the world. We provide a unified introduction
by working on an abstract finite set.

Let Ω = {ω1, . . . , ωn} be an arbitrary finite set. Denote by ℘(Ω) the
power set of Ω and by ℘(Ω)0 = ℘(Ω) \ {∅}.

A belief function on ℘(Ω) [22, 55] is a function Bel : ℘(Ω) → [0, 1]
satisfying Bel(∅) = 0, Bel(Ω) = 1 and the k-monotonicity property for
every k ≥ 2, that is, for every A1, . . . , Ak ∈ ℘(Ω),

Bel

(
k⋃
i=1

Ai

)
≥

∑
∅6=I⊆{1,...,k}

(−1)|I|+1Bel

(⋂
i∈I

Ai

)
.

The dual function Pl defined, for every A ∈ ℘(Ω), as Pl(A) = 1 −
Bel(Ac), is called plausibility function and satisfies the above inequality
in the opposite direction, switching intersections and unions. Both Bel
and Pl are (normalized) capacities, i.e., they are monotonic with respect
to set inclusion. Recall that probability measures are particular belief and
plausibility functions.

Both functions Bel and Pl on ℘(Ω) are completely characterized by the
Möbius inversion of Bel [7, 36], defined for every A ∈ ℘(Ω) as

mBel(A) =
∑
B⊆A

(−1)|A\B|Bel(B),

also called basic probability assignment. The function mBel : ℘(Ω) → [0, 1]
is such that mBel(∅) = 0,

∑
A∈℘(Ω)mBel(A) = 1, and, for every A ∈ ℘(Ω),

Bel(A) =
∑
B⊆A

mBel(B) and Pl(A) =
∑

B∩A 6=∅

mBel(B). (2)

Notice that, disregarding mBel(∅) = 0, mBel can be formally viewed as a
probability distribution over the set ℘(Ω)0, in particular, Bel (and, so, the
dual Pl) is a probability measure if and only if mBel is different from 0 only
on singletons.

For a function f ∈ RΩ, if ϕ is a capacity on ℘(Ω) and σ is a permutation
of {1, . . . , n} such that f(ωσ(1)) ≤ . . . ≤ f(ωσ(n)) (see [23]), the Choquet
integral of f with respect to ϕ is defined, denoting Eσi = {ωσ(i), . . . , ωσ(n)}
for i = 1, . . . , n and Eσn+1 = ∅, as

C

∫
fdϕ =

n∑
i=1

f(ωσ(i))(ϕ(Eσi )− ϕ(Eσi+1)). (3)
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In particular, if ϕ is a belief/plausibility function, the Choquet integral with
respect to ϕ is the minimum/maximum of Stieltjes integrals of f with respect
to the core of Bel (see, e.g., [23, 53]), that is the set of probability measures

core(Bel) = {P : P is a probability measure on ℘(Ω), Bel ≤ P},

for which it holds Bel = min core(Bel) and Pl = max core(Bel), where the
minimum/maximum is pointwise on the elements of ℘(Ω).

In what follows, given a belief function Bel on ℘(Ω), to refer to the dual

plausibility function we often write B̂el.
In the rest of the paper we refer to the following axiomatic definition of

conditional probability, essentially due to [19, 20] (see also [15]).

Definition 1. Let A be an algebra of subsets of a non-empty set Ω and H
an additive class such that H ⊆ A0 (i.e., a class of sets closed under finite
unions). A function P : A×H → [0, 1] is a conditional probability if it
satisfies the following conditions:

(i) P (E|H) = P (E ∩H|H), for every E ∈ A and H ∈ H;

(ii) P (·|H) is a finitely additive probability on A, for every H ∈ H;

(iii) P (E ∩ F |H) = P (E|H) · P (F |E ∩ H), for every H,E ∩ H ∈ H and
E,F ∈ A.

Remark 1. Notice that, in presence of condition (i), condition (iii) is equiv-
alent to (iii’)

P (A|C) = P (A|B) · P (B|C),

for every A ∈ A and B,C ∈ H, with A ⊆ B ⊆ C.

If Ω ∈ H, we simply write P (E) = P (E|Ω), for every E ∈ A.
Following [26], we say that a conditional probability P (·|·) is full on A if

H = A0, i.e., if it is defined on A×A0. In particular, in [15] it is shown that
every conditional probability on A×H can be extended to a full conditional
probability on the whole A × A0. In what follows we will be essentially
concerned with a full conditional probability defined on ℘(Ω) × ℘(Ω)0, for
a finite set Ω. Notice that a full conditional probability allows conditioning
also on “null” events, i.e., P (·|H) is well-defined even when P (H) = 0.

In this paper, full conditional probabilities are interpreted as “subjec-
tive” weights used to aggregate the “objective” information on the different
states of the world, conditionally on a possibly “unexpected” (i.e., “null”)
event.
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4. Decision-theoretic setting

The rest of the paper relies on the following decision-theoretic setting.
Let X = {x1, . . . , xm} be a finite set of consequences and ℘(X)0 = ℘(X) \
{∅} be the set of opportunity sets or menus [40] (i.e., non-empty sets of
consequences). Denote by

B(X) = {Bel : Bel is a belief function on ℘(X)}

the set of all belief functions on ℘(X) interpreted as generalized lotteries
(according to [37]).

Let S = {s1, . . . , sn} be a finite set of states of the world endowed with
its power set ℘(S), forming the set of all events, and ℘(S)0 = ℘(S) \ {∅},
forming the set of scenarios (i.e., conditioning events).

An act f : S → B(X) is a map from the states of the world to the
set of belief functions on consequences, the latter expressing “objective”
ambiguity. We then denote by

F = B(X)S

the set of all acts which contains, in particular, the classical Anscombe-
Aumann acts [2, 30, 41].

Acts in F can be seen as state-contingent partially known randomizing
devices, thus they allow to distinguish “objective” uncertainty on conse-
quences (which is already quantified, even though possibly partially, and
provided to the agent) from “subjective” uncertainty on the states of the
world (which is encoded in the agent’s preferences).

A decision maker expresses his/her preferences conditionally on some
scenarios H ∈ ℘(S)0. Let {-H}H∈℘(S)0 be a family of preference relations
on F , indexed by the set of scenarios H ∈ ℘(S)0.

For every scenario H ∈ ℘(S)0, we denote by ≺H and ∼H the asymmetric
and symmetric parts of -H . Moreover, for every f, g ∈ F , f -H g means “f
is not preferred to g under the hypothesis H”, f ≺H g means “g is preferred
to f under the hypothesis H”, and f ∼H g means “f is indifferent to g
under the hypothesis H”.

Notice that the set B(X) contains the set

B0(X) = {δB : B ∈ ℘(X)0},

of vacuous belief functions, where δB is the belief function whose Möbius
inversion is such that mδB (B) = 1 and 0 otherwise.
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Remark 2. The set B(X) is closed with respect to the convex combina-
tion operation defined, for every Bel1, Bel2 ∈ B(X) and every α ∈ [0, 1],
pointwise, for every A ∈ ℘(X), as

(αBel1 + (1− α)Bel2)(A) = αBel1(A) + (1− α)Bel2(A),

and it holds

mαBel1+(1−α)Bel2(A) = αmBel1(A) + (1− α)mBel2(A).

In particular, B(X) turns out to be the convex closure of B0(X).

The set of acts F contains, in particular, the set of constant acts Fc
whose elements are defined, for every Bel ∈ B(X), as

Bel(s) = Bel, for all s ∈ S.

The set F is closed with respect to the following operation of convex
combination: for every f, g ∈ F and every α ∈ [0, 1], αf+(1−α)g is defined
pointwise, for every s ∈ S, as

(αf + (1− α)g)(s) = αf(s) + (1− α)g(s).

For every H ∈ ℘(S)0, the relation -H determines the following other
relations:

• the relation EH on B(X) defined, for every Bel1, Bel2 ∈ B(X), as

Bel1 EH Bel2 ⇐⇒ Bel1 -H Bel2;

• the relation ≤•H on ℘(X)0 defined, for every A,B ∈ ℘(X)0, as

A ≤•H B ⇐⇒ δA EH δB;

• the relation ≤∗H on X defined, for every x, y ∈ X, as

x ≤∗H y ⇐⇒ {x} ≤•H {y}.

Notice that if -H is a weak order on F , i.e., a complete and transitive binary
relation, then also the induced relations EH , ≤•H and ≤∗H are weak orders
on the corresponding domains.
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We are searching for a representation of {-H}H∈℘(S)0 in the form of a
conditional mixture of Choquet integrals, i.e., for every f ∈ F and H ∈
℘(S)0,

CEUP,u(f |H) =
∑
s∈S

P ({s}|H)

(
C

∫
udf(s)

)
, (4)

where P (·|·) is a full conditional probability on ℘(S)×℘(S)0 and u : X → R
is a utility function.

Notice that the CEUP,u conditional functional expresses a pessimistic
aggregation of “objective” uncertainty. A corresponding functional encoding
an optimistic aggregation can be defined as

ĈEUP,u(f |H) =
∑
s∈S

P ({s}|H)

(
C

∫
udf̂(s)

)
, (5)

where f̂(s) it the dual plausibility function of f(s).

