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Robots, skills and temporary jobs: evidence from six European countries 

 

 

Abstract: 

In our analysis of the impact of robot adoption on the use of flexible contracts in six European countries, we 

find that control for the type of innovation model that is dominant in an industry is crucial. In a 'high 

knowledge cumulativeness' innovation regime, robot adoption reduces the probability that high-skilled 

workers will receive temporary contracts, while no significant effect has been found for medium- and low-

skilled workers. The rationale is: In a high cumulativeness regime, innovation depends on a firm's internal 

knowledge sources, and high-skilled (rather than medium- and low-skilled) workers are crucial carriers of 

knowledge. The situation is different in 'low-cumulativeness' regimes. In the latter, firms are primarily using 

externally acquired knowledge in their innovation process. This makes workers more easily interchangeable 

and robot adoption significantly increases the probability to get temporary jobs for both medium and high-

skilled workers, but leaves low-skilled workers unaffected. 
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1 Introduction 

So far, most empirical studies addressed the impact of robots on employment, skills reconfiguration and wages 

at the country-, industry- and firm-level (see, among others, Dixon et al., 2021; Acemoglu & Restrepo, 2020; 

Acemoglu et al., 2020; Koch et al., 2021; Graetz & Michael, 2018). But there is still scant evidence concerning 

the effects of robots on the quality of jobs, in spite of the European Commission (2020) raising concern about 

in-work poverty risks, low social security standards, and poor career perspectives of temporary workers.  

To the best of our knowledge, only Destefano et al. (2019) directly cover atypical jobs in their study of 

industrial robot diffusion in Japan. They find that adoption of robots is associated with changes in the 

composition of employment due to the dismissal of non-regular employees. In an unpublished paper, Cuccu 

and Royuela (2022) find for Spain (years 2001-2017), that workers displaced by robot adoption find a new job 

but face a qualification downgrading and are more likely to be re-employed through temporary employment 

agencies. As for EU countries, Dauth et al. (2021), Bessen et al. (2019) and Humlum (2019), touch at this 

question. Evaluating the impact of automation at firm or individual level, they distinguish between 

incumbent/senior workers, mostly employed with open-ended contracts, and young workers/recent hires, on 

temporary contracts. They found mixed results. Depending on the national context, robotization may favour 

new hires of younger and high-skilled people performing tasks complementary to those taken over by robots, 

such as in the case of Denmark and the Netherlands (see Humlum, 2019 and Bessen et al., 2019, respectively). 

By contrast, in Germany, robotization does not favour younger and high-skilled workers but protects senior 

insiders (Dauth et al. 2021). 

This paper addresses the impact of robots on the likelihood that people get a temporary or a permanent contract, 

covering six European economies (Belgium, Germany, France, Italy, Spain and the UK). The choice of these 

six countries (henceforth: SECs) is guided by the characteristics of worker-level and industry-level databases 

that we were able to combine. During the last decades, our SECs experienced a high speed of automation in 

production processes. In 2014, robots in our six countries amounted to 85% of all robots installed in the EU-

28 (IFR, 2016). 

In theory, robotization could substitute workers in a range of specific tasks and reduce employment (displac-

ement effect). The efficiency gains of robot use, however, generate productivity effects and prompt compensa-

tion mechanisms, through price reductions, input-output linkages and final demand effects. Such effects may, 

in favourable cases, even expand employment or at least compensate part of the initial job destruction through 

a reinstatement effect (Acemoglu & Restrepo, 2019). 

Based on our literature review in section 2, we conjecture that the overall impact of industry-level robot 

adoption as well as its mediating effect on the relationships between workers' ages, skills (captured by 

occupations), education and temporary contracts, depend on heterogeneity between industries. Drawing from 

the neo-Schumpeterian literature, we investigate the role of industry-level technological regimes in moderating 

those relationships, making use of work by Peneder (2010). His study distinguishes industries by the degree 

of 'cumulativeness of knowledge' that is required for the innovative process. Industries with a low cumulative 

knowledge base are primarily using external sources of knowledge, while high cumulative industries lean 

primarily on internally developed knowledge. We hypothesize that in industries with a high 'cumulativeness' 

of knowledge, robotization reduces temporary contracts, especially for high skilled and highly educated 

people. The rationale is that longer job tenures are attractive to employers as innovative competences depend 

on the firm's internal sources of knowledge, including worker-embodied (and often ill-codified) knowledge 

from experience (Kleinknecht, 2020).  
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The opposite may hold for industries with a low cumulativeness of knowledge. Relying more on external 

sources of knowledge the latter are less dependent on workers as carriers of critical knowledge. Therefore, 

robot adoption in such industries does not necessarily reduce rates of temporary jobs. 

In our empirical part, we combine worker-level data from the Structure of Earnings Survey (SES) collected by 

Eurostat with industry-level data from the International Federation of Robotics (IFR, 2016) for robot expo-

surei. We estimate Probit models for the choice between temporary versus permanent jobs in our six European 

country-industries in 2006, 2010 and 2014. Our estimates take into account the potential endogeneity of robot 

adoption by implementing a Probit control function approach and using as an instrument the average robot 

exposure of Japan and South Korea, i.e., two Asian countries more advanced than our SECs in terms of 

robotization of production processes. We further perform robustness checks on the sensitivity of results to 

cross-country heterogeneity and international trade. 

The paper proceeds as follows. Section 2 motivates our research and sketches our conceptual framework. 

Section 3 introduces the data and descriptive statistics. Section 4 focuses on the econometric strategy and the 

main results and robustness checks are reported in section 5. Section 6 concludes. 

 

2 Motivation and Background 

2.1 Preliminary observations 

Robot density was growing slightly faster in our SECs than in the entire EU-28 (Figure 1). In the former, robots 

per thousand workers grew by 125% (from 1.19 to 2.68) while in the EU-28, growth was 113% (from 1 to 

2.13). Concomitantly, in both SECs and EU-28, temporary contracts increased more than permanent ones. 

However, in the six countries, growth of temporary employees appears to be relatively lower and the gap in 

the cumulative growth of permanent and temporary workers tends to narrow. Indeed, between 1996 and 2014 

the temporary vs permanent workers cumulative growth rate was 24% vs 18% in the SECs and 55% vs 36% 

in the EU-28. At first glance, one might draw the speculative conclusion that a higher speed of robot adoption 

in our six countries moderated the degree of labour market flexibilization. But these are of course highly 

aggregated descriptive data that do not inform us about causalities. 

In our estimates below, we take account of the potential interference of structural and institutional differences 

among our six countries. For example, Spain shows exceptionally high shares of temporary workers in total 

employment (see Figure 2). Spain experienced labour market reforms at the margin in the 1980's that 

remarkably consolidated a dual labour market. The other countries show intermediate incidence of temporary 

employment that hovers around the EU-28 average.  

FIGURE 1 

FIGURE 2 

2.2 Automation, temporary jobs and knowledge cumulativeness regimes: a conceptual framework  

 

2.2.1 The reallocation of tasks between robots and labour 

Literature on industrial robots often analysed the role of automation at aggregate levels and documented a 

complex relationship between technology and employment dynamics. Automation can destroy jobs as it 

substitutes labour in a range of tasks, but it also induces compensation mechanisms, activated by productivity 
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gains, that may counterbalance the labour-saving effect (see Acemoglu & Restrepo, 2019, Dosi et al. 2021a). 

Acemoglu & Restrepo (2019) provide an overall explanation of the task-based mechanisms at work once robots 

become pervasive. On the one hand, automation always generates a productivity effect, and the resulting 

increase in value added may raise labour demand for non-automated tasks. Depending on the relationship 

between technology and tasks, robots may simply reallocate to capital tasks that were previously performed 

by labour, such that a displacement effect dominates. Alternatively, a number of new tasks are created or a 

refinement of former tasks pertaining to labour may emerge. Hence, displacement and reinstatement effects 

can have ambiguous effects on employment. 

Graetz and Michael (2018) focus on European countries and find that robots did not significantly reduce total 

employment, although they reduced low-skilled workers’ employment share. 

Some recent studies, however, have pointed out that aggregate outcomes may mask significant heterogeneities 

at micro-level. For example, Bessen et al. (2019) find for The Netherlands higher firing rates among workers 

with long tenures, while no significant displacement effects emerged for workers with shorter average tenures 

(less than three years). Interestingly, they show that robot adoption turns out to be more labour-displacing than 

increasing use of IT.  

Dauth et al. (2021) reached different conclusions by using matched employer-employee data in Germany. In 

Germany, manufacturing companies allocated tasks that are complementary to automation to workers with 

longer job tenures, thus achieving improvements in both the stability and the quality of their jobs. The authors 

also show that the negative effect of automation on manufacturing employment, between 1994 and 2014, was 

driven by smaller inflows of younger workers, rather than by layoffs of older incumbents. These results reflect 

protective labour market institutions as a mediator of the impact of technological change, thus explaining a 

retainment effect due to high firing costs. Note that the German system is often considered as 'patient 

capitalism': enduring relations are pervasive, the population of innovative firms is fairly stable (Breschi et al. 

2000) and sectoral specialization takes place in manufacturing industries with 'creative accumulation' regimes 

(Malerba & Orsenigo 1996). 

Koch et al. (2021) addressed heterogeneity of Spanish manufacturing firms, i.e., between adopters and non-

adopters of robots. The authors show that ex-ante more skill-intensive firms are less likely to be early adopters, 

but ex-post these firms show higher productivity gains and higher survival rates than non-adopters. A 

significant shift of labour demand towards high-skilled occupations (technicians, researchers and engineers) 

has been documented for Denmark by Humlum (2019). Humlum partially builds upon the study by Acemoglu 

& Restrepo (2020) and links in a unique framework the two-sided evidence on firms (as done by Koch et al. 

2021) and workers (Dauth, et al. 2021). Humlum does not explicitly distinguish between incumbent and newly 

hired workers, but the results suggest that younger workers with less specific skills and a long career ahead 

benefit from switching into high-skilled occupations, in line with Bessen et al. (2019). 

Although these studies do not explicitly deal with the question of complementarity between robot adoption 

and temporary jobs, they offer useful insights. Depending on national labour market institutions and sectoral 

specialisation, robot-adopting firms may expand and reorganise labour by employing younger and high-skilled 

workers, possessing little firm-specific skills; these workers are likely hired as temporary workers, as indicated 

by Bessen et al. (2019) and Humlum, (2019) in the 'flexible' labour markets of The Netherlands and Denmark, 

respectively. Under more 'rigid' labour markets and where sectoral specialisation of countries relies on 

industries highly affected by robotization (as the car industry), firms introducing robots reallocate to new tasks 

their incumbent workers as in the German case reported by Dauth et al. (2021).  
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Notice, however, that to the best of our knowledge, there are no empirical investigations directly concentrating 

on the impact of robots on the quality of employment as expressed in different types of contracts. The only 

exception is Destefano et al. (2019) for Japan. This study, in line with Dauth et al. (2021), found that robot 

diffusion reduced the propensity to employ non-regular workers, i.e., part-timers and temporary employees. It 

should also be noted that part of the results described above are conditioned by a reallocation effect, because 

firms adopting automation technologies may gain market share at the expense of non-adopting firms, as found 

for Spain and France (see Koch et al. 2021, Acemoglu et al. 2020). 