Remark 3. Let us stress that, since P ({s}|H) = 0 for every s ∈ Hc, the

conditional functionals CEUP,u and ĈEUP,u can be rewritten restricting
the external sum only to those s ∈ H.

The family of preference relations {-H}H∈℘(S)0 is represented by a CEUP,u

conditional functional if, for every H ∈ ℘(S)0 and every f, g ∈ F , it holds

f -H g ⇐⇒ CEUP,u(f |H) ≤ CEUP,u(g|H).

The representation by a ĈEUP,u conditional functional is defined analo-
gously.

Both conditional functionals CEUP,u and ĈEUP,u are conditional ex-
pectations of state-contingent Choquet integrals of u. Below we provide a
linear expression of the internal Choquet integral in both conditional func-
tionals consisting in a pessimistic or optimistic aggregation of uncertainty.

Let ≤∗ be a weak order on X with asymmetric and symmetric parts
<∗ and =∗, respectively, and assume xσ(1) ≤∗ . . . ≤∗ xσ(m), where σ is a
permutation of {1, . . . ,m}. Then, denote by X∗ = X/=∗ = {[xi1 ], . . . , [xit ]}
the quotient set of X under the equivalence relation =∗. Thus, <∗ can be
seen as a strict total order on X∗, and we can assume [xi1 ] <∗ · · · <∗ [xit ].
The weak order ≤∗ will be useful in the sequel to build a utility function on
consequences and to get a representation.

The pessimistic ≤∗-aggregated Möbius inversion associated to Bel ∈
B(X) is the function M≤

∗

Bel : X∗ → [0, 1] defined, for every [xij ] ∈ X∗,
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as
M≤

∗

Bel([xij ]) =
∑

xσ(i)∈[xij ]

∑
xσ(i)∈B⊆Eσi

mBel(B), (6)

where Eσi = {xσ(i), . . . , xσ(m)} for i = 1, . . . ,m.

Note that M≤
∗

Bel([xij ]) ≥ 0 for every [xij ] ∈ X∗ and
∑t

j=1M
≤∗
Bel([xij ]) = 1,

thus M≤
∗

Bel determines a probability distribution on X∗.
It is easily seen that, if u : X → R, then introducing the weak order ≤∗

on X such that, for every xi, xj ∈ X, xi ≤∗ xj if and only if u(xi) ≤ u(xj),
for every Bel ∈ B(X), by equations (2), (3) and (6) it follows

C

∫
udBel =

∑
[xij ]∈X∗

u(xij )M
≤∗
Bel([xij ]).

Let us stress that M≤
∗

Bel encodes a pessimistic aggregation of the uncertainty
expressed by mBel [9]. Indeed, it holds∑

[xij ]∈X∗
u(xij )M

≤∗
Bel([xij ]) =

∑
B∈℘(X)0

(
min
x∈B

u(x)

)
mBel(B).

In analogy, considering the dual plausibility function B̂el, the optimistic
≤∗-aggregated Möbius inversion associated to B̂el is the function M≤

∗

B̂el
:

X∗ → [0, 1] defined, for every [xij ] ∈ X∗, as

M≤
∗

B̂el
([xij ]) =

∑
xσ(i)∈[xij ]

∑
xσ(i)∈B⊆(Eσi+1)c

mBel(B), (7)

where the Eσi ’s are defined as before and Eσm+1 = ∅.
Note that M≤

∗

B̂el
([xij ]) ≥ 0 for every [xij ] ∈ X∗ and

∑t
j=1M

≤∗

B̂el
([xij ]) = 1,

thus M≤
∗

B̂el
determines a probability distribution on X∗.

It is easily seen that also in this case by equations (2), (3) and (7) it
follows

C

∫
udB̂el =

∑
[xij ]∈X∗

u(xij )M
≤∗

B̂el
([xij ]).

Let us stress that M≤
∗

B̂el
encodes an optimistic aggregation of the uncertainty

expressed by mBel [9]. Indeed, it holds∑
[xij ]∈X∗

u(xij )M
≤∗

B̂el
([xij ]) =

∑
B∈℘(X)0

(
max
x∈B

u(x)

)
mBel(B).
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5. Probabilistic interpretation of numerical models

Consider the product algebra ℘(S×X) containing two isomorphic copies
of ℘(S) and ℘(X) obtained by identifying A ∈ ℘(S) with A ×X and B ∈
℘(X) with S × B. As usual, a Cartesian product is set to ∅ if one of the
factors is equal to ∅. It is easily seen that every A ∈ ℘(S×X) can be written
as

A =
⋃
s∈S

({s} × [A]s),

with [A]s = {a ∈ X : (s, a) ∈ A}, possibly [A]s = ∅.
Let P : ℘(S)×℘(S)0 → [0, 1] be a full conditional probability and fix an

act f ∈ B(X)S . For every H ∈ ℘(S)0, the pair (P (·|H), f) allows to define

the functions BelfH and PlfH on ℘(S ×X) setting, for every A ∈ ℘(S ×X),

BelfH(A) =
∑
s∈S

P ({s}|H)f(s)([A]s), (8)

PlfH(A) =
∑
s∈S

P ({s}|H)f̂(s)([A]s). (9)

The following proposition shows that BelfH and PlfH are a belief and a
plausibility function, respectively.

Proposition 1. The functions BelfH and PlfH defined as in equations (8)
and (9) are a belief and a plausibility function on ℘(S ×X), respectively.

Proof. Since [∅]s = ∅ and [S ×X]s = X, it holds that

BelfH(∅) =
∑
s∈S

P ({s}|H)f(s)(∅) = 0,

BelfH(S ×X) =
∑
s∈S

P ({s}|H)f(s)(X) = 1,

P lfH(∅) =
∑
s∈S

P ({s}|H)f̂(s)(∅) = 0,

P lfH(S ×X) =
∑
s∈S

P ({s}|H)f̂(s)(X) = 1.

Moreover, for every A,B ∈ ℘(S ×X) with A ⊆ B, we have [A]s ⊆ [B]s for

every s ∈ S, implying f(s)([A]s) ≤ f(s)([B]s) and f̂(s)([A]s) ≤ f̂(s)([B]s).
Hence, by the monotonicity of the expectation operator with respect to
P (·|H), it follows BelfH(A) ≤ BelfH(B) and PlfH(A) ≤ PlfH(B), so, both

BelfH and PlfH are normalized capacities.
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Finally, for every E1, . . . , Ek ∈ ℘(S ×X) and every ∅ 6= I ⊆ {1, . . . , k},
since for every s ∈ S[⋃

i∈I
Ei

]
s

=
⋃
i∈I

[Ei]s and

[⋂
i∈I

Ei

]
s

=
⋂
i∈I

[Ei]s

we have

f(s)

(
k⋃
i=1

[Ei]s

)
≥

∑
∅6=I⊆{1,...,k}

(−1)|I|+1f(s)

(⋂
i∈I

[Ei]s

)
,

f̂(s)

(
k⋂
i=1

[Ei]s

)
≤

∑
∅6=I⊆{1,...,k}

(−1)|I|+1f̂(s)

(⋃
i∈I

[Ei]s

)
.

Hence, by the monotonicity and the linearity of the expectation operator
with respect to P (·|H), it follows

BelfH

(
k⋃
i=1

Ei

)
≥

∑
∅6=I⊆{1,...,k}

(−1)|I|+1BelfH

(⋂
i∈I

Ei

)
,

P lfH

(
k⋂
i=1

Ei

)
≤

∑
∅6=I⊆{1,...,k}

(−1)|I|+1PlfH

(⋃
i∈I

Ei

)
.

In turn, given the families of belief and plausibility functions {BelfH}H∈℘(S)0

and {PlfH}H∈℘(S)0 defined on ℘(S ×X) we can define two conditional mea-

sures Belf (·|·) and Plf (·|·) with domain ℘(S×X)×H, where H = {H×X :
H ∈ ℘(S)0} is an additive class isomorphic to ℘(S)0. Such measures are
obtained, for every A|B ∈ ℘(S ×H)×H with B = H ×X and H ∈ ℘(S)0,
as

Belf (A|B) = BelfH(A) and Plf (A|B) = PlfH(A). (10)

Proposition 2. The conditional measure Belf (·|·) on ℘(S×X)×H satisfies
the following properties:

(i) Belf (A|B) = Belf (A ∩B|B), for every A ∈ ℘(S ×X) and B ∈ H;

(ii) Belf (·|B) is a belief function on ℘(S ×X), for every B ∈ H;

(iii) Belf (A|C) = Belf (A|B) · Belf (B|C), for every B,C ∈ H and A ∈
℘(S ×X) with A ⊆ B ⊆ C.
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The conditional measure Plf (·|·) on ℘(S × X) × H satisfies the following
properties:

(i’) Plf (A|B) = Plf (A ∩B|B), for every A ∈ ℘(S ×X) and B ∈ H;

(ii’) Plf (·|B) is a plausibility function on ℘(S ×X), for every B ∈ H;

(iii’) Plf (A|C) = Plf (A|B) ·Plf (B|C), for every B,C ∈ H and A ∈ ℘(S×
X) with A ⊆ B ⊆ C.

Moreover, for every A ∈ ℘(S ×X) and B ∈ H it holds

Belf (A|B) = 1− Plf (Ac|B).

Proof. We prove that Belf (·|·) satisfies properties (i)–(iii) as the satisfaction
of properties (i’)–(iii’) by Plf (·|·) is proven analogously.

Condition (i) follows since, taking into account Remark 3, for every
A ∈ ℘(S ×X) and B ∈ H with B = H ×X and for every s ∈ H, it holds
[A]s = [A ∩B]s.

Condition (ii) is trivially implied by Proposition 1.
Then, to prove condition (iii) take A ∈ ℘(S × X) and B,C ∈ H with

A ⊆ B ⊆ C, where B = H ×X and C = K ×X, where H,K ∈ ℘(S) and
H ⊆ K. Taking into account Remark 3, since [B]s is equal to X for s ∈ H
and to ∅ for s 6∈ H, while [A]s is equal to ∅ for s 6∈ H we have

Belf (A|C) =
∑
s∈S

P ({s}|K)f(s)([A]s) =
∑
s∈K

P ({s}|K)f(s)([A]s),

Belf (A|B) =
∑
s∈S

P ({s}|H)f(s)([A]s) =
∑
s∈H

P ({s}|H)f(s)([A]s),

Belf (B|C) =
∑
s∈S

P ({s}|K)f(s)([B]s) =
∑
s∈H

P ({s}|K) = P (H|K).

Hence, recalling Remark 1, for every s ∈ H, it holds that P ({s}|K) =
P ({s}|H) · P (H|K), implying

Belf (A|C) = Belf (A|B) ·Belf (B|C).

Finally, for every A ∈ ℘(S ×X) and B ∈ H with B = H ×X, note that
it holds ([A]s)

c = [Ac]s, where the complement in the first member is taken
with respect to X, while the complement in the second member is taken
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with respect to S ×X. Hence, it follows

Belf (A|B) =
∑
s∈S

P ({s}|H)f(s)([A]s)

=
∑
s∈S

P ({s}|H)(1− f̂(s)(([A]s)
c))

= 1−
∑
s∈S

P ({s}|H)f̂(s)(([A]s)
c)

= 1−
∑
s∈S

P ({s}|H)f̂(s)([Ac]s)

= 1− Plf (Ac|B).

By the previous proposition we have that the conditional measure Plf (·|·)
is a particular conditional submodular capacity agreeing with the axiomatic
definition studied in [49], generalizing the Dempster’s rule of condition-
ing [22]. Furthermore, Belf (·|·) is the dual of Plf (·|·), i.e., Belf (A|B) =
1−Plf (Ac|B) for A ∈ ℘(S×X) and B ∈ H. It actually holds that Belf (·|·)
agrees with an axiomatic definition of conditional supermodular capacity
that generalizes the product rule of conditioning [56]. For a discussion on
the different notions of conditioning for belief functions see [10].

Notice that the utility function u : X → R can be identified with a
function v : S ×X → R such that, for every s, s′ ∈ S and x ∈ X, it holds
v(s, x) = v(s′, x) = u(x). Using such v, the previous proposition allows to

express both conditional functionals CEUP,u and ĈEUP,u as conditional
Choquet expected values of v with respect to Belf and Plf , respectively

CEUP,u(f |H) = C

∫
vdBelf (·|H ×X),

ĈEUP,u(f |H) = C

∫
vdPlf (·|H ×X),

for every f ∈ F and H ∈ ℘(S)0.

6. Axioms and representation theorems

The aim is to find a system of axioms for a family of preference rela-
tions assuring the representability by conditional functionals introduced in
Section 4. For this aim, consider the following axioms.
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(A1) Weak order: ∀H ∈ ℘(S)0, -H is a weak order on F .

(A2) Continuity: ∀H ∈ ℘(S)0, ∀f, g, h ∈ F , if f ≺H g ≺H h, then ∃α, β ∈
(0, 1) such that

αf + (1− α)h ≺H g ≺H βf + (1− β)h.

(A3) Independence: ∀H ∈ ℘(S)0, ∀f, g, h ∈ F and ∀α ∈ (0, 1)

f -H g ⇐⇒ αf + (1− α)h -H αg + (1− α)h.

(A4) Monotonicity: ∀H ∈ ℘(S)0, ∀f, g ∈ F , if f(s)EH g(s), ∀s ∈ S, then
f -H g.

(A5) Non-triviality: ∀H ∈ ℘(S)0, ∃f, g ∈ F such that f ≺H g.

(A6) Relevance: ∀H ∈ ℘(S)0, ∀f, g ∈ F with f(s) = g(s), ∀s ∈ H, then
f ∼H g.

(A7) Weak dynamic consistency: ∀f, g ∈ F and ∀H,K ∈ ℘(S)0, if
f -H g, f -K g, and H ∩K = ∅, then f -H∪K g.

(A8) State neutrality: ∀s, t ∈ S, if f(s) = f(t), g(s) = g(t), and f -{s}
g, then f -{t} g.

(A9) Pessimistic aggregated indifference: ∀H ∈ ℘(S)0, ifM
≤∗H
f(s) = M

≤∗H
g(s),

∀s ∈ S, then f ∼H g.

Axioms (A1)–(A5) are the usual Anscombe-Aumann axioms in the for-
mulation of [33], stated for generalized Anscombe-Aumann acts and every
preference relation in {-H}H∈℘(S)0 . Axioms (A6)–(A8) cope with condi-
tioning. In particular, axiom (A6) expresses a focusing conditioning rule,
i.e., it states that in conditioning on H, only the part of acts inside of H
counts. Axiom (A7) copes with relating different conditioning events, while
axiom (A8) encodes a form of consistency between different states. Finally,
axiom (A9) is responsible for the CEUP,u representation: it says that if
two possibly distinct acts have the same pessimistic ≤∗H -aggregated Möbius
inversion (i.e., the same pessimistic aggregation of “objective” uncertainty)
in every state then, they should be judged indifferent given H.

Let us stress that none of axioms (A6) and (A9) implies the other.
Indeed, axiom (A9) looks at acts f, g whose pessimistic ≤∗H -aggregated
Möbius inversion coincide over the entire S, but it can be f(s) 6= g(s) for
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some s ∈ S. On the other hand, axiom (A6) considers acts f, g which
coincide on H but may differ on Hc, so they could have different pessimistic
≤∗H -aggregated Möbius inversions overHc. The following example illustrates
the point.

Example 1. Take S = {s1, s2, s3}, X = {x1, x2, x3} and H = {s1, s2}, and
let ≤∗H be the weak order on X such that x1 <

∗
H x2 <

∗
H x3. Consider the

acts

S s1 s2 s3

f δ{x3} δ{x2} δ{x1}
g δ{x3} δ{x2} δ{x3}
h δ{x1} δ{x1} δ{x1}
l δ{x1,x2} δ{x1} δ{x1,x2}

Since ≤∗H is a total order, we can identify X/=∗H
with X, thus we have

X x1 x2 x3

M
≤∗H
δ{x1}

1 0 0

M
≤∗H
δ{x2}

0 1 0

M
≤∗H
δ{x3}

0 0 1

M
≤∗H
δ{x1,x2}

1 0 0

Since f(s) = g(s), for every s ∈ H, then axiom (A6) implies f ∼H g, but

since M
≤∗H
f(s3) 6= M

≤∗H
g(s3) axiom (A9) does not apply. On the other hand, since

M
≤∗H
h(s) = M

≤∗H
l(s) , for every s ∈ S, then axiom (A9) implies h ∼H l, but since

f(s1) 6= g(s1), axiom (A6) does not apply.

The following theorem (already stated in [12] without the proof) shows
that axioms (A1)–(A9) are necessary and sufficient to get a CEUP,u rep-
resentation.

Theorem 1. The following statements are equivalent:

(i) the family of relations {-H}H∈℘(S)0 satisfies (A1)–(A9);

(ii) there exist a full conditional probability P : ℘(S)×℘(S)0 → [0, 1] and a
non-constant utility function u : X → R such that, for every f, g ∈ F
and every H ∈ ℘(S)0,

f -H g ⇐⇒ CEUP,u(f |H) ≤ CEUP,u(g|H).
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Moreover, P is unique and u is unique up to positive linear transformations.

Proof. Necessity of axioms (A1)–(A9) is trivially proven, so, we prove only
sufficiency.

Identify every belief functionBel ∈ B(X) with the corresponding Möbius
inversion mBel. In turn, this allows to identify B(X) with the set ∆(℘(X)0)
of probability distributions over ℘(X)0, i.e., assignments of non-negative
weights over ℘(X)0 summing up to 1. So, F can be identified with ∆(℘(X)0)S ,
that is a mixture space with respect to pointwise convex combinations.