How robot adoption influences rates of temporary jobs at industry level may depend not only on national 

labour market institutions, but also on the interplay between characteristics of workers (age, skills and 

education) and on the innovation regime dominant in an industry. 

 

2.2.2 Age, skills and education profiles of temporary jobs, robots and knowledge cumulativeness 

In European countries, temporary employment is high for younger workers (15-29) endowed with the low 

educational attainment and employed in low-paid occupations (services and sales workers, elementary 

occupations). However, over the last years, the same countries experienced increasing shares of temporary 

workers with tertiary educational attainment and employed in higher paid occupations (technicians and 

professionals) as reported by Eurofound (2015, TableA.2; and 2020, Figure 5).  

The literature on temporary jobs underscored that this kind of non-standard employment may serve as i) a 

'stepping stone' towards more secure or stable employment or ii) simply is a 'dead end' (see Filomena and 

Picchio, 2022, for a recent review). In the 'stepping stone' case, temporary contracts are used as a screening 

device; in the dead-end case, these contracts are a flexible buffer to manage exceptional production peaks or 

simply represent the cheapest alternative to automation or other process innovations (Booth et al. 2002). 

Another reason of why robot adoption in an industry may lead to increased rates of flexible personnel could 

come from non-robot-adopting firms using cheaper temporary employment as a survival strategy (the dead-

end conjecture). This conjecture is supported by connecting two important strands of literature, i.e., the neo-

dualist hypothesis of business firms (Dosi, 2008; Andrews et al., 2015; Dosi et al., 2021b) and the labour 

market dualism hypothesis (Blanchard & Landier, 2002; Boeri, 2011; Cappellari et al., 2012). According to 

the former, a polarization between technological laggards and leaders is emerging in some OECD countries, 

causing skewness in growth rate distributions, as is also observed by Foster et al. (2018) and Corrado et al. 

(2021). The technological leader group includes those modern and dynamic high-performing companies 

('gazelles') that likely base their success on investing in the new wave of automation technologies; the laggard 

group is represented by a population of 'turtles' that can survive only by adopting cheaper labour rather than 

new machines (Dosi et al., 2021b).  

In parallel, the labour market dualism literature highlighted how reforms liberalising temporary contracts 

induced some firms to design routine and low productivity jobs that ease the employment of temporary workers 

(Blanchard & Landier, 2002); this type of reforms has been frequently associated with lower capital/labour 

ratios and lower investments (Cappellari et al., 2012). To the best of our knowledge, only Cuccu and Royuela 

(2022) analysed the different effects of automation along the skills’ profile of (temporary) workers. In an 

unpublished paper they show for Spain that in industries highly exposed to robots, only displaced low and 

medium skilled workers have higher probability to be re-employed by means of temporary contracts, but not 

high skilled workers. 
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In the following, we propose that the impact of robot adoption on temporary jobs depends decisively on an 

industry's technological characteristics. Inter-industry heterogeneity has been explored by a literature investi-

gating Schumpeterian patterns of innovation and knowledge cumulativeness (Malerba & Orsenigo, 1996; 

Breschi et al. 2000; Peneder, 2010) and the importance of technological regimes for the (negative) impact of 

more flexible labour relations on innovation (Cetrulo et al., 2019; Pieroni & Pompei, 2007; Kleinknecht et al., 

2014) and on productivity (Vergeer et al. 2015). We make use of Peneder's (2010) taxonomy that concentrates 

on the degree of 'cumulativeness' of knowledge. In high-cumulativeness regimes, innovative competences 

depend primarily on a firm's internal (and often tacit) knowledge from experience that tends to be ill-

documented and is mainly embodied by workers. In industries with a low cumulativeness of knowledge, firms 

rely more on externally available (general) knowledge and competences.  

Peneder's classification of industries is different from the Eurostat standard taxonomies, based on sectoral 

R&D investments and shares of high-skilled workers. Instead, Peneder’s taxonomy relies on a cluster analysis 

of Community Innovation Survey data on firms' reporting of the relative importance of internal versus external 

sources of knowledge to their innovations (see Peneder, 2010 for a more detailed discussion of the 

classification procedure).  

Let us give two examples that illustrate how Peneder’s knowledge cumulativeness regimes moderate the 

effects of robots on temporary workers. We take two representative industries with a low versus a high 

cumulativeness of knowledge, i.e., the food and automotive industries. In the food industry, as shown by Lloyd 

and Payne (2021), the demand for new basic digital skills, required after introducing robotization technologies 

in surveying production processes, did not entail significant challenges or substantially greater skill demands. 

Both operatives (middle-skilled) and engineers (high-skilled) claimed that monitoring and checking pack 

quality and product codes (for instance via a panel or an ipad) were not tasks overly complex; in fact, 

companies frequently recruited external personnel to whom they administrated training in one week. By 

contrast, labour-use strategies of automotive plants (a typical high-cumulativeness sector) take place in a 

completely different technological environment. Automotive companies need close cooperation between 

employees of the manufacturing sites and those from product development. Such cooperation requires long 

and intensive vocational education, combining theoretical knowledge and practical skills. The complexity of 

firm organisation and production processes needs high skills and relies on incumbent workers, rather than on 

external personnel, recruited with temporary contracts (Krzywdzinski, 2017: 263).   

To conclude, robot adoption has different impacts on job skill demands across industries. In a Peneder regime 

where knowledge cumulativeness is high and human capital and skills tend to be firm-specific (Malerba & 

Orsenigo, 1996), flexible contracts (and a higher labour turnover) are harmful as they hinder the long-run 

accumulation of (tacit) knowledge (Kleinknecht et al., 2014). In this case, automation benefits highly skilled 

workers (technicians, researchers and engineers), usually occupied in cognitive-intensive tasks, such as 

creativity, generalized problem solving, flexibility and complex communications (Autor et al. 2003); 

robotization, in particular, may favour more stable jobs such as described in Dauth et al. (2021). By contrast, 

in low-cumulativeness industries, automation might favour the use of flexible employment, because internal 

sources of knowledge are not so crucial.  

Note that educational attainment and occupations may describe different aspects of the quality of labour force 

and they do not always overlap each other. Literature on automation and job polarisation clearly distinguishes 

between i) skills required for occupations (low-skilled, middle-skilled and high-skilled occupations, according 

to ISCO08 categories) and ii) educational attainment (OECD, 2019). Evidence on under- and over-education 

shows that, sometimes, the skills required do not match with the educational profile of labour supply and in 

cases of skill shortages, some companies resort to 'peripheral strategies such as temporary employment' (Mc 
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Guinness et al. 2017). In some OECD countries, a decline of middle-skilled occupations, traditionally held by 

full-time male workers with permanent contracts, has affected the evolution of temporary jobs, as middle-

skilled occupations do not longer guarantee stable jobs and workers with secondary education have moved to 

low-paid/low-skilled occupations (OECD, 2019).  

Building on the above considerations, we formulate our hypotheses as follows: 

H.1: In high knowledge cumulativeness industries, that mainly rely on internal knowledge sources and long-

term labour relationships, robotization reduces the probability of temporary contracts for high (middle)-

skilled and high (middle)-educated workers, in particular. 

H.2a: In low knowledge cumulativeness industries, robotization may increase temporary contracts for workers 

endowed with high (middle)-skills or tertiary (secondary) education, if the dominant labour reallocation effect 

is driven by robot adopting companies that need new skills.  

H.2b: In low knowledge cumulativeness industries, robot adoption increases temporary contracts for workers 

endowed with low-skills or primary education, if the dominant labour reallocation effect is driven the laggard 

firms that rely on cheaper and flexible labour to survive. 

Some caveats are necessary.  

First, we cannot directly test either the stepping stones hypothesis or the dead-end hypothesis. We expect, 

however, that when in the low cum industries robots boost temporary contracts for high (middle) skilled and 

high (middle) educated people, it is likely that firms are using temporary contracts as a screening device and 

hence as a stepping stone (H.2a). Furthermore, temporary voluntary employment may be also attractive for 

highly productive workers who are reluctant to make large investments in a particular firm as they are not sure 

of their career and regional preferences (Booth et al., 2000, 2002). This may be the case for some professional 

workers in low cum industries, where general human capital is more important than specific human capital 

and highly skilled/educated workers self-select into probationary jobs. By contrast, we conjecture (H.2b) that 

when robotization boosts temporary contracts for low skilled and low educated people, this comes because 

laggard firms try to survive with flexible and cheaper labour contracts (dead end hypothesis). 

To corroborate our analysis, we perform ancillary estimates to test the interplay between robots, age, and 

temporary jobs. In lines with previous arguments, we can state the following: 

 

H.3a: In high knowledge cumulativeness industries, robotization should reduce the probability of temporary 

jobs for senior workers, as the accumulation of (tacit) knowledge from experience is favoured by long job 

tenures under permanent contracts. 

H.3b: In industries where knowledge cumulativeness is low and the dominant labour reallocation effect is 

driven by laggard companies that rely on cheaper labour as a survival strategy, even senior workers may have 

higher probabilities to get temporary contracts.  

H.3c: If the dominant labour reallocation effect is driven by robot adopting companies that need new skills, 

young workers experience higher probabilities to get temporary contracts that serve as a screening device. 
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Data and descriptive statistics 

3.1 Data sources and variables 

Three flagship databases have been merged for our empirical analysis and other secondary sources have been 

used to construct supplementary industry-level control variables. 

First, data about individual characteristics of workers (type of contract, sex, age, wage, tenure, educational 

attainment, occupation) and about companies in which they are employed (firm size, industry, private versus 

state-owned firms) come from the Structure of Earnings Survey (SES). This is a four-yearly survey, conducted 

by national statistical offices and coordinated by Eurostat. The SES collects data from enterprises with 10 and 

more employees. Data cover more than 1.1 million workers from our SECs and 12 industries analysed for 

years 2006, 2010 and 2014; they show a pooled cross-section structureii.  

Second, information on robot adoption is from the International Federation of Robotics (IFR, 2016), which 

covers the stock of industrial robots installed over the period 1994-2014. IFR covers almost all manufacturing 

industries, but service sector coverage is poor. The distribution of robots across manufacturing industries is 

skewed, with four industries taking the lion's share, e.g., automotive, rubber and plastics, metal products and 

food industry (Fernandez-Macias et al., 2021, 89). The first three industries fall into Peneder's (2010) high 

knowledge cumulativeness group, whereas the food industry falls into the low knowledge cumulativeness 

category (see Table 1)iii. To alleviate the problem of skewness, we use a measure of variation of robot stocks 

over years, as discussed below. 

Third, from the EU-KLEMS database we obtain industry level data on numbers of employees that are necessary 

to normalize robots at the industry-country level. In order to map IFR into SES and EUKLEMS industries we 

used correspondence tables (ISIC Rev.4 / NACE Rev.2) that led us to aggregate the three databases into 12 

industries included in the Peneder’s taxonomy (see Table 1).  

Lastly, we gather Eurostat data for trade in goods, national accounts for wage bill data, and the UN Comtrade 

database (only for international trade of the R&D sector); hence, following Dauth et al. (2021), we use 

industry-level variables measuring the variation of net exports (export – imports) over years, normalised by 

industry-level wage bills. This variable is expected to capture changes of temporary employment induced by 

trade exposure of different industries. 