By the Anscombe-Aumann representation theorem (see [33, 41, 54]), for
every H ∈ ℘(S)0, axioms (A1)–(A5) imply the existence of a probability
measure PH : ℘(S) → [0, 1] and a non-constant function vH : ℘(X)0 → R
such that the functional VH : F → R defined, for every f ∈ F , as

VH(f) =
∑
s∈S

PH({s})

 ∑
B∈℘(X)0

vH(B)mf(s)(B)

 ,

represents the relation -H , i.e., for every f, g ∈ F , f -H g ⇐⇒ VH(f) ≤
VH(g). Notice that, since VH(δB) = vH(B), for every B ∈ ℘(X)0, then vH
represents ≤•H , i.e., A ≤•H B ⇐⇒ vH(A) ≤ vH(B), for every A,B ∈ ℘(X)0.
Moreover, PH is unique, vH is unique up to positive linear transformations,
and the functional VH is linear, i.e., for every f, g ∈ F and α ∈ [0, 1], it
holds (see Remark 2)

VH(αf + (1− α)g) = αVH(f) + (1− α)VH(g).

We first show that axioms (A1)–(A8) imply the existence of a full con-
ditional probability P : ℘(S) × ℘(S)0 → [0, 1] and a non-constant function
v : ℘(X)0 → R such that the conditional functional defined, for every f ∈ F
and every H ∈ ℘(S)0, as

V(f |H) =
∑
s∈S

P ({s}|H)

 ∑
B∈℘(X)0

v(B)mf(s)(B)

 ,

represents {-H}H∈℘(S)0 , i.e., for every f, g ∈ F and every H ∈ ℘(S)0,

f -H g ⇐⇒ V(f |H) ≤ V(g|H).

Fix an arbitrary s ∈ S and let A and A be elements of ℘(X)0 such that,
for every B ∈ ℘(X)0, it holds

A ≤•{s} B ≤
•
{s} A,
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which is equivalent to δA -{s} δB -{s} δA, whose existence follows by axiom
(A1) and the finiteness of ℘(X)0, due to the finiteness of X. For t ∈ S with
t 6= s, since δA -{s} δB -{s} δA, axiom (A7) implies

δA -{t} δB -{t} δA.

Furthermore, axiom (A8) implies, for every B ∈ ℘(X)0,

δA -{s,t} δB -{s,t} δA,

and proceeding analogously by adding progressively a state each time, for
every H ∈ ℘(S)0, it holds, for every B ∈ ℘(X)0,

δA -H δB -H δA,

which is equivalent to A ≤•H B ≤•H A.
Hence, for every H ∈ ℘(S)0 and every B ∈ ℘(X)0, since VH represents

-H and VH(δB) = vH(B), it follows

vH(A) ≤ vH(B) ≤ vH(A).

By the uniqueness of each vH up to positive linear transformations we can
assume

vH(A) = 0 and vH(A) = 1.

Denote 1 = δA and 0 = δA, for which we have VH(1) = 1 and VH(0) = 0.
Fix an arbitrary s ∈ S. For every B ∈ ℘(X)0 we have V{s}(δB) =

v{s}(B) = β = V{s}(β1+(1−β)0) with β ∈ [0, 1], and since V{s} represents
-{s} it follows

δB ∼{s} β1 + (1− β)0.

For t ∈ S with t 6= s, since δB ∼{s} β1 + (1− β)0, axiom (A7) implies

δB ∼{t} β1 + (1− β)0.

Furthermore, axiom (A8) implies,

δB ∼{s,t} β1 + (1− β)0,

and proceeding analogously by adding progressively a state each time, for
every H ∈ ℘(S)0, it holds

δB ∼H β1 + (1− β)0,
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which implies
vH(B) = β,

i.e., for every H,K ∈ ℘(S)0, we have vH = vK . Hence, we can define
v : ℘(X)0 → R by setting v = vH , where H ∈ ℘(S)0 is arbitrary.

Now, for every E ∈ ℘(S), define the act

1E(s) =

{
δA if s ∈ E,
δA if s /∈ E,

for which it holds, for every H ∈ ℘(S)0,

VH(1E) = PH(E) = VH(PH(E)1 + (1− PH(E))0),

and since VH represents -H it follows

1E ∼H PH(E)1 + (1− PH(E))0. (11)

Define P : ℘(S)× ℘(S)0 → [0, 1] setting, for every E|H ∈ ℘(S)× ℘(S)0,

P (E|H) = PH(E).

We show that P (·|·) is a full conditional probability.
First, since 1E(s) = 1E∩H(s) for every s ∈ H, axiom (A6) implies

1E ∼H 1E∩H and since VH represents -H it follows

P (E|H) = VH(1E) = VH(1E∩H) = P (E ∩H|H).

Second, for every H ∈ ℘(S)0, P (·|H) is a probability measure since PH(·)
is.

Finally, take A ∈ ℘(S) and B,C ∈ ℘(S)0 with A ⊆ B ⊆ C. Since
1B(s) = 1(s) for every s ∈ B, axiom (A6) implies 1B ∼B 1, moreover,
since by (11) it holds 1A ∼B PB(A)1 + (1−PB(A))0, applying axiom (A3)
we derive

PB(A)1B + (1− PB(A))0 ∼B PB(A)1 + (1− PB(A))0,

and by axiom (A1)

1A ∼B PB(A)1B + (1− PB(A))0.

Since for every s ∈ C \B we have 1A(s) = 1B(s) = 0(s) = δA, axiom (A6)
implies 1B ∼C\B 0, and applying axioms (A1) and (A3) we derive

1A ∼C\B PB(A)1B + (1− PB(A))0.
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Applying axiom (A7) we have

1A ∼C PB(A)1B + (1− PB(A))0,

moreover, by (11) we know that

1B ∼C PC(B)1 + (1− PC(B))0

and applying axiom (A3) we have

PB(A)1B + (1− PB(A))0 ∼C PB(A)[PC(B)1 + (1− PC(B))0] + (1− PB(A))0

= PB(A)PC(B)1 + (1− PB(A)PC(B))0,

and by axiom (A1) we get

1A ∼C PB(A)PC(B)1 + (1− PB(A)PC(B))0.

Since VC represents -C , and VC(1A) = PC(A) and VC(PB(A)PC(B)1 +
(1− PB(A)PC(B))0) = PB(A)PC(B) it follows P (A|C) = P (A|B)P (B|C).

Moreover, P (·|·) is unique since every PH is, and v is unique up to
positive linear transformations since every vH is.

We finally show that the conditional functional V has a CEUP,u ex-
pression. Since, for every H,K ∈ ℘(S)0, vH = vK , it follows that ≤∗H
and ≤∗K are the same weak order on X, so, we simply denote ≤∗=≤∗H for
an arbitrary H ∈ ℘(S)0 and set X∗ = X/=∗ = {[xi1 ], . . . , [xit ]} assuming
[xi1 ] <∗ . . . <∗ [xit ].

For every Bel ∈ B(X) and every H ∈ ℘(S)0, the constant act Bel is
such that

V(Bel|H) =
∑

B∈℘(X)0

v(B)mBel(B),

moreover, for Bel1, Bel2 ∈ B(X) with M≤
∗

Bel1
= M≤

∗

Bel2
axiom (A9) implies

Bel1 ∼H Bel2 that, in turn, implies V(Bel1|H) = V(Bel2|H), that is∑
B∈℘(X)0

v(B)mBel1(B) =
∑

B∈℘(X)0

v(B)mBel2(B).

Since for every Bel ∈ B(X) there is a probability measure µ ∈ B(X) such
that M≤

∗

Bel = M≤
∗

µ , axiom (A9) implies Bel ∼H µ, from which we have∑
B∈℘(X)0

v(B)mBel(B) =
∑

B∈℘(X)0

v(B)mµ(B) =
∑
x∈X

v({x})µ({x}).
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Define u : X → R setting, for every x ∈ X,

u(x) = v({x}),

which is easily seen to represent ≤∗, i.e., xi ≤∗ xj ⇐⇒ u(xi) ≤ u(xj),
for every xi, xj ∈ X. In particular, this implies that u is constant on the
equivalence classes in X∗.

This allows to write∑
x∈X

v({x})µ({x}) =
∑

[xij ]∈X∗
u(xij )

∑
x∈[xij ]

µ({x}),

where
∑

x∈[xij ] µ({x}) = M≤
∗

µ ([xij ]), and recalling that M≤
∗

Bel = M≤
∗

µ we

have ∑
[xij ]∈X∗

u(xij )
∑

x∈[xij ]

µ({x}) =
∑

[xij ]∈X∗
u(xij )M

≤∗
µ ([xij ])

=
∑

[xij ]∈X∗
u(xij )M

≤∗
Bel([xij ]).

Hence, we have∑
B∈℘(X)0

v(B)mBel(B) =
∑

[xij ]∈X∗
u(xij )M

≤∗
Bel([xij ]) = C

∫
udBel.