Our dependent variable is binary, indicating if a worker has a permanent or a temporary contract (0/1, 

respectively). In order to have a sharp contrast between standard and non-standard employment we excluded 

workers with apprenticeship contracts from our sample.  

Furthermore, we have a binary explanatory variable at individual level for two age groups, i.e., older (30-64 

years) versus younger workers (15-29 years). According to the International Labor Office (2013) the passage 

of a young person to the first stable or satisfactory job tends to occur at the age of 25-29 years. We therefore 

expect a negative sign for our binary variable workers_30-64, as seniority is expected to reduce the probability 

of being on a temporary job. The second important explanatory variable is about skills. We assess skills, 

following OECD (2019) and, after excluding agricultural and armed force occupations, we cluster the eight 

ISCO major groups in high-skills (managers, professionals and technicians), medium-skills (clerical support 

workers, craft workers, machine operators) and low-skills (service/sales workers and elementary occupations). 

As discussed above, education is our third, individual level, explanatory variable of interest. We draw from 

the SES database information about levels of highest successfully completed education and training (ISCED 

2011 classification), and identify the following three categories: i) primary education (less than primary, 
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primary and lower secondary); ii) secondary education (upper secondary, post-secondary non tertiary); iii) 

tertiary education (short-cycle, master and doctoral equivalent courses). 

Additional variables control for those individual characteristics that might also affect the temporary worker 

status, such as gender and tenure i.e., the years a worker is employed in the same company. 

Robot adoption is our key explanatory variable, available at industry level. Following Acemoglu & Restrepo 

(2020) and Dauth et al. (2017; 2021) we measure the cumulated growth rates over ten years in robot adoption 

per thousand workers (employed at the initial period in a given industry) iv. 

More precisely, we calculate this variable as follows: 

𝑅𝑜𝑏𝑜𝑡_𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑐,𝑗,𝑡1 =
𝑟𝑜𝑏𝑜𝑡𝑠𝑐,𝑗,𝑡1−𝑟𝑜𝑏𝑜𝑡𝑠𝑐,𝑗,𝑡0

𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠𝑐,𝑗,1995
    (1) 

where c=Belgium, France, Germany, Italy, Spain and UK; j= 12 industries as reported in Table 1; t1= 2006, 

2010, 2014; t0 = 1996, 2000; 2004. 

Following Acemoglu & Restrepo (2020), we normalize the numerator of (1) by taking the employees observed 

in each country/industry one year before the base period (1995 in our case). This helps us to avoid that we 

normalize by employment affected by robot exposure occurring over years under scrutiny.  

Obviously, for studying the effects of automation on an individual's job status, a firm-level measure of robot 

adoption would be ideal. It would allow to directly disentangle the two potential channels through which robots 

may fuel labour market dualization as discussed above. This is a limitation of our approach when compared to 

studies that use employer-employee datasets (Acemoglu et al., 2020, Dauth et al., 2021; Bessen et al., 2019; 

Humlum, 2019). The latter, however, concentrate on a single country. Our research has the advantage that it 

offers a cross-country perspective of the effects of robotization for more than 1.1 million workers by 

controlling for country-level differences and taking into account technological regimes.  

A potential confounding factor in evaluating the impact of industry-level robot exposure on the temporary 

worker status could be the within-industry productivity dispersion that does not need to be driven by robots. 

We might observe a spurious correlation between robot adoption and the probability to have a temporary job 

as a result of a larger productivity dispersion across firms within the same industry. The latter may be due to 

major technical changes (Klepper & Miller, 1995; Klepper, 1996; Foster et al., 2018), especially those driven 

by process and organizational innovations supported by strong increases in intangible investments (Corrado et 

al., 2021) and the adoption of defensive strategies (such as cheap temporary contracts) by laggards. We follow 

Foster et al. (2018) and introduce the inter-quartile ratio of average wages paid by firms at country-region-

industry level as a proxy for productivity dispersion. 

𝑃𝑟𝑜𝑑𝑢𝑐𝑡_𝑑𝑖𝑠𝑝𝑐,𝑗,𝑟,𝑡1 =
𝑃𝐶75𝑐,𝑗,𝑟,𝑡1

𝑃𝐶25𝑐,𝑗,𝑟,𝑡1
 (2) 

where PC75 and PC25 are the 75th and 25th percentiles of average wages paid at the firm level; c=Germany, 

Italy, Belgium, France, UK and Spain; j= 12 industries as reported in Table 1; r= NUTS1 regions; t1= 2006, 

2010, 2014. The construction of 𝑃𝑟𝑜𝑑𝑢𝑐𝑡_𝑑𝑖𝑠𝑝 (productivity dispersion) relies on the aggregation of 

individual wages contained in the SES database. The availability of greater details concerning firms, industries 

and NUTS1 regions, leads us to exploit more variability for this indicator and thus to better specify 

𝑃𝑟𝑜𝑑𝑢𝑐𝑡_𝑑𝑖𝑠𝑝 as a control variable. At the same time, creating a control variable at the industry and region 

level alleviates multicollinearity problems in regressions where we introduce other industry-level variables. 
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International trade could be another potential confounding factor, not necessarily captured by productivity 

dispersion. For example, a negative effect of intensive industry-level robot exposure on the probability to get 

a temporary contract may be the result of an unobserved expansion of the country-industry on international 

markets. Thus, a steady increase in net exports creates more stable jobs or less need of temporary contracts. 

To control for this aspect, we introduce an indicator of trade exposure based on Eurostat and UN Comtrade 

statistics.  

Despite introducing these controls, we cannot exclude that other unobservable characteristics of industries 

simultaneously influence robot adoption and the propensity to employ temporary workers. We therefore follow 

Acemoglu & Restrepo (2020) and use in our sample, as instruments for industry-level robot adoption, the 

average robot adoption of two Asian countries that are technologically more advanced than our SECs in 

robotics, that is, Japan and South Korea. 

Figure A.1 in the Appendix shows that the evolution of robot adoption in our six countries tracks that of Japan 

and Korea, although the latter is at higher levels. Therefore, we assume that technological shocks occurring in 

the most advanced countries in robotics will influence robot adoption in Europe, also since Japan and South 

Korea are important exporters of robots.  

As discussed above, we also use industry-level information about a high versus a low degree of cumulativeness 

of knowledge, which we borrow from Peneder’s taxonomy (2010). In the following, we assume that an 

innovator's ability to draw from internally accumulated knowledge relies on personnel with long job tenures 

who are able to accumulate firm-specific knowledge. Note that such knowledge tends to be weakly 

documented and ill-codified and is essentially 'embodied' in people. Obviously, this makes stable employment 

relations with low rates of job turnover attractive to employers. We therefore hypothesize that introduction of 

robots creates incentives for offering permanent rather than temporary jobs; and this incentive will be strongest 

in industries that rely most on accumulated knowledge. Applying Peneder's taxonomy (2010, 331) we group 

industries for which robot data are available in High & Medium versus Low Cumulativeness industries 

(henceforth: high-cum versus low-cum industries) and estimate separate equations for each group, omitting a 

few industries which are not covered by Peneder (2010). This strategy leads us to single out the 12 industries 

in Table 1.  

The main interest of this study remains on the propensity to use temporary versus permanent workers in 

industries introducing robots. We also add some evidence about the (often poor) quality of temporary jobs by 

reporting descriptive data about hourly wages and hours worked annually. We transform hourly wages in the 

SES database into real wages (using 2015 Euro purchasing power parities and trimming bottom and top 1% 

observations to reduce the outlier problem) and estimate hours worked annually from the SES information on 

hours worked monthly to which the gross annual earnings relate.  

3.2 Descriptive statistics 

Table 1 shows summary statistics averaged over the SECs and the three SES waves (2006, 2010 and 2014) 

referring to about 1,1 million employees. 12 industries are clustered according to Peneder's taxonomy of 

knowledge cumulativeness. High-cum includes R&D services besides a number manufacturing industries, 

such as automotive, electrical equipment and computers, or pharmaceutical products. Within low-cum, we find 

public utilities (water and energy) and traditional industries such as food, textiles and footwear, wood and 

paper. As mentioned above (section 2.2.2), this classification is not identical with the high-tech versus low-

tech classification of industries provided by Eurostat. For example, rubber and plastics, other non-metallic 

mineral products, basic and fabricated metal products are all medium-low tech industries according to the 

Eurostat classificationv, whereas they are considered high & medium knowledge cumulativeness industries 
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within the Peneder’s taxonomy (2010). Peneder's classification has the advantage that it directly measures 

what we are interested in: Do innovative activities primarily use firm-specific and internal sources of 

knowledge, or does the firm lean more on general and externally acquired knowledge? 

As expected, over the three periods (1996-2006, 2000-2010 and 2004-2014) robot exposure was, on average, 

more pervasive in the high-cum (5.72 robots per thousand workers) than in the low-cum industries (0.77 robots 

per thousand workers). Concerning trade exposure of SECs to all countries, we find that in the high-cum 

industries the net exports increased by 19.96 %, on average over the three periods, compared to an 0.96 % 

increase in low-cum industries.  

Hourly wages in high-cum industries are higher than those of low-cum sectors (20.71 versus 17.73 in 2015 

Euros PPP). By contrast, we did not find a significant gap in terms of annual hours of work between the two 

industry groups (around 2,000 hours each). 

Other details on the distribution of temporary jobs are reported in Table A.1, in the Appendix. As expected, 

temporary workers are more frequent among younger workers and among the lowest levels of skills/education. 

We observe higher percentages of temporary workers in the low-cum industries. For tenure as well, the highest 

number of average years spent in the same firm is observed for high-skilled workers in the high-cum industries. 

Table A.1 also informs us about the quality of temporary jobs, approximated by the gap between temporary 

and permanent workers in the hourly wages and number of hours worked annually. For all categories, 

temporary workers always gain less compared to the permanent ones and this gap becomes particularly large 

for high levels of skills and education.  

Interestingly, the wage gap between temporary and permanent jobs for high skilled workers is quite similar 

between low-cum and high-cum industries (76.82 and 77.28%, respectively). It seems therefore that there are 

no differences in terms of relative labour costs across the two regimes, justifying differences in temporary 

contracts independently of robot adoption. 

It is also worth noting that skills and education do not completely overlap, especially in low-cum sectors where 

we find higher percentages of temporary workers and more severe temporary versus permanent wage gaps for 

workers with tertiary educational attainment (72.61%) compared to workers with managerial or professional 

occupations (76.82%). For this reason, we maintain the focus on both characteristics in the econometric 

analysis. 