Now, we can conclude that, for every f ∈ F and every H ∈ ℘(S)0,

V(f |H) =
∑
s∈S

P ({s}|H)

 ∑
B∈℘(X)0

v(B)mf(s)(B)


=

∑
s∈S

P ({s}|H)

 ∑
[xij ]∈X∗

u(xij )M
≤∗
f(s)([xij ])


=

∑
s∈S

P ({s}|H)

(
C

∫
udf(s)

)
= CEUP,u(f |H).

Notice that u cannot be constant otherwise CEUP,u would be constant
too and we would have a contradiction with axiom (A5), since CEUP,u

represents {-H}H∈℘(S)0 . Moreover, independently of H ∈ ℘(S)0, since

CEUP,u(δA|H) = min
x∈A

u(x) = 0 and CEUP,u(δA|H) = min
x∈A

u(x) = 1,
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there are x, x ∈ X such that

CEUP,u(δ{x}|H) = u(x) = 0 and CEUP,u(δ{x}|H) = u(x) = 1,

implying that δ{x} ∼H δA and δ{x} ∼H δA, thus we can take {x}, {x} for

A,A.
Finally, u is unique up to positive linear transformations since v is.

In the following we prove that to get a ĈEUP,u representation it is
sufficient to replace axiom (A9) with the following axiom

(A9’) Optimistic aggregated indifference: ∀H ∈ ℘(S)0, if M
≤∗H
f̂(s)

=

M
≤∗H
ĝ(s)

, ∀s ∈ S, then f ∼H g.

Theorem 2. The following statements are equivalent:

(i) the family of relations {-H}H∈℘(S)0 satisfies (A1)–(A8) and (A9’);

(ii) there exist a full conditional probability P : ℘(S)×℘(S)0 → [0, 1] and a
non-constant utility function u : X → R such that, for every f, g ∈ F
and every H ∈ ℘(S)0,

f -H g ⇐⇒ ĈEUP,u(f |H) ≤ ĈEUP,u(g|H).

Moreover, P is unique and u is unique up to positive linear transformations.

Proof. Necessity of axioms (A1)–(A8) and (A9’) is trivially proven, so, we
prove only sufficiency.

The proof of sufficiency is completely analogous to that of Theorem 1
up to the derivation of the conditional functional V. We show that (A9’)

implies that the conditional functional V has a ĈEUP,u expression. As in
the proof of Theorem 1, since, for every H,K ∈ ℘(S)0, vH = vK , it follows
that ≤∗H and ≤∗K are the same weak order on X, so, we simply denote
≤∗=≤∗H for an arbitrary H ∈ ℘(S)0 and set X∗ = X/=∗ = {[xi1 ], . . . , [xit ]}
assuming [xi1 ] <∗ . . . <∗ [xit ].

For every Bel ∈ B(X), consider its dual plausibility function B̂el and
its Möbius inversion mBel. The constant act Bel is such that

V(Bel|H) =
∑

B∈℘(X)0

v(B)mBel(B),
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moreover, for Bel1, Bel2 ∈ B(X) with M≤
∗

B̂el1
= M≤

∗

B̂el2
axiom (A9’) implies

Bel1 ∼H Bel2 that, in turn, implies V(Bel1|H) = V(Bel2|H), that is∑
B∈℘(X)0

v(B)mBel1(B) =
∑

B∈℘(X)0

v(B)mBel2(B).

Since for every Bel ∈ B(X) with dual B̂el there is a probability measure
µ ∈ B(X) such that M≤

∗

B̂el
= M≤

∗
µ , axiom (A9’) implies Bel ∼H µ, from

which we have∑
B∈℘(X)0

v(B)mBel(B) =
∑

B∈℘(X)0

v(B)mµ(B) =
∑
x∈X

v({x})µ({x}).

Define u : X → R setting, for every x ∈ X,

u(x) = v({x}),

which is easily seen to represent ≤∗, i.e., xi ≤∗ xj ⇐⇒ u(xi) ≤ u(xj),
for every xi, xj ∈ X. In particular, this implies that u is constant on the
equivalence classes in X∗.

This allows to write∑
x∈X

v({x})µ({x}) =
∑

[xij ]∈X∗
u(xij )

∑
x∈[xij ]

µ({x}),

where
∑

x∈[xij ] µ({x}) = M≤
∗

µ ([xij ]), and recalling that M≤
∗

B̂el
= M≤

∗
µ we

have ∑
[xij ]∈X∗

u(xij )
∑

x∈[xij ]

µ({x}) =
∑

[xij ]∈X∗
u(xij )M

≤∗
µ ([xij ])

=
∑

[xij ]∈X∗
u(xij )M

≤∗

B̂el
([xij ]).

Hence, we have∑
B∈℘(X)0

v(B)mBel(B) =
∑

[xij ]∈X∗
u(xij )M

≤∗

B̂el
([xij ]) = C

∫
udB̂el.
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Now, we can conclude that, for every f ∈ F and every H ∈ ℘(S)0,

V(f |H) =
∑
s∈S

P ({s}|H)

 ∑
B∈℘(X)0

v(B)mf(s)(B)


=

∑
s∈S

P ({s}|H)

 ∑
[xij ]∈X∗

u(xij )M
≤∗

f̂(s)
([xij ])


=

∑
s∈S

P ({s}|H)

(
C

∫
udf̂(s)

)
= ĈEUP,u(f |H).

Notice that u cannot be constant otherwise ĈEUP,u would be constant

too and we would have a contradiction with axiom (A5), since ĈEUP,u

represents {-H}H∈℘(S)0 . Moreover, independently of H ∈ ℘(S)0, since

ĈEUP,u(δA|H) = max
x∈A

u(x) = 0 and ĈEUP,u(δA|H) = max
x∈A

u(x) = 1,

there are x, x ∈ X such that

ĈEUP,u(δ{x}|H) = u(x) = 0 and ĈEUP,u(δ{x}|H) = u(x) = 1,

implying that δ{x} ∼H δA and δ{x} ∼H δA, thus we can take {x}, {x} for

A,A.
Finally, u is unique up to positive linear transformations since v is.

Let us stress that both CEUP,u and ĈEUP,u conditional functionals
allow to take “null” (possible) conditioning events as hypotheses and, even
more, they allow to order events in ℘(S)0 according to their “unexpectation”.

For that, we define, for every H,K ∈ ℘(S)0,

H v K ⇐⇒ 1∅ ≺H∪K 1H ,

with the meaning “H is no more unexpected than K”, where the act 1E ,
for E ∈ ℘(S), is defined as in the proof of Theorem 1. We then denote by
@ and =�, respectively, the asymmetric and symmetric parts of v, where
H @ K means “K is more unexpected than H” and H =� K means “none
between H and K is more unexpected”. It turns out that the relation v
considers the probability of the event H under the hypothesis that either H
or K occurs.
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Proposition 3. For every H,K ∈ ℘(S)0 it holds

H v K ⇐⇒ P (H|H ∪K) > 0,

H @ K ⇐⇒ P (H|H ∪K) > 0 and P (K|H ∪K) = 0,

H =� K ⇐⇒ P (H|H ∪K) > 0 and P (K|H ∪K) > 0.

Proof. We prove only the case of a CEUP,u representation, since the case

of a ĈEUP,u representation is analogous. Suppose the family {-H}H∈℘(S)0

satisfies axioms (A1)–(A9), then by Theorem 1 it has a CEUP,u representa-
tion, where P is unique and u is unique up to positive linear transformations.
Thus, we can assume min

x∈X
u(x) = 0 and max

x∈X
u(x) = 1.

Since

1∅ ≺H∪K 1H ⇐⇒ CEUP,u(1∅|H ∪K) < CEUP,u(1H |H ∪K),

and since CEUP,u(1∅|H∪K) = P (∅|H∪K) = 0 and CEUP,u(1H |H∪K) =
P (H|H ∪K), the first claim follows.

Then, the other two claims follow since

H @ K ⇐⇒ H v K and ¬(K v H),

H =� K ⇐⇒ H v K and K v H.

The relation v reveals to be a weak order on ℘(S)0 and has been origi-
nally introduced by [21, 39, 51].

Every full conditional probability P (·|·) on ℘(S) gives rise to a linearly
ordered class of probability measures {P0, . . . , Pk} on ℘(S), said complete
agreeing class, whose supports form a partition of S [13, 15]. Vice versa, ev-
ery complete agreeing class {P0, . . . , Pk} on ℘(S) generates a full conditional
probability P (·|·) on ℘(S).

Events with probability 0 essentially determine the structure of a full
conditional probability P (·|·) on ℘(S) and actually the relation v is inti-
mately related to the corresponding {P0, . . . , Pk}.

Remark 4. Given P (·|·), the corresponding complete agreeing class {P0, . . . , Pk}
can be built through the events (see [15])

Hα
0 = {s ∈ Hα−1

0 : P ({s}|Hα−1
0 ) = 0} for α = 1, . . . , k,

with H0
0 = S, by setting Pα(·) = P (·|Hα

0 ) where Hα
0 6= ∅ for α = 0, . . . , k and

Hk+1
0 = ∅. On the other hand, given {P0, . . . , Pk}, for every E|H ∈ ℘(S)×
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℘(S)0 there is a minimum index αH ∈ {0, . . . , k} such that PαH (H) > 0 and
it holds

P (E|H) =
PαH (E ∩H)

PαH (H)
.