TABLE 1 

4. Econometric strategy 

We estimate the probability of being employed on a temporary contract applying a static probit model to the 

pooled sample including workers employed in our six countries over SES waves 2006, 2010 and 2014. We 

first explore how robot_exposure, seniority, skills and educational attainment, independently of each other, 

affect the probability of having a temporary job: 

 

𝑃(𝑇𝐽𝑖 ,𝑐,𝑗,𝑟,𝑡 = 1|𝑿𝒊,𝒄,𝒋,𝒓,𝒕) = Φ[𝑿𝒊,𝒄,𝒋,𝒓,𝒕
′  𝜷] = 

Φ [
𝛽0 + 𝛽1(𝑅𝑜𝑏_𝑒𝑥𝑝)𝑐,𝑗,𝑡 + 𝛽2(𝑊𝑜𝑟𝑘−30 − 64)𝑖,𝑐,𝑗,𝑟,𝑡 + 𝜷𝟑(𝑺𝒌𝒊𝒍𝒍𝒔)𝑖,𝑐,𝑗,𝑟,𝑡 +

+ 𝜷𝟒(𝑬𝒅𝒖𝒄𝒂𝒕𝒊𝒐𝒏)𝑖,𝑐,𝑗,𝑟,𝑡+ 𝛽5(𝑃𝑟𝑜𝑑_𝑑𝑖𝑠𝑝)𝑐,𝑗,𝑟,𝑡+  𝜷𝟔(𝑾𝑪)𝑖,𝑐,𝑗,𝑟,𝑡 + 𝜇𝑗 + 𝜁𝑟 + 𝐼
] (3) 
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where i= workers: 1 … 1.1 million; c= countries: 1… 6; j=industries: 1 … 12; r= NUTS1 regions: 1 … 41; 

and t=2006, 2010 and 2014. Unfortunately, we do not have repeated observations for the same workers; hence 

we deal with pooled cross sections and not panel data. The probability for workers to have a temporary contract 

is a function of key individual level explanatory variables, such as seniority (𝑊𝑜𝑟𝑘−30 − 64), Skills and 

Education (low-skills and primary education being the reference groups, respectively), and the country-

industry-level robot_exposure, that varies over 6 countries x 12 industries x 3 years (i.e., 204 observations, 

this is because 2006 is missing for Germany). This probability also depends on a vector WC of individual-level 

worker characteristics, such as gender and tenure, and characteristics (size and ownership) of the firm in which 

the individual is employed. Productivity dispersion (𝑃𝑟𝑜𝑑_𝑑𝑖𝑠𝑝) is a country-industry-region control variable 

as discussed above. 

𝜇𝑗 , 𝜁𝑟 , 𝐼 are respectively industry-, region- and an interaction of country- x time-specific effects taking into 

account all institutional differences, changes and country-level shocks that occurred between 2006 and 2014. 

To take account of a possible correlation of errors within workers employed in the same establishment, 

standard errors are clustered in all estimates at establishment levelvi. 

In order to know direction and magnitude of the effects of covariates on the change of probabilities for 

temporary jobs, we calculate average partial effects (APEs) after each regressionvii. 

In Tables 2 and 3, our estimated models introduce interaction terms to analyse whether robot_exposure 

moderates the relationship between seniority/education/skills and temporary jobs: 

𝑃(𝑇𝐽𝑖 ,𝑐,𝑗,𝑟,𝑡 = 1|𝑿𝒊,𝒄,𝒋,𝒓,𝒕) = Φ[𝑿𝒊,𝒄,𝒋,𝒓,𝒕
′  𝜷] = 

Φ [
𝛽0 +  𝛽1(𝑅𝑜𝑏_𝑒𝑥𝑝)𝑐,𝑗,𝑡 +  𝜷2(𝑴𝑬)𝑖,𝑐,𝑗,𝑟,𝑡 + 𝛽3 (𝑅𝑜𝑏exp  ∗𝑊𝑜𝑟𝑘−

30 − 64)
𝑖,𝑐,𝑗,𝑟,𝑡

+ 𝜷𝟒(𝑅𝑜𝑏exp  ∗𝑺𝒌𝒊𝒍𝒍𝒔 )
𝑖,𝑐,𝑗,𝑟,𝑡

+

+𝜷𝟓(𝑅𝑜𝑏_ exp  ∗ 𝑬𝒅𝒖𝒄)𝑖,𝑐,𝑗,𝑟,𝑡 + 𝛽6(𝑃𝑟𝑜𝑑_𝑑𝑖𝑠𝑝)𝑐,𝑗,𝑟,𝑡+ 𝜷𝟕(𝑾𝑪)𝑖,𝑐,𝑗,𝑟,𝑡 + 𝜇𝑗 + 𝜁𝑟 + 𝐼
] (4) 

 

where now ME is a vector including main effects for 𝑊𝑜𝑟𝑘−30 − 64, Skills and Education. 

We run estimates of models 3 and 4 or the total sample and separately for high and low knowledge 

cumulativeness industries (high-cum and low-cum, respectively).  As hypothesized above, we expect 𝑅𝑜𝑏_𝑒𝑥𝑝 

to have a different impact between knowledge cumulativeness regimes and coefficients for the total sample 

can mask heterogeneity. 

As we discussed in the previous section, if robot exposure is endogenous the coefficients of interest 𝛽1, 𝛽3, 

𝛽4and 𝛽5, in equation 4, could be biased. For this reason, we perform an instrumental variable probit regression 

based on the control function approach (CF). According to Wooldridge (2010; 2015), this method needs fewer 

assumptions and is computationally simpler than Maximum Likelihood.  

The control function method follows a two-step procedure (Wooldridge 2015). In the first step, the regression 

of the endogenous variable contains all exogenous variables, including instruments (average robot exposure 

of Japan and Korea and its interacted term). In the second step, to eliminate endogeneity, the residuals obtained 

from the first stage are included in the original equations (equations 3 and 4, in our study). This approach 

allows us to isolate the changes in exposure driven by technological progress, and, at the same time, remove 

occupation-specific shocks that affect robot adoption and the probability of transition out or into temporary 

occupation.  

Since our endogenous variables of interest are continuous, we perform in the first stage an OLS regression of 

these endogenous variables (𝑅𝑜𝑏_𝑒𝑥𝑝 and its interactions with 𝑊𝑜𝑟𝑘−30 − 64, Skills and Education) on 

instruments and other exogenous variables as follows: 
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(𝑅𝑜𝑏_𝑒𝑥𝑝 ∗ 𝑊𝑆)𝑖,𝑐,𝑗,𝑟,𝑡 = 𝛽0 + 𝛽1(𝑅𝑜𝑏_𝑒𝑥𝑝_𝐽𝑝_𝐾𝑟 ∗ 𝑊𝑆)𝑗,𝑐,𝑗,𝑟,𝑡+ 𝛽2(𝑃𝑟𝑜𝑑_𝑑𝑖𝑠𝑝)𝑖,𝑐,𝑗,𝑟,𝑡+ 𝜷𝟑(𝑾𝑪)𝑖,𝑐,𝑗,𝑟,𝑡 + 𝜁𝑟 + 𝐼 + 𝜐𝑖,𝑐,𝑗,𝑟,𝑡 (5) 

 

where  𝑅𝑜𝑏_𝑒𝑥𝑝 ∗ 𝑊𝑆 is, alternatively, the interaction with either 𝑊𝑜𝑟𝑘−30 − 64 or Skills/Education 

(Medium and High-skills; Secondary and Tertiary Education); 𝑅𝑜𝑏_𝑒𝑥𝑝_𝐽𝑝_𝐾𝑟 ∗ 𝑊𝑆 is the interaction of the 

same variables with the average robot_exposure of Japan and South Korea. The remainder includes the 

exogenous variables of the structural equation 4. In doing so, we follow Wooldridge (2010, 592-593) and 

assume that instruments that are good for robot exposure, are also good for the interaction terms. Of course, 

we also replicate equation 5 for the main effects only, that is 𝑅𝑜𝑏_𝑒𝑥𝑝 as endogenous dependent variable and 

𝑅𝑜𝑏_𝑒𝑥𝑝_𝐽𝑝_𝐾𝑟 as instrument.  

In the second stage, as mentioned above, we run a probit regression similar to equation 4, in which we add 

residuals from the first stage. The statistical significance of residuals means that the variables of interest 

(𝑅𝑜𝑏_𝑒𝑥𝑝 and its interacted terms) are truly endogenous and give us feedback about the helpfulness of the CF 

approach (see Tables 3 and A.2-A.4 in the Appendix). Since variables generated in the first stage (residuals) 

are introduced in the second stage, this IV two stages approach needs appropriate correction of standard errors 

by means of a bootstrap procedure (Wooldridge, 2015). The results for the first stage of CF estimation and 

tests about the relevance of our instruments (the Kleinbergen-Paap Wald F statistic is used for the weak 

identification test, see Baum et al., 2007) are reported in the Appendix (Tables A.5-A.8). 

An important variable to consider is international trade. Indeed, the assumed exogenous shock that robot 

implementation in Japan-Korea induces robot implementation in Europe may be confounded by exposure to 

trade (Acemoglu and Restrepo, 2020; Dauth et al., 2021). For example, an increase of robot implementation 

in our six countries may be the result of increasing net exports rather than the technological shock propagating 

from the Asian countries. Likewise, in the second stage estimation, changes in trade patterns could be 

responsible for higher or lower propensities to employ temporary workers independent of robot adoption, as 

already discussed above. As a robustness check, we introduce (see Tables A.3 and A.4 in the Appendix), two 

industry-level control variables that approximate the industry-specific trade exposure of our sampled countries 

to all countries (Trade_exposure _World) or to Japan and South Korea only (Trade_exposure_Japan_Korea).  

As an additional robustness check, we exclude Spain, the country that has exceptionally high shares of 

temporary workers, as shown by Figure 2 (see the estimates reported in Table A.5 in the Appendix). 

Eventually, we follow Greene (2010) and provide a graphical representation of APEs that were statistically 

significant in Table 3, to correctly interpret the interaction terms in a probit model. More in detail, we calculate 

predicted probabilities for temporary jobs, and show their discrete changes. Figures 3 and 4 illustrate the 

predicted probabilities to get a temporary contract detailed by country, over low-cum versus high-cum 

industries and separately by skills (Fig. 3) and by education levels (Fig. 4). These probabilities have been 

estimated over increasing values of robot exposure measured at the 10th (pc_10), the median (pc_50) and 90th 

(pc_90) percentiles, whereas all other covariates have been taken at their means.  

Figure 5 gives the same information detailed by years (2006, 2010, 2014) for the total of our SECs.  

 

5. Econometric Results 
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5.1 Robots, seniority, skills, education and temporary jobs: probit and IV probit (Control Function 

approach)  

Both probit and IV probit models share the same estimation strategy. We first study the main effect of Robot 

exposure (equation 3) and only control for country x time-specific effects (column 1), in order to take into 

account all labour market institutional changes, while we allow variability and idiosyncratic factors at the 

industry-level to play a role. Next (columns 2-10), we introduce industry specific effects, use interactions 

between robots and worker seniority/skills/education and run regressions over the total sample and separately 

for low-cum and high-cum industries. 

Our baseline probit estimation, reported in Table 2, serves as a benchmark, besides being useful to detect 

specification and goodness of fit of the overall model. The percentage of correctly specified observations is 

always around 95% and signals quite a high association between actual and fitted values (Cameron & Trivedi, 

2009).  

All coefficients reported are APEs. Control variables are in line with empirical studies on determinants of 

temporary employment (Eurofound, 2015). As expected, longer tenure, age 30_64, higher skills and/or 

education as stand-alone terms reduce the probability of being a temporary worker. In other words, people in 

the reference group (younger, low-skilled/low-educated workers, or workers with short job tenures) have a 

higher chance of being on temporary jobs. In line with Eurofound (2015, 25), we find that being a woman has 

little impact on the probability to be a temporary worker in most specifications reported in Table 2. As 

expected, productivity dispersion (that also controls for potential asymmetric introduction of process and 

organizational innovations among firms within the same industry/region) positively affects the propensity to 

employ temporary workers in the total sample. One unit change in the interquartile ratio (that exactly ranges 

from 1 to 2 in our sample) increases the probability of temporary contracts by 0.003.  

This fairly small effect may be the result of opposite impacts in high-cum versus low-cum industries. In low-

cum industries, productivity dispersion may trigger labour reallocation and induce an increase of temporary 

employment as these industries lean more on external rather than on internally developed knowledge, making 

cheap temporary contracts more attractive. By contrast, in high-cum industries a greater productivity 

dispersion induces a reduction of flexible contracts because internal knowledge sources are more important 

than externally acquired knowledge, making it more difficult for all enterprises (leaders and low performers) 

relying on labour flexibility.  

For Robot exposure and its interactions, we obtain the expected opposite effects between low- and high-cum 

industries when we turn to the mediating effects of robot exposure on the relationships between different 

skills/education and the probability to have temporary jobs. However, as these findings could be affected by 

the endogeneity of Robot exposure, we postpone a more detailed discussion of our results to the IV CF probit 

model, reported in Table 3. Here, only APEs of our key explanatory variables have been shown (robot exposure 

and its interaction with age, skills and education), whereas coefficients for all other control variables, already 

used in Table 2, are available upon request. 

TABLE 2 

TABLE 3 

 

Compared to our baseline model in Table 2, the estimates of the IV CF probit model (Table 3) change only 

little, apart from losing the already low statistical significance of seniority (Table 3, columns 2-4), while the 

magnitude and statistical significance of the coefficients associated to Robot exposure and its interactions with 
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skills and education are greater (Table 3, columns 5-10). One should note that the significant coefficient of 

residuals (Table 3) and the first stage results reported in the Appendix (Table A.5) show that controlling for 

endogeneity through the IV CF probit model is necessary (at least where robot exposure shows statistical 

significance). We find that the average of robot exposure of Japan and South Korea (Rob_exp_Jp_Kr) is a 

relevant instrument, as it is correlated with the endogenous variable (Robot_exposure) and the F statistics is 

always above the critical value (bottom of Table A.5). 

In Table 3 (as in Table 2) Robot exposure as a stand-alone explanatory variable (column 1) reduces the probabi-

lity for temporary jobs when we control for country-level unobserved heterogeneity (i.e., institutional 

differences and changes), while allowing for between-industry variability. More in detail, on average in the 

total sample, robots increased by 4.19 units per thousand workers, with a standard deviation of about 10 (see 

Table 1). If we assume the standard deviation of ten robots per thousand workers as a plausible change in our 

sample, we obtain (column 1) that an increase of ten robots significantly reduces the probability to get a 

temporary job by 0.03 (3 percentage points).  

Next, to test our above hypotheses we study the effect of Robot_exposure across different categories of 

employees (younger/senior, high/med-/low-skilled or educated workers) and split the sample in low- and high-

cum industries to understand the role played by these two knowledge cumulativeness regimes. The inclusion 

of sector dummies allows us to correct for heterogeneity across industries (Table 3, columns 2-10).  

First, we observe that the influence on differently skilled/educated workers, shown in the probit model of Table 

2, is confirmed when we correct for endogeneity (Table 3, columns 5-10). 

In more detail, in the whole sample (Table 3, columns 5 and 8) we find that an increase by ten robots per 

thousand workers significantly reduces the probability of temporary jobs only for highly skilled and highly 

educated workers by 0.01 and 0.02 (1 and 2 percentage points), respectively. These results are confirmed in 

high-cum industries (Table 3, columns 7 and 10)viii, while the opposite results emerge in the low-cum ones, 

where Robot_exposure, measured as ten robots increase per thousand workers, positively affects the 

probability of flexible contracts for both medium and high-skilled/educated workers by 2 and 1 percentage 

points, respectively (Table 3, columns 6 and 9). To detect the statistical significance of low-cum vs high-cum 

differences in the APEs reported above, we follow the approach proposed by Mize et al. (2019) and find 

confirmation that they are all significantly different from zero (see column 3, Table A.9 in the Appendix and 

the note at the bottom for more details). 

From Table 3, we can also see that the interaction term Robots x Workers_30-64 is always insignificant 

(columns 2-4), meaning that robot adoption seems to play no role for employing younger (or older) people as 

temporary workers. It means that the probability for older people to be in a temporary labour status are lower 

than that of younger workers (see the coefficients for Work_30-64 in Table 2, columns 2-4), but robots do not 

affect this outcome.  

Overall, these results inform us about a partial relevance of our hypotheses.  

As expected, (H.1), in high-cum industries, robot adoption reduces the probability to get temporary jobs for 

high-skilled/educated workers (columns 7 and 10). For medium skilled workers, the estimate is not significant, 

while for medium education we obtain a non-robust result, as the total effect is slightly positive in Table 3 

(column 10) and slightly negative when we perform robustness checks (Tables A.2, A.3, A.4, column 10)ix. 

For low-cum industries, our findings seem to support H.2a instead of H.2b, i.e., companies introducing robots 

(and not the laggards) are the drivers of increases of temporary employment (see columns 6 and 9). This is 

because companies in low-cum industries need higher levels of education and skills to employ workers with 
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fixed-term contracts and they can adopt this recruitment strategy because they have lower constraints in terms 

of firm-specific skills. Also note, that in low-cum industries there are no polarization effects, since the 

estimated effects for medium skilled/educated workers do not differ from those obtained for high 

skilled/educated ones (which is consistent with findings by Graetz and Michaels, 2018)x.  

It is also noteworthy, especially for high-skilled workers, that the gap in terms of hourly wages between 

temporary and permanent workers is similar across technological regimes, 76.82% versus 77.28% in low-and 

high-cum industries respectively, as discussed in section 3.2 (see Table A.1 in the Appendix). Thus, we 

conjecture that the higher propensity to employ temporary and better skilled workers in low-cum industries 

(with respect to high-cum ones) is not simply due to lower relative labour costs (76.82%) compared to relative 

costs in high-cum industries (77.28%), but probably relies on easier absorption of external source of knowledge 

to adapt robots to their organisations. We see therefore an interesting parallel with earlier research: numerically 

flexible labour is a disadvantage for innovation and productivity in high-cum, but not necessarily in low-cum 

industries (Pieroni & Pompei, 2007; Kleinknecht et al., 2014; Kleinknecht, 2020; Wachsen & Blind 2016; 

Vergeer et al. 2015). 

Differently from single-country studies such as that of Cuccu and Royuela (2022) that only focuses on Spain, 

we do not find any significant effect of intensive robotization on the probability to get temporary jobs for low-

skilled workers. As for high-cum industries, this can be explained by a likely displacement effect of low 

skilled/educated workers performing routinary tasks, and an increasing difficulty to be re-employed by means 

of temporary contracts in environments where the complex organisation of companies requires personnel with 

knowledge and experience accumulated within the firm. In the low-cum industries, instead, where it is easier 

to recruit external personnel with general knowledge, a composition effect is at work. While we observe the 

dominant mechanism where high skilled workers are recruited through temporary contracts (H.2a), we cannot 

exclude that non adopters of robots employ low skilled workers as strategy to reduce costs and survive the 

market (H.2b). Unfortunately, the limitations of our database (lack of employer-employee matched 

information) do not allow to disentangle such effects. 

Further, we can say nothing about the mediating effect of robots on age and probability to get temporary jobs, 

as neither H.3a nor H.3b and nor H3c have been confirmed. While we expected from the literature discussed 

above some complementarities between skills/education and age profiles, our analysis tells us that robot 

adoption does not specifically affect the overall pattern, where employees aged 30-64 have lower probabilities 

to fall in the temporary worker status. 

5.2 Robots, seniority, skills, education and temporary jobs: robustness checks 

As already discussed in sections 3 and 4, at least two concerns related to results of Table 3 merit attention. 

First, changes in the trade patterns across industry-countries may not be captured by industry dummies and 

may interfere both in the relationship between European robot adoption and temporary employment, and in 

the relationship between Asian and European robot exposure, that is the first stage of our IV CF probit model. 

Table A.2 in the Appendix shows what happens to outcomes of Table 3 when we introduce a variable that 

captures changes over time of net exports of our six countries to all partner countries around the world. We 

obtain that an increase of net exports slightly reduces the probability to hire temporary workers (Table A.2, 

column 1), whereas the coefficient of robot exposure remains significant and not altered, as shown by the 

comparison with Table 3. As expected, a long-term expansion on international markets probably yields a 

productivity effect by reducing the demand for low quality temporary jobs. Although this control for trade 

becomes rarely significant in the specifications with the interaction terms, the pattern we obtained from Table 

3 is substantially confirmed (Table A.2, columns 2-10). The first stage of the model, presented in Table A.2, 
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shows that changes in trade do not even interfere with the correlation between the Japan-Korea robot exposure 

and that occurring in our six European countries, as all coefficients remain highly significant with the expected 

sign (see Table A.6 in the Appendix).  

Things change little when we use a more specific control for trade, measured by changes of net exports of our 

six countries to Japan and South Korea (see Table A.3 for main results and Table A.7 for first stage results). 

Finally, we should examine whether the exceptional values of temporary workers in Spain (Figure 2) have an 

impact on results in Table 3. We ran again the same regressions, but omitting Spain. The exclusion of Spain 

causes little difference, except for making the positive coefficient for low-educated workers in high-cum 

industries insignificant and turning significant negative coefficients for both younger and older workers in the 

high-cum sectors as well (see Tables A.4 for main results and Table A.8 for first stage results in the appendix)xi. 

This reinforces our main expectations concerning the lower attractiveness of using temporary employment in 

high-cum industries when robot exposure intensifies. 

On the other hand, these latter results lead us to better understand to what extent heterogeneity across countries 

and changes over the three years under scrutiny (that include the 2008-2009 Great Recession) may have 

conditioned the overall results of Table 3. 

5.3 Robots, seniority, skills, education and temporary jobs across countries and over years 

As reported in section 4, the average partial effects, discussed so far, often need a graphical representation to 

interpret correctly the interaction effects (Greene, 2010). Further, we cannot be sure to what extent our results 

of Table 3 are not conditioned by influential values concentrating in some specific country or year.  

Figures 3 and 4 report graphical representations of models with interactions depicted in Table 3 across our six 

countries, while Figure 5 represents the same interactions over the three years included in our sample (2006, 

2010, 2014). 

In particular, the interaction of robot-exposure with skills is reported in Figure 3, where the predicted 

probabilities to get a temporary contract for each category of skills have been estimated over increasing values 

of robot exposure measured for each specific country at the 10th (pc_10), the median (pc_50) and 90th (pc_90) 

percentiles. In four out of six countries (Belgium, France, Germany and Italy) the results are consistent with 

the APEs observed in Table 3. Indeed, if we focus on low-cum industries the positive interaction effect is 

visible through a narrowing gap between the predicted probabilities for high-skilled (medium-skilled) workers 

and those of low-skilled workers as robot exposure increases (Figure 3 Panel A). The opposite holds in the 

high-cum industries, where a significant reduction of probabilities to get temporary jobs is only experienced 

by high-skilled workers (see Table 3); indeed, we observe a widening gap between predicted probabilities of 

this group of workers and the rest of employees in Figure 3 (Panel B).  