The class of events {H0
0 , . . . ,H

k
0 } determines a decreasing class {I0, . . . , Ik}

of ideals of ℘(S), singled out by the relation v, defined as

Iα = {A ∈ ℘(S)0 : Hα
0 v A} ∪ {∅}

= {A ∈ ℘(S) : A ⊆ Hα
0 }.

The class of events {H0
0 , . . . ,H

k
0 } also gives rise to a partition E = {E0

0 , . . . , E
k
0}

of S obtained by setting

Eα0 = Hα
0 \Hα−1

0 for α = 0, . . . , k − 1,

with Ek0 = Hk
0 , where Eα0 = supp(Pα) = {s ∈ S : Pα({s}) > 0} in the

complete agreeing class representing P (·|·).

7. Model elicitation

The conditional functionals CEUP,u and ĈEUP,u are completely spec-
ified once the full conditional probability P (·|·) and the utility function u
have been elicited by the decision maker. In the following, we will focus on
CEUP,u as for every act f and every state s ∈ S we consider M≤

∗

f(s). For

the elicitation of ĈEUP,u it is sufficient to take M≤
∗

f̂(s)
in place of M≤

∗

f(s).

In general, the decision maker is only able to provide few comparisons
for few conditioning events. In this case, the first issue is to check the con-
sistency of the given comparisons with the model of reference. When consis-
tency holds, it is easily seen that an elicitation procedure relying on a finite
number of arbitrary comparisons cannot guarantee any form of uniqueness
of P and u in general.

Fixed X and S, we propose an elicitation procedure based on three
different cognitive tasks:

1. We ask the decision maker to single out a subset L = {H1, . . . ,HN} ⊆
℘(S)0 that correspond to those events considered as “scenarios of in-
terest” and then to order them according to their unexpectation, by
providing a weak order v on L. The weak order v is allowed to be
trivial, i.e., its asymmetric part can be empty.
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2. We ask the decision maker to provide a non-trivial weak order ≤∗ on
X, i.e., on consequences obtained with certainty: denote X∗ = X/=∗ =
{[xi1 ], . . . , [xit ]} for which <∗ is a strict total order, and we can assume
[xi1 ] <∗ · · · <∗ [xit ].

3. For every H ∈ L, we ask the decision maker to provide a finite number
of strict {fl ≺H gl}l∈LH and weak comparisons {fw -H gw}w∈WH

,
with LH 6= ∅ while WH is allowed to be empty. This assures non-
triviality.

Given the weak order v on L, a full conditional probability P (·|·) is
said to be compatible with v if the relation v is the restriction to L of the
unexpectation relation induced by P (·|·) on the entire ℘(S)0, that is, if for
every Hi, Hj ∈ L it holds

Hi v Hj ⇐⇒ P (Hi|Hi ∪Hj) > 0.

On the other hand, a utility function u : X → R is said to represent the
weak order ≤∗ on X, if xi ≤∗ xj ⇐⇒ u(xi) ≤ u(xj), for every xi, xj ∈ X. In
particular, this implies that u is constant on the equivalence classes in X∗.

The issue is to find:

• a full conditional probability P (·|·) on ℘(S) (and, so, a complete agree-
ing class {P0, . . . , Pk} on ℘(S) by Remark 4) compatible with the re-
lation v on L;

• a utility function u : X → R representing ≤∗ on X;

such that the corresponding CEUP,u conditional functional preserves all the
strict and weak preference comparisons.

Let us stress that if we can find P (·|·) and u as above then taking u′ =
au+ b with a > 0 we obtain an equivalent representation. For this, we can
assume without loss of generality that min

x∈X
u(x) = 0 and max

x∈X
u(x) = 1.

At this aim, let L/=� = {[Hi0 ], . . . , [HiM ]} and assume [Hi0 ] @ . . . @

[HiM ], where M = 0 in case v is trivial. Now, define BM+1
0 = ∅ and for

α = 0, . . . ,M

Bα
0 =

M⋃
β=α

⋃
H∈[Hiβ ]

H and Eα0 = Bα
0 \Bα+1

0 .

Remark 5. A necessary condition for the relation v to admit a compatible
full conditional probability P (·|·) is that Eα0 6= ∅ and H ∩ Eα0 6= ∅ for all
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H ∈ [Hiα ], for α = 0, . . . ,M . Hence, in what follows we will tacitly assume
that this is the case, otherwise the elicitation process must be stopped as the
relation v must be revised by the decision maker.

We call minimal agreeing class compatible with v every linearly ordered
class of probability measures {P ∗0 , . . . , P ∗M} on ℘(S) such that supp(P ∗α) ⊆
Eα0 and P ∗α(H ∩ Eα0 ) > 0 for all H ∈ [Hiα ], for α = 0, . . . ,M . As shown
in the following Remark 6 recalling results already known in the literature
[15, 49], the search of a full conditional probability P (·|·) on ℘(S) compatible
with v is equivalent to the search of a minimal agreeing class {P ∗0 , . . . , P ∗M}
on ℘(S) compatible with v.

Remark 6. Every minimal agreeing class {P ∗0 , . . . , P ∗M} on ℘(S) compatible
with v induces a conditional probability P ∗(·|·) on ℘(S)×H compatible with
v, where H = additive(L) is the set of events obtained closing L with
respect to unions. Indeed, see [49], for every E|H ∈ ℘(S)×H, there exists
a minimum index αH ∈ {0, . . . ,M} such that P ∗αH (H) > 0 and the function
defined as

P ∗(E|H) =
P ∗αH (E ∩H)

P ∗αH (H)
,

is shown to be a conditional probability on ℘(S)×H for which it holds, for
every Hi, Hj ∈ L, Hi v Hj ⇐⇒ P ∗(Hi|Hi ∪ Hj) > 0. Vice versa, every
conditional probability P ∗(·|·) on ℘(S) × H compatible with v induces a
minimal agreeing class {P ∗0 , . . . , P ∗M} on ℘(S) compatible with v, by setting
P ∗α(·) = P ∗(·|Bα

0 ), for α = 0, . . . ,M .
The conditional probability P ∗(·|·) can be further extended (generally not

in a unique way) to a full conditional probability P (·|·) on ℘(S) compatible
with v on L. One of the possible extensions is given by the complete agreeing
class {P ∗0 , . . . , P ∗M , P ∗M+1} where P ∗M+1 is an arbitrary probability measure

on ℘(S) whose support is such that supp(P ∗M+1) = S\
⋃M
α=0 supp(P ∗α). The

adjunct of P ∗M+1 is necessary only if S \
⋃M
α=0 supp(P ∗α) 6= ∅, otherwise,

{P ∗0 , . . . , P ∗M} is already a complete agreeing class on ℘(S) that can be used
to generate a full conditional probability on ℘(S) as in Remark 4.

With such an input, the elicitation procedure consists in solving the
following system with unknowns the minimal agreeing class {P ∗0 , . . . , P ∗M},
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the utility function u and the control variable δ:

For α = 0, . . . ,M and all H ∈ [Hiα ],

For all l ∈ LH ,∑
s∈H∩Eα0

P ∗α({s})

 ∑
[xij ]∈X∗

u(xij )
(
M≤

∗

fl(s)
([xij ])−M

≤∗
gl(s)

([xij ])
)+ δ ≤ 0,

For all w ∈WH ,∑
s∈H∩Eα0

P ∗α({s})

 ∑
[xij ]∈X∗

u(xij )
(
M≤

∗

fw(s)([xij ])−M
≤∗
gw(s)([xij ])

) ≤ 0,

∑
s∈H∩Eα0

P ∗α({s})− δ ≥ 0,∑
s∈Eα0

P ∗α({s}) = 1, P ∗α({s}) ≥ 0, ∀s ∈ Eα0 ,

u(xi1) = 0, u(xit) = 1,

u(xij )− u(xij+1) + δ ≤ 0, for j = 1, . . . , t− 1,

−1 ≤ δ ≤ 1.
(12)

Solving the above system allows to check both the consistency of the
given preference statements and, if consistency holds, to find a full condi-
tional probability P (·|·) and a utility function u giving rise to the conditional
functional CEUP,u. Indeed, the preference statements are consistent with
the model if and only if we can find a solution {P ∗0 , . . . , P ∗M}, u, δ with δ > 0
and in this case the solution of the system determines P (·|·) and u, up to the
possible arbitrary choice of the probability measure P ∗M+1 (see Remark 6).

Theorem 3. The following statements are equivalent:

(i) the system (12) admits a solution {P ∗0 , . . . , P ∗M}, u, δ with δ > 0;

(ii) there exist a full conditional probability P : ℘(S) × ℘(S)0 → [0, 1]
compatible with v and a non-constant utility function u : X → R
representing ≤∗ and with min

x∈X
u(x) = 0 and max

x∈X
u(x) = 1 such that,
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for every H ∈ L,{
fl ≺H gl =⇒ CEUP,u(fl|H) < CEUP,u(gl|H) for all l ∈ LH ,
fw -H gw =⇒ CEUP,u(fw|H) ≤ CEUP,u(gw|H) for all w ∈WH .

Proof. Let H = additive(L) be the additive class generated by L obtained
by closing L with respect to unions. Let L/=� = {[Hi0 ], . . . , [HiM ]} and

assume [Hi0 ] @ . . . @ [HiM ]. Define BM+1
0 = ∅ and for α = 0, . . . ,M

Bα
0 =

M⋃
β=α

⋃
H∈[Hiβ ]

H and Eα0 = Bα
0 \Bα+1

0 .

Finally, denote X∗ = X/=∗ = {[xi1 ], . . . , [xit ]} for which <∗ is a strict total
order with [xi1 ] <∗ · · · <∗ [xit ].

(ii) =⇒ (i). Suppose (ii) holds. Let P ∗ = P|℘(S)×H be the restriction
of P to ℘(S) × H, which is a conditional probability. We have that P ∗ is
compatible with v since P is, so, taking P ∗α(·) = P ∗(·|Bα

0 ) for α = 0, . . . ,M ,
we get a minimal agreeing class {P ∗0 , . . . , P ∗M} (see Remark 6) of probability
measures on ℘(S) such that supp(P ∗α) ⊆ Eα0 and P ∗α(H ∩ Eα0 ) > 0 for all
H ∈ [Hiα ].

We also have that 0 = u(xi1) < · · · < u(xit) = 1 since u represents ≤∗
and is such that min

x∈X
u(x) = 0 and max

x∈X
u(x) = 1.

For α = 0, . . . ,M and all H ∈ [Hiα ], fixing two acts f, g ∈ B(X)S , the
quantity P ∗α(H) · (CEUP,u(f |H)−CEUP,u(g|H)) reduces to

∑
s∈H∩Eα0

P ∗α({s})

 ∑
[xij ]∈X∗

u(xij )
(
M≤

∗

f(s)([xij ])−M
≤∗
g(s)([xij ])

) .

Defining

δ1 = min{P ∗α(H ∩ Eα0 ) : H ∈ [Hiα ], α = 0, . . . ,M},
δ2 = min{u(xij+1)− u(xij ) : j = 1, . . . , t− 1},
δ3 = min{P ∗α(H) · (CEUP,u(gl|H)−CEUP,u(fl|H)) : l ∈ LH , H ∈ [Hiα ], α = 0, . . . ,M},
δ = min{δ1, δ2, δ3},

we have that {P ∗0 , . . . , P ∗M}, u, δ is a solution of (12) with δ > 0.
(i) =⇒ (ii). Let {P ∗0 , . . . , P ∗M}, u, δ be a solution of (12) with δ > 0.

By construction (see Remark 6) we have that {P ∗0 , . . . , P ∗M} is a minimal
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agreeing class of probability measures on ℘(S) such that supp(P ∗α) ⊆ Eα0
and P ∗α(H ∩ Eα0 ) > 0 for all H ∈ [Hiα ]. For every E|H ∈ ℘(S) × H, let
αH ∈ {0, . . . ,M} be the minimum index such that P ∗αH (H) > 0 and define

P ∗(E|H) =
P ∗αH (E ∩H)

P ∗αH (H)
.

The function P ∗(·|·) is a conditional probability that can be extended (gen-
erally not in a unique way) to a full conditional probability P (·|·) on ℘(S).

We show that P ∗(·|·) is compatible with the relation v on L as this
implies that also every full conditional probability extending it is. Let
Hi, Hj ∈ L with Hi v Hj , which implies that there are indices α ≤ β
such that Hi ∈ [Hiα ] and Hj ∈ [Hiβ ]. In turn, the construction implies
αHi = αHi∪Hj = α, from which it follows

P ∗(Hi|Hi ∪Hj) =
P ∗α(Hi)

P ∗α(Hi ∪Hj)
> 0.

Vice versa, let Hi, Hj ∈ L with P ∗(Hi|Hi ∪Hj) > 0. By the monotonicity
with respect to set inclusion of the P ∗α’s it must be αHi = αHi∪Hj = α ≤
β = αHj , so, we have Hi ∈ [Hiα ] and Hj ∈ [Hiβ ] that implies Hi v Hj .

Furthermore, setting u(x) = u(xij ) for every x ∈ [xij ], with j = 1, . . . , t,
we get a non-constant utility function u : X → R representing ≤∗ and with
min
x∈X

u(x) = 0 and max
x∈X

u(x) = 1.

Finally, since for α = 0, . . . ,M and all H ∈ [Hiα ], fixing two acts f, g ∈
B(X)S , the expression

∑
s∈H∩Eα0

P ∗α({s})

 ∑
[xij ]∈X∗

u(xij )
(
M≤

∗

f(s)([xij ])−M
≤∗
g(s)([xij ])

)
is equal to the quantity P ∗α(H) · (CEUP,u(f |H) −CEUP,u(g|H)), we have
that all strict and weak conditional preference comparisons are preserved by
the resulting CEUP,u functional.

In order to search for a solution {P ∗0 , . . . , P ∗M}, u, δ of system (12) with
δ > 0 we can introduce the following optimization problem:

maximize δ

subject to: system (12).
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In case the above problem is not feasible or the optimal solution is such that
δ ≤ 0 we can conclude that the information elicited by the decision maker
is not consistent with the model CEUP,u.

The above optimization problem is a Quadratically Constrained Linear
Program (QCLP). Unfortunately, as shown in Example 2, the quadratic
forms in the quadratic constraints of the problem are generally not posi-
tive semidefinite nor negative semidefinite, so, the problem is generally not
convex: interior points algorithms are not suitable. The problem can be
solved with a branch and bound algorithm coping with global optimization
of non-linear problems, such as the Couenne solver [17].

Example 2. Let X = {x1, x2} be such that x1 <
∗ x2, and S = {s1, s2} with

L = {S} where v is the trivial weak order S v S, implying that E0
0 = S.

Consider the vacuous belief functions δ{x1} and δ{x2}, whose pessimistic ≤∗-
aggregated Möbius inversions are (we can identify X∗ with X, since ≤∗ is a
total order)

x1 x2

M≤
∗

δ{x1}
1 0

M≤
∗

δ{x2}
0 1

Take the acts

s1 s2

f δ{x1} δ{x2}
g δ{x2} δ{x1}

and consider the preference statement f ≺S g that corresponds to the con-
straint

p0
1u1 + p0

2u2 − p0
1u2 − p0

2u1 + δ ≤ 0,

where p0
i = P ∗0 ({si}), for i = 1, 2, and uj = u(xj), for j = 1, 2. The above

constraint can be rewritten in matrix notation as

1

2
xTAx + bTx ≤ 0,

where

x =


p0

1

p0
2

u1

u2

δ

 , A =


0 0 1 −1 0
0 0 −1 1 0
1 −1 0 0 0
−1 1 0 0 0
0 0 0 0 0

 , b =


0
0
0
0
1

 .
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The eigenvalues of matrix A are −2, 0, 2, so, it is neither positive semidef-
inite nor negative semidefinite.

The following example illustrates the elicitation procedure.

Example 3. Let S = {s1, s2, s3} and X = {x1, x2, x3} with x1 <
∗ x2 <

∗ x3

and take Bel1, Bel2 and Bel3 whose corresponding Möbius inversions are:

∅ {x1} {x2} {x3} {x1, x2} {x1, x3} {x2, x3} X
mBel1 0 1

3 0 1
3 0 1

3 0 0
mBel2 0 1

5
1
5 0 1

5 0 2
5 0

mBel3 0 1
4 0 1

4 0 0 0 2
4

The pessimistic ≤∗-aggregated Möbius inversions are (we can identify X∗

with X, since ≤∗ is a total order)

x1 x2 x3

M≤
∗

Bel1
2
3 0 1

3

M≤
∗

Bel2
2
5

3
5 0

M≤
∗

Bel3
3
4 0 1

4

Take the acts

s1 s2 s3

f Bel1 Bel2 Bel2
g Bel3 Bel3 Bel2
h Bel2 Bel1 Bel1

Take L = {H1 = {s1, s2}, H2 = {s3}} with H1 @ H2 and consider the
preferences

f ≺H1 g, g ≺H1 h, g ≺H2 h.