In line with APEs found for interactions with education (see Table 3, columns 9 and 10), we observe in Figure 

4 a pattern very similar to that illustrated in Figure 3.  

Eventually, the aggregate picture of our sample for different years is presented in Figure 5. The pattern 

described by APEs in Table 3 seems particularly evident during the post-crisis years (2010 and 2014).  

 

FIGURE 3 

FIGURE 4 
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FIGURE 5 

 

 

6 Conclusions  

The persistent labor market duality fueled by a segment of temporary and often 'dead-end' jobs, associated 

with risks of becoming 'working poor', raises concerns among the public and among policy makers across 

Europe (European Commission, 2020). We explore links between individual-level probabilities of workers to 

get a temporary contract and the last wave of robotization that occurred in six European countries.  

We first analyze if the industry-level robot exposure changes the usual pattern where young, low skilled and 

low educated workers typically have high probabilities falling into a temporary worker status. Second, we 

investigate whether effects of robots along the age, skills and education profiles of workers are different, 

depending on the Schumpeterian innovation regime dominant in an industry. The latter indeed makes a 

decisive difference. We made use of the taxonomy of industries by Peneder (2010) who distinguished 

industries by their dominant innovation model according to 'cumulativeness of knowledge'. We find that only 

in highly robot-adopting industries with a high cumulativeness of knowledge, high-skilled and highly educated 

people have lower probabilities of getting temporary jobs, compared to their medium- and low-skilled peers. 

By contrast, in low knowledge cumulativeness industries, workers with higher skills and (tertiary) education 

are more likely to be in temporary jobs.  

These findings contribute to understanding the increasing shares in Europe of temporary workers with tertiary 

education and occupied as technicians and professionals as observed by Eurofound (2015 and 2020). We 

interpret this result as an indication that the dominant effect in these industries is driven by robot adopting 

firms that need external skills to manage their automatized production processes and hiring on temporary jobs 

is easier to do if knowledge cumulativeness is low. In this case they might use temporary contracts as a 

screening device to find the right person. 

Of course, this conjecture would be supported if we found in the low knowledge cumulativeness industries 

that younger people were experiencing even higher probabilities of temporary hiring, than that they usually 

have in the total economy. This would have backed the idea that the screening device is especially applied for 

young and highly educated people and temporary contracts may serve as stepping stone to highly paid and 

more secure jobs. Instead, we found that robot adoption does not influence any of these probabilities along the 

age profile of workers.   

It remains, therefore, an open question whether these temporary jobs will function as screening devices or 

rather as dead-end jobs. Our incapacity to answer this question is mainly due to data limitations. Indeed, more 

research is needed, using employer-employee linked data combined with firm-level information about robot 

adoption and a panel structure, which is not in our database. If such data were available, we could better 

disentangle the impact of robotization on the creation of 'good' versus 'bad' jobs in both innovation regimes.  

Further heterogeneities that could be interesting to explore are the role of national regulations of labour markets 

and their mutual interactions. The main effects of temporary jobs can be different across countries because of 

the interactions of employment protection legislation with other labour institutions, for example, the 

regulations that involve firm-provided training, as the apprenticeship. Paradoxically, in OECD countries, 

workers whose jobs are at higher risk of automation less likely are engaged in learning (OECD, 2019, ch. 6). 

A better understanding of the specific barriers faced by the most vulnerable groups and further explorations of 
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policy interactions may provide useful information to adopt the better strategies to deal with the innovation 

employment nexus.  

We conclude that, in low cumulativeness industries, the main result might be based on a dominant effect where 

high rates of robot adoption boost temporary contracts among highly skilled and highly educated workers. 

However, the opposite force based on a large population of non-adopters of robots resorting to labour flexibility 

as a survival strategy, independently of the quality of human resources, is not negligible. Our descriptive 

statistics on lower hourly wages paid to temporary workers corroborate this claim and shed light on the risk of 

a 'discontinued career made up of a repetition of short-term and low paid jobs' (Filomena and Picchio 2022, 

62). 

Our results also carry a suggestion with respect to the studies mentioned in our literature survey. These studies 

tend to report ambiguous outcomes, and, often, the effects found are not so big. Given that, for some key 

variables, we find opposite signs of coefficients in low-cum versus high-cum industries, it might be rewarding 

if the various models were re-estimated, including controls for the dominant innovation model in an industry. 

Rather than using 'blind' sector dummies, one should include 'informed' sector dummies from the painstaking 

work by Peneder (2010), which may shed new light on the impact of robotization on employment. 
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TABLES AND FIGURES 

 

TABLES 

Table 1: Summary statistics for variables used in the empirical analysis 

 Total Hi-Cum Low-Cum 

Variables Mean sd Mean sd Mean sd 

SES dummy/categorical variables (individual-level) 
Temporary Workers (share) 7.27 (25.97) 7.23 (25.70) 7.30 (25.86) 

Workers_30-64 84.30 (36.38) 83.72 (36.92) 85.63 (35.08) 

Public ownership 8.42 (27.77) 5.75 (23.28) 13.70 (34.38) 

Women 29.68 (45.68) 28.49 (45.13) 32.41 (46.80) 

Prim_Education 22.71 (41.90) 19.59 (39.69) 31.24 (46.35) 

Sec_Education 57.92 (49.37) 58.13 (49.33) 56.88 (49.52) 

Tert_Education 19.37 (39.52) 22.28 (41.61) 11.88 (32.36) 

Low -Skilled 11.20 (31.54) 8.42 (27.76) 17.19 (37.73) 

Middle-Skilled 53.68 (49.86) 52.42 (49.94) 58.22 (49.32) 

Hi-Skilled 35.12 (47.73) 39.16 (48.81) 24.60 (43.07) 

Small Firms 22.81 (41.96) 22.26 (41.60) 24.59 (43.06) 

Medium_Sized Firms 30.58 (46.08) 29.04 (45.40) 33.75 (47.29) 

Large Firms 46.61 (49.88) 48.69 (49.98) 41.66 (49.30) 

SES continuous variables (individual- and region-industry level) 

Tenure 11.02 (10.41) 13.73 (12.86) 10.85 (10.39) 

Product_disp 1.44 (0.13) 1.42 (0.14) 1.55 (0.24) 

Hourly Wages 19.75 (9.65) 20.71 (10.08) 17.73 (8.31) 

Yearly hours worked (.000) 2.03 (0.48) 2.02 (0.48) 2.03 (0.48) 

IFR & Eurostat continuous variables (industry-level) 

Robot_exposure 4.19 (10.26) 5.72 (11.91) 0.77 (2.56) 

Trade_exposure World 8.13 (96.70) 19.98 (157.08) 0.96 (8.41) 

Trade_exposure Japan_S.Korea 4.20 (44.66) -0.20 (4.24) 6.78 (56.07) 

Observations 1,137,288 769,352 367,936 

Industries  Hi-Cum Low-Cum 

  1)Petroleum, Chem. & Pharma 1)Mining & Quarrying 
  2)Rubber, Plastic & Non- Metallic 2)Food Industry 

  3)Metal Products 3)Textile & Garments 

  4)Machinery 4)Wood &Printing 

  5)Motor vehicles & Transport Eqmt. 5) Public Utilities 

  6)Electrical Eqmt & Computers  
  7)R&D  

Source: SES_2006, 2010 and 2014, Eurostat; IFR and EUKLEMS. Note: All values are percentages with 

exception for Tenure (the length of service in the same enterprise is measured in years), Robot-exposure 

(robots x thousand workers); Product_disp (ratio 75th/25th percentiles of average wages at firm-level); 

wages (real hourly wages in 2015 Euros PPP) and number of hours worked annually. Total corresponds to 

the whole sample (12 industries)that is the sum of Hi-Cum and Low-Cum industries according to the 

Peneder’s taxonomy.  
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Tab 2 Probability to get a temporary job and robot exposure by seniority, skills and education of workers (Baseline Probit Model, 

average partial effects) 

Note: Establishment level cluster-robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Pseudo_R2 and % correctly classified observations measure 

the goodness of fit. Robot-exposure is a country-industry level variable calculated as cumulative change of number of industrial robots over periods 1996-2006; 2000-

2010 and 2004-2014 on country-industry level employees in 1995. All other variables refer to years 2006, 2010, 2014. Product_disp is a proxy for productivity 

dispersion at country-industry-region level, that is, the interquartile ratio of firm level average wages. The dependent variable and all other regressors are worker 

level variables. Primary Education is the omitted variable for education; Low-Skilled is the omitted variable for Skills, Small Firms is the omitted variable for firm 

size. Total corresponds to the whole sample (12 industries), that is in turn composed by Hi-Cum and Low-Cum industries according to the Peneder’s taxonomy 

discussed in section 3 and reported in Table 1. 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

  Rob_exp x Work_30-64 Rob_exp x Skills Rob_exp x Education 

 Total Total Low_Cum Hi-Cum Total 
Low_Cu

m 
Hi-Cum Total 

Low_Cu

m 
Hi-Cum 

Rob_exposure -0.0002*** 0.000 -0.001** 0.000 0.000 -0.001 0.000 0.0002** 0.000 0.0003*** 

 (0.000) (0.000) (0.001) (0.000) (0.000) (0.001) (0.000) (0.000) (0.001) (0.000) 

Robots x 

Work_30-64 
 0.000 0.002*** 0.000       

  (0.000) (0.000) (0.000)       

Rob x 

Med_skilled 
    0.000 0.001*** 0.000    

     (0.000) (0.000) (0.000)    

Rob x 

High_skilled 
    -0.0004*** 0.001** -0.001***    

     (0.000) (0.001) (0.000)    

Rob x 

Sec_Educ 
       -0.0001** 0.000 0.000 

        (0.000) (0.000) (0.000) 

Rob x 

Tert_Educ 
       -0.001*** 0.001 -0.001*** 

        (0.000) (0.001) (0.000) 

Work_30-64 -0.026*** -0.026*** -0.026*** -0.026*** -0.027*** -0.026*** -0.023*** -0.027*** -0.026*** -0.023*** 

 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

Med_skilled -0.001 -0.002 0.001 -0.004** -0.003** 0.000 -0.005*** -0.002* 0.001 -0.004** 

 (0.001) (0.001) (0.002) (0.002) (0.001) (0.002) (0.002) (0.001) (0.002) (0.002) 

High_skilled -0.011*** -0.011*** -0.007*** -0.014*** -0.010*** -0.006*** -0.016*** -0.011*** -0.007*** -0.014*** 

 (0.001) (0.001) (0.002) (0.002) (0.001) (0.002) (0.002) (0.001) (0.002) (0.002) 

Secondary 

Education 
-0.010*** -0.011*** -0.013*** -0.007*** -0.010*** -0.012*** -0.007*** -0.010*** -0.011*** -0.008*** 