In this case we have that E0
0 = H1 and E1

0 = H2. To avoid cumbersome
notation, denote pαi = P ∗α({si}) and uj = u(xj). We need to solve the
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following optimization problem

maximize δ

subject to:

p0
1u1

(
− 1

12

)
+ p0

1u3

(
1
12

)
+ p0

2u1

(
− 7

20

)
+ p0

2u2

(
3
5

)
+ p0

2u3

(
−1

4

)
+ δ ≤ 0,

p0
1u1

(
7
20

)
+ p0

1u2

(
−3

5

)
+ p0

1u3

(
1
4

)
+ p0

2u1

(
1
12

)
+ p0

2u3

(
− 1

12

)
+ δ ≤ 0,

p1
3u1

(
− 4

15

)
+ p1

3u2

(
3
5

)
+ p1

3u3

(
−1

3

)
+ δ ≤ 0,

p0
1 + p0

2 − δ ≥ 0,
p0

1 + p0
2 = 1, p0

1, p
0
2 ≥ 0,

p1
3 − δ ≥ 0,
p1

3 = 1, p1
3 ≥ 0,

u1 = 0, u3 = 1,
u1 − u2 + δ ≤ 0,
u2 − u3 + δ ≤ 0,
−1 ≤ δ ≤ 1,

for which the Couenne solver finds the solution p0
1 = 0, p0

2 = 1, p1
3 = 1,

u1 = 0, u2 = 0.0850159, u3 = 1, and δ = 0.0833333. Since δ > 0 the
preference statements are consistent with the model and a full conditional
probability P (·|·) on ℘(S) is that represented by the complete agreeing class
{P ∗0 , P ∗1 , P ∗2 } (to which the probability measure P ∗2 has been added) whose
distributions are

{s1} {s2} {s3}
P ∗0 0 1 0
P ∗1 0 0 1
P ∗2 1 0 0

It actually holds that

CEUP,u(f |H1) = 0.0510095 < CEUP,u(g|H1) = 0.25 < CEUP,u(h|H1) = 0.3,

CEUP,u(g|H2) = 0.0510095 < CEUP,u(h|H2) = 0.3.

8. Motivating examples: continuation

8.1. An investment decision problem (continued)

Consider the investment decision problem described in Subsection 2.1.
Suppose that our decision maker is not able to express directly his/her

preference between f and g, conditionally on K and Kc. Nevertheless, our
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decision maker is a profit maximizer and believes that a war between North
Korea and USA next year is unexpected, while it is more likely a decrease
of Italian GDP next year.

The fact that event K is unexpected, i.e., it is judged as “null” by our
decision maker, does not rule out its possible realization. In particular,
if event K were true then our decision maker believes that it would be
more likely an increase of Italian GDP, due to a profit of Italian weapons
manufacturers.

Hence, our decision maker is able to provide the following information:

• L = {K,Kc} with Kc @ K,

• −50 <∗ 0 <∗ 100,

that allow to set, according to the proof of Theorem 1, A = {−50}, A =
{100} and to define, for every E ∈ ℘(S), the act

1E(s) =

{
δA, if s ∈ E,
δA, if s /∈ E.

In turn, the beliefs of our decision maker can be translated as follows:

1{s3} ≺Kc 1{s4} and 1{s2} ≺K 1{s1}.

In this case we have that E0
0 = Kc and E1

0 = K. To avoid cumbersome
notation, denote pαi = P ∗α({si}) and u1 = u(−50), u2 = u(0), u3 = u(100).
We need to solve the following optimization problem

maximize δ

subject to:

−p0
3u1 + p0

3u3 + p0
4u1 − p0

4u3 + δ ≤ 0,

p1
1u1 − p1

1u3 − p1
2u1 + p1

2u3 + δ ≤ 0,

p0
3 + p0

4 − δ ≥ 0,
p0

3 + p0
4 = 1, p0

3, p
0
4 ≥ 0,

p1
1 + p1

2 − δ ≥ 0,
p1

1 + p1
2 = 1, p1

1, p
1
2 ≥ 0,

u1 = 0, u3 = 1,
u1 − u2 + δ ≤ 0,
u2 − u3 + δ ≤ 0,
−1 ≤ δ ≤ 1,
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for which the Couenne solver finds the solution p0
3 = 0.19795, p0

4 = 0.80205,
p1

1 = 0.80205, p1
2 = 0.19795, u1 = 0, u2 = 0.5, u3 = 1, and δ = 0.5. Since

δ > 0 the preference statements are consistent with the model and a full
conditional probability P (·|·) on ℘(S) is that represented by the complete
agreeing class {P ∗0 , P ∗1 } whose distributions are

{s1} {s2} {s3} {s4}
P ∗0 0 0 0.19795 0.80205
P ∗1 0.80205 0.19795 0 0

With such P (·|·) and u we have

CEUP,u(g|K) = 0 < 0.059385 = CEUP,u(f |K),

CEUP,u(g|Kc) = 0.07918 < 0.380205 = CEUP,u(f |Kc),

that imply, g ≺K f and g ≺Kc f , i.e., under both hypotheses the decision
maker should choose f .

8.2. A multi-criteria decision problem with uncertain profiles (continued)

Consider the multi-criteria decision problem of Subsection 2.2 and denote
A1 = {a1

1, a
1
2, a

1
3}, A2 = {a2

1, a
2
2, a

2
3} and A3 = {a3

1, a
3
2, a

3
3}, where the values

aij ’s have the meaning discussed before. Suppose that every Ai is totally
ordered according to the indices of its elements and endow X = A1 ×A2 ×
A3 = {x1, . . . , x27} with the lexicographic order ≤∗ induced by the total
orders of the Ai’s. We can assume x1 <

∗ · · · <∗ x27, where x1 = (a1
1, a

2
1, a

3
1)

and x27 = (a1
3, a

2
3, a

3
3).

If we interpret S as a set of criteria, then the relation v on ℘(S)0 can
be given an “irrelevance” interpretation, that is, for every A,B ∈ ℘(S)0,
A v B means “A is no more irrelevant than B”. Under this interpretation,
take L = {H = {s1, s2}, Hc = {s3}} with H =� Hc, meaning that none of
the two groups of criteria is irrelevant compared to the other. In this case
we have E0

0 = S.
If we consider the preference statements f ≺H g and f ≺Hc g, then we

need to solve the problem (we can identify X∗ with X, since ≤∗ is a total
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order)

maximize δ

subject to:

∑
s∈{s1,s2}

P ∗0 ({s})

∑
xi∈X

u(xi)
(
M≤

∗

f(s)(xi)−M
≤∗
g(s)(xi)

)+ δ ≤ 0,

P ∗0 ({s3})

∑
xi∈X

u(xi)
(
M≤

∗

f(s)(xi)−M
≤∗
g(s)(xi)

)+ δ ≤ 0,

P ∗0 ({s1}) + P ∗α({s2})− δ ≥ 0,

P ∗0 ({s3})− δ ≥ 0,∑
s∈S

P ∗0 ({s}) = 1, P ∗0 ({s}) ≥ 0, ∀s ∈ S,

u(x1) = 0, u(x27) = 1,
u(xi)− u(xi+1) + δ ≤ 0, for i = 1, . . . , 26,
−1 ≤ δ ≤ 1.

The above optimization problem does not admit a solution {P ∗0 }, u, δ such
that δ > 0. Indeed, every full conditional probability P (·|·) on ℘(S)×℘(S)0

is such that P ({s3}|{s3}) = 1, so, taking a utility function u representing
≤∗ with u(x1) = 0 and u(x27) = 1, we have

CEUP,u(f |Hc) = 0.5u(x3) > 0 = CEUP,u(g|Hc),

where x3 = (a1
1, a

2
1, a

3
3) with u(x3) > 0, that contradicts f ≺Hc g.

9. Conclusions

The presented models generalize the conditional version of the Anscombe-
Aumann model given in [46] by introducing “objective” ambiguity on con-
sequences, modeled in the Dempster-Shafer theory. The main reason for
restricting to acts mapping states of the world to belief functions on con-
sequence, is their interpretation as state-contingent partially known ran-
domizing devices as in Ellsberg’s paradox [28]. Nevertheless, a possible
natural generalization is to consider acts mapping states of the world to
supermodular/submdoular capacities or, even, sets of probability measures
on consequences, as done in [57].
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We provide rationality axioms for conditional preferences encoding either
a systematically pessimistic or optimistic behavior of an agent in resolving
uncertainty on consequences. These axioms assure the representability of
the conditional preference relations by means of a conditional functional
parametrized by a full conditional probability on the states of the world
and a utility function on consequences. For each scenario, this conditional
functional consists in a conditional expectation of state-contingent Choquet
expected utility models.

Our models allow conditioning on “null” events and, even more, they
allow to order (possible) events according to their “unexpectation”. This
feature comes from the use of full conditional probabilities.

Here we consider comparisons of acts only conditionally on the same
event H, i.e., f -H g: a possible extension of our models could be to
consider comparisons under different conditioning events (f,H) - (f,K) as
done in [31].

Our models do not allow for ambiguity on the states of the world, as
“subjective” uncertainty is assumed to be probabilistic. Nevertheless, the
presented models could be extended in a way to take into account also
“subjective” ambiguity on the states of the world. To achieve this, we need
to relax some axioms of the presented axiomatization, in particular axiom
(A3) which is responsible for the additivity of the conditional measure. In
doing so, we could achieve a representation where “subjective” uncertainty
is expressed by a conditional submodular/supermodular capacity [49], or
other types of conditional uncertainty measures. This will be the subject of
future research.
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