 (0.000) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

Tertiary 

Education 
-0.010*** -0.010*** -0.011*** -0.015*** -0.010*** -0.011*** -0.015*** -0.008*** -0.008*** -0.016*** 

 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.002) 

Product_disp 0.031*** -0.003 0.030*** -0.028*** -0.003 0.029*** -0.028*** -0.003 0.028*** -0.028*** 

 (0.004) (0.005) (0.008) (0.008) (0.005) (0.008) (0.008) (0.005) (0.007) (0.008) 

Public 0.046*** 0.045*** 0.005** 0.062*** 0.044*** 0.005** 0.062*** 0.044*** 0.005** 0.062*** 

 (0.002) (0.002) (0.003) (0.003) (0.002) (0.003) (0.003) (0.002) (0.003) (0.003) 

Tenure -0.038*** -0.037*** -0.037*** -0.036*** -0.037*** -0.037*** -0.036*** -0.037*** -0.037*** -0.036*** 

 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

Women 0.000 -0.001* -0.001* 0.000 -0.001 -0.001 0.000 -0.001 -0.001 0.000 

 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

Medium Sized 

Firms 
0.014*** 0.013*** 0.008*** 0.014*** 0.013*** 0.008*** 0.014*** 0.013*** 0.008*** 0.014*** 

 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

Large Firms 0.025*** 0.026*** 0.020*** 0.025*** 0.026*** 0.020*** 0.026*** 0.026*** 0.020*** 0.026*** 

 (0.001) (0.001) (0.002) (0.001) (0.001) (0.002) (0.001) (0.001) (0.002) (0.001) 

Industry FE No Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Country x 
Year FE 

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Region FE No Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 1,137,288 1,137,288 367,936 769,352 1,137,288 367,936 769,352 1,137,288 367,936 769,352 

Pseudo_R2 0.25 0.26 0.26 0.28 0.26 0.26 0.27 0.26 0.26 0.28 
% correctly 

classified  
95.79 95.84 96.14 95.71 95.84 96.13 95.71 95.84 96.12 95.72 
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Note: Bootstrapped standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Robot-exposure is a country-industry level variable calculated 

as cumulative change of number of industrial robots over periods 1996-2006; 2000-2010 and 2004-2014 on country-industry level employees in 1995. 

All other variables refer to years 2006, 2010, 2014. Control function residuals are from the first stage regressions; their statistical significance signals 

endogeneity of robot exposure and its interaction terms (Wooldridge, 2015). Main effects for age, skills, education and all other control variables 

reported in Table 2 have been used in the estimations and omitted from this Table to improve the readability (they are available upon request). Total 

corresponds to the whole sample (12 industries), that is in turn composed by Hi-Cum and Low-Cum industries according to the Peneder’s taxonomy 

discussed in section 3 and reported in Table1.

Tab 3 Probability to get a temporary job and robot exposure by seniority, skills and education of workers (IV Probit, Control 

Function approach, average partial effects)  

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

   
Rob_exp x Work_30-64 Rob_exp x Skills Rob_exp x Education 

 Total Total Low_Cum Hi-Cum Total Low_Cum Hi-Cum Total Low_Cum Hi-Cum 

Endogenous 

Variables 
          

Rob_exposure -0.003*** 0.000 -0.000 0.000 -0.001 0.000 0.000 0.001*** 0.000 0.001** 

 (0.000) (0.000) (0.001) (0.000) (0.000) (0.000) (0.001) (0.000) (0.001) (0.000) 

Rob x Work_30-64  0.000 -0.001 0.000       

  (0.001) (0.000) (0.001)       

Rob x Med_skilled     0.000 0.002*** 0.000    

     (0.000) (0.001) (0.000)    

Rob x High_skilled     -0.001*** 0.002*** -0.001***    

     (0.000) (0.001) (0.000)    

Rob x Sec_Educ        -0.001*** 0.001*** -0.0005*** 

        (0.000) (0.000) (0.000) 

Rob x Tert_Educ        -0.002*** 0.001** -0.002*** 

        (0.000) (0.001) (0.000) 

Control Function: 

Residuals 
          

Rob_exposure_Res 0.002** -0.000 -0.003** 0.000 -0.000 0.001 -0.000 -0.001** 0.002 0.000 

 (0.000) (0.000) (0.001) (0.000) (0.000) (0.001) (0.000) (0.000) (0.002) (0.000) 

Rob x Work_30-

64_Res 
 0.000 0.005*** 0.000       

  (0.000) (0.000) (0.000)       

Rob x 

Med_skilled_Res 
    0.000 -0.002** 0.000    

     (0.000) (0.001) (0.000)    

Rob x 

High_skilled_Res 
    0.001*** -0.002* 0.001***    

     (0.000) (0.001) (0.000)    

Rob x 

Sec_Educ_Res 
       0.001*** -0.003*** 0.0004*** 

        (0.000) (0.001) (0.0002) 

Robx 

Tert_Educ_Res 
       0.002*** -0.002*** 0.002*** 

        (0.000) (0.001) (0.000) 

Other controls  

(as inTable 2) 
Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Industry FE No Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Country x Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Region FE No Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 1,137,288 1,137,288 367,936 769,352 1,137,288 367,936 769,352 1,137,288 367,936 769,352 
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FIGURES 

Figure 1: Robot density and employment growth in the SECs and EU-28 (1996-2014) 

 
Source: OECD Statistics, Labour Force Survey; International Federation of Robotics (IFR).  
Note: EU-6 includes Belgium, France, Germany, Spain, Italy, United Kingdom.  

Robots and employment refer to all industries. Numbers of robots are normalised by OECD employment statistics 
 

 

Figure 2: Shares of temporary on total employees in the SECs (1996-2014) 

 
Source: OECD Statistics, Labour Force Survey 
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Figure 3 Temporary jobs, robot exposure and skills across countries 
 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 
 

 

 

Note: Predicted probabilities have been estimated from econometric models reported in Table 3 (columns 6 and 7), given that 

i) Robot-exposure is set to country-specific percentiles reported in parentheses in this figure (pc_10; pc_50 and pc_90 stand 
for 10th, median and 90th percentiles, respectively) ;ii) country is specified one at a time; iii) Skill categories are set at 1, one 

at a time;  iii) the rest of predictors are set to their mean values.

A. Low-Cum Industries: predicted probabilities for temporary jobs over robot exposure 

 

B. Hi-Cum Industries:  predicted probabilities for temporary jobs over robot exposure 
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Figure 4 Temporary jobs, robot exposure and education across countries 

A. Low-Cum Industries: predicted probabilities for temporary jobs over robot exposure 

 
B. Hi-Cum Industries: predicted probabilities for temporary jobs over robot exposure 

 
Note: Predicted probabilities have been estimated from econometric models reported in Table 3 (columns 9 and 10), given that 

i) Robot-exposure is set to country-specific percentiles reported in parentheses in this figure (pc_10; pc_50 and pc_90 stand 

for 10th, median and 90th percentiles, respectively);ii) country is specified one at a time; iii) Education categories are set at 1, 

one at a time;  iii) the rest of predictors are set to their mean values.
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Figure 5 Temporary jobs, robot exposure skills and education over years 

A. Skills 

 
B. Education 

 
Note: Predicted probabilities have been estimated from econometric models reported in Table 3 (columns 6, 7, 9 and 10) given 

that i) Robot-exposure is set to high-cum and low-cum industries specific percentiles (averaged over six countries) reported in 

parentheses in this figure (pc_10; pc_50 and pc_90 stand for 10th, median and 90th percentiles, respectively); ii) year is specified 

one at a time; iii) Skills and Education categories are set at 1, one at a time;  iii) the rest of predictors are set to their mean 

values.
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APPENDIX 

 

 

 
Table A.1 Temporary workers, tenure, wages and hours worked across characteristics 

 
Temp. workers/total 

employees (%) 

Hourly wages_ratio of 

temp./perm. workers (%) 

Characteristics/Industries Low-Cum High-Cum Low-Cum High-Cum 

Age_15_29 13.45 10.11 95.42 91.09 

Age_30_64 3.19 2.88 75.84 82.70 

Low-Skill 7.32 6.15 82.30 84.16 

Mid-Skill 4.24 3.86 87.00 83.92 

High_Skill 4.35 2.39 76.82 77.28 

Primary Education 7.61 4.52 87.34 87.86 

Secondary Education 3.85 3.66 76.38 75.42 

Tertiary Education 5.68 3.15 72.61 77.59 

 Tenure 
Hours worked annually_ratio 

of temp./perm. workers (%) 

Characteristics/Industries Low-Cum High-Cum Low-Cum High-Cum 

Age_15_29 3.52 3.61 94.71 88.35 

Age_30_64 13.06 13.66 89.34 87.40 

Low-Skill 9.60 10.11 87.34 87.86 

Mid-Skill 12.25 12.52 76.38 75.42 

High_Skill 11.62 13.78 72.61 77.59 

Primary Education 12.81 12.50 87.67 84.52 

Secondary Education 12.29 12.78 93.96 88.46 

Tertiary Education 9.67 10.92 91.48 88.11 

Source: SES_2006, 2010 and 2014. Note: own calculations from SES sample already reported in Table 1. All 

values are percentages with the exception of tenure that is reported in number of years.
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Note: Bootstrapped standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Robot-exposure is a country-industry level variable calculated 

as cumulative change of number of industrial robots over periods 1996-2006; 2000-2010 and 2004-2014 on country-industry level employees in 1995. 

Trade-exposure (World), is a country-industry level variable calculated as cumulative change of net exports to the world partner countries on wage 

bill (see Dauth et al., 2021) over periods 1996-2006; 2000-2010 and 2004-2014. All other variables refer to years 2006, 2010, 2014. Control function 

residuals are from the first stage regressions; their statistical significance signals endogeneity of robot exposure and its interaction terms (Wooldridge, 

2015). Main effects for age, skills, education and all other control variables reported in Table 2 have been used in the estimations and omitted from 

this Table to improve the readability (they are available upon request). Total corresponds to the whole sample (12 industries), that is in turn composed 

by Hi-Cum and Low-Cum industries according to the Peneder’s taxonomy discussed in section 3 and reported in Table 1.  The lower number of 

observations compared to those of Table 3 is due to some missing values for country-industry level variable Trade_exposure (World).

Table A.2 Probability to get a temporary job and robot exposure by seniority, skills and education of workers. Control for trade 

exposure to World (IV Probit, Control Function approach,  average partial effects )  
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

   
Rob_exp x Work_30-64 Rob_exp x Skills Rob_exp x Education 

 Total Total Low_Cum Hi-Cum Total Low_Cum Hi-Cum Total Low_Cum Hi-Cum 

Endogenous 

Variables 
          

Rob_exposure -0.003*** 0.000 -0.000 -0.000 0.001** 0.000 0.000 0.001*** -0.000 0.000 

 (0.000) (0.000) (0.001) (0.000) (0.000) (0.000) (0.001) (0.000) (0.001) (0.000) 

Rob x Work_30-64  0.000 -0.000 -0.000       

  (0.000) (0.000) (0.000)       

Rob x Med_skilled     0.000 0.001*** 0.000    

     (0.000) (0.000) (0.000)    

Rob x High_skilled     -0.001*** 0.001* -0.001***    

     (0.000) (0.000) (0.000)    

Rob x Sec_Educ        -0.001*** 0.001** -0.0003*** 

        (0.000) (0.000) (0.000) 

Rob x Tert_Educ        -0.002*** 0.001* -0.002*** 

        (0.000) (0.000) (0.000) 

Trade_exposure 

(World) 
-0.0002*** 0.000 0.000 -0.0002** -0.0004* 0.000 0.000 -0.000 0.000 -0.0001** 

 (0.000) (0.000) (0.000) (0.001) (0.0002) (0.000) (0.000) (0.000) (0.000) (0.000) 

Control Function: 

Residuals 
          

Rob_exposure_Res -0.0002*** -0.000 -0.001 0.000 0.000 -0.000 -0.000 -0.001** 0.003* -0.000 

 (0.000) (0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.002) (0.000) 

Rob x Work_30-

64_Res 
 -0.000 0.005*** 0.000       

  (0.000) (0.000) (0.000)       

Rob x 

Med_skilled_Res 
    0.000 -0.001*** 0.000    

     (0.000) (0.000) (0.000)    

Rob x 

High_skilled_Res 
    0.001*** -0.001* 0.001***    

     (0.000) (0.000) (0.000)    

Rob x 

Sec_Educ_Res 
       0.001*** -0.002*** 0.0003*** 

        (0.000) (0.000) (0.0002) 

Robx 

Tert_Educ_Res 
       0.001*** -0.002* 0.001*** 

        (0.000) (0.001) (0.000) 

Other controls  

(as inTable 2) 
Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Industry FE No Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Country x Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Region FE No Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 879,617 879,617 241,158 637,342 879,617 241,158 637,342 879,617 241,158 637,342 
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Note: Bootstrapped standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Robot-exposure is a country-industry level variable calculated 

as cumulative change of number of industrial robots over periods 1996-2006; 2000-2010 and 2004-2014 on country-industry level employees in 1995. 

Trade-exposure (Japan-Korea), is a country-industry level variable calculated as cumulative change of net exports to Japan and South Korea on wage 

bill (see Dauth et al., 2021) over periods 1996-2006; 2000-2010 and 2004-2014. All other variables refer to years 2006, 2010, 2014.Control function 

residuals are from the first stage regressions; their statistical significance signals endogeneity of robot exposure and its interaction terms (Wooldridge, 

2015). Main effects for age, skills, education and all other control variables reported in Table 2 have been used in the estimations and omitted from 

this Table to improve the readability (they are available upon request). Total corresponds to the whole sample (12 industries), that is in turn composed 

by Hi-Cum and Low-Cum industries according to the Peneder’s taxonomy discussed in section 3 and reported in Table 1. The lower number of 

observations compared to those of Table 3 is due to some missing values for country-industry level variable Trade_exposure (Japan_Korea).

Table A.3 Probability to get a temporary job and robot exposure by seniority, skills and education of workers. Control for trade 

exposure to Japan and South Korea (IV Probit, Control Function approach,  average partial effects )  
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

   
Rob_exp x Work_30-64 Rob_exp x Skills Rob_exp x Education 

 Total Total Low_Cum Hi-Cum Total Low_Cum Hi-Cum Total Low_Cum Hi-Cum 

Endogenous 

Variables 
          

Rob_exposure 0.000 0.000 0.000 -0.000 0.001** 0.000 0.000 0.001*** 0.000 0.000 

 (0.000) (0.000) (0.001) (0.000) (0.000) (0.000) (0.001) (0.000) (0.001) (0.000) 

Rob x Work_30-64  0.000 0.000 -0.000       

  (0.000) (0.000) (0.001)       

Rob x Med_skilled     0.000 0.001*** 0.000    

     (0.000) (0.000) (0.000)    

Rob x High_skilled     -0.001*** 0.001* -0.001***    

     (0.000) (0.000) (0.000)    

Rob x Sec_Educ        -0.001*** 0.000 -0.0005*** 

        (0.000) (0.000) (0.000) 

Rob x Tert_Educ        -0.002*** 0.001* -0.002*** 

        (0.000) (0.000) (0.000) 

Trade_exposure 

(Japan_Korea) 
-0.000 0.000 0.000 -0.000 -0.0004* 0.000 0.000 -0.0007* 0.000 -0.000 

 (0.000) (0.000) (0.000) (0.000) (0.0002) (0.000) (0.000) (0.0002) (0.000) (0.000) 

Control Function: 

Residuals 
          

Rob_exposure_Res -0.000 -0.000 -0.002** 0.000 0.000 -0.000 -0.000 -0.001** 0.003** 0.000 

 (0.000) (0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.000) 

Rob x Work_30-

64_Res 
 0.000 0.005*** 0.000       

  (0.000) (0.001) (0.000)       

Rob x 

Med_skilled_Res 
    0.000 -0.001*** 0.000    

     (0.000) (0.000) (0.000)    

Rob x 

High_skilled_Res 
    0.001*** -0.001* 0.001***    

     (0.000) (0.000) (0.000)    

Rob x 

Sec_Educ_Res 
       0.001*** -0.002*** 0.0004*** 

        (0.000) (0.000) (0.0002) 

Robx 

Tert_Educ_Res 
       0.002*** -0.002** 0.002*** 

        (0.000) (0.001) (0.000) 

Other controls  

(as inTable 2) 
Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Industry FE No Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Country x Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Region FE No Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 997,810 997,810 241,308 756,308 997,810 241,308 756,308 997,810 241,308 756,308 
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Note: Bootstrapped standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Observations for Spain have been omitted from the sample. Robot-

exposure is a country-industry level variable calculated as cumulative change of number of industrial robots over periods 1996-2006; 2000-2010 and 

2004-2014 on country-industry level employees in 1995. All other variables refer to years 2006, 2010, 2014. Control function residuals are from the 

first stage regressions; their statistical significance signals endogeneity of robot exposure and its interaction terms (Wooldridge, 2015). Main effects 

for age, skills, education and all other control variables reported in Table 2 have been used in the estimations and omitted from this Table to improve 

the readability (they are available upon request). Total corresponds to the whole sample (12 industries), that is in turn composed by Hi-Cum and Low-

Cum industries according to the Peneder’s taxonomy discussed in section 3 and reported in Table 1.

Tab A.4 Probability to get a temporary job and robot exposure by seniority, skills and education of workers. Five countries 

excluding Spain (IV Probit, Control Function approach,  average partial effects )  
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

   
Rob_exp x Work_30-64 Rob_exp x Skills Rob_exp x Education 

 Total Total Low_Cum Hi-Cum Total Low_Cum Hi-Cum Total Low_Cum Hi-Cum 

Endogenous 

Variables 
          

Rob_exposure -0.003*** -0.001 -0.002 -0.001* -0.000 -0.002 0.000 0.000 -0.001 0.000 

 (0.000) (0.000) (0.002) (0.000) (0.000) (0.002) (0.000) (0.000) (0.001) (0.000) 

Rob x 

Work_30-64 
 -0.0002* 0.001*** -0.0002**       

  (0.0001) (0.000) (0.000)       

Rob x 

Med_skilled 
    -0.000 0.002*** -0.000    

     (0.000) (0.001) (0.000)    

Rob x 

High_skilled 
    -0.001*** 0.002*** -0.001***    

     (0.000) (0.001) (0.000)    

Rob x 

Sec_Educ 
       -0.0004*** 0.001*** -0.0004*** 

        (0.000) (0.000) (0.000) 

Rob x 

Tert_Educ 
       -0.002*** 0.001** -0.002*** 

        (0.000) (0.001) (0.000) 

Control 

Function: 

Residuals 

          

Rob_exposure

_Res 
0.002** 0.001 0.001 0.001* -0.000 0.002 -0.000 0.000 0.002 -0.000 

 (0.000) (0.000) (0.002) (0.000) (0.000) (0.002) (0.000) (0.000) (0.002) (0.000) 

Rob x 

Work_30-

64_Res 

 0.000 0.001*** 0.000       

  (0.000) (0.000) (0.000)       

Rob x 

Med_skilled_

Res 

    0.0005*** -0.001* 0.0004*    

     (0.000) (0.000) (0.000)    

Rob x 

High_skilled_

Res 

    0.001*** -0.002* 0.001***    

     (0.000) (0.001) (0.000)    

Rob x 

Sec_Educ_Res 
       0.0005*** -0.001** 0.0005*** 

        (0.000) (0.000) (0.0002) 

Robx 

Tert_Educ_Re

s 

       0.002*** -0.002** 0.002*** 

        (0.000) (0.001) (0.000) 

Other 

controls  

(as inTable 2) 

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Industry FE No Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Country x 

Year FE 
Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Region FE No Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 972,891 972,891 305,134 667,127 972,891 305,134 667,127 972,891 305,134 667,127 
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  Table A.5 First Stage (OLS estimations) from IV_CF Probit Model reported in Table 3. 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

 Total Rob_exp x Work_30-64 Rob_exp x Skills Rob_exp x Education 
 Total Total Low_Cum Hi_Cum Total Low_Cum Hi_Cum Total Low_Cum Hi_Cum 

Dependent variables Rob_exp Rob_exp Rob_exp Rob_exp Rob_exp Rob_exp Rob_exp Rob_exp Rob_exp Rob_exp 

Excluded 

Instruments 
        

  

Rob_exp_Jp_Kr 0.403*** 0.291*** 1.601*** 0.304*** 0.458*** 2.452*** 0.470*** 0.345 *** 1.769*** 0.349 *** 

 (0.000) (0.009) (0.038) (0.009) (0.012) (0.042) (0.112) (0.011) (0.039) (0.011) 

Dependent variables  RobxWork RobxWork RobxWork       

Excluded 

Instruments 
        

  

RobxWork_Jp_Kr  0.405*** 3.074*** 0.400***       

  (0.013) (0.028) (0.013)       

Dependent variables     RobxMskill RobxMskill RobxMskill    

Excluded 

Instruments 
        

  

RobxMskill _Jp_Kr     0.785*** 2.344*** 0.783***    

     (0.011) (0.045) (0.011)    

Dependent variables     Robx_Hskill Robx_Hskill Robx_Hskill    

Excluded 

Instruments 
        

  

Robx_Hskill_Jp_Kr     0.784*** 3.412*** 0.780***    

     (0.017) (0.051) (0.017)    

Dependent variables        RobxSecEduc RobxSecEduc RobxSecEduc 

Excluded 

Instruments 
        

  

RobxSecEduc _Jp_Kr        0.477*** 3.361*** 0.461*** 

        (0.011) (0.027) (0.011) 

Dependent variables        RobxTerEduc RobxTerEduc RobxTerEduc 

Excluded 

Instruments 
        

  

RobxTerEduc _Jp_Kr        0.265*** 2.861*** 0.261*** 

        (0.015) (0.034) (0.014) 

Included 

Instruments 
Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Industry FE No Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Country x Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Region FE No Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 1,137,288 1,137,288 367,936 769,352 1,137,288 367,936 769,352 1,137,288 367,936 769,352 

Kleibergen-Paap 

Wald rk F statistic 
1381.76 705.48 1159.51 767.71 446.43 685.27 472.50 455.24 805.33 492.85 

Note: Establishment level cluster-robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. The dependent variables are i) the endogenous variable Robot Exposure (Rob_exp), ii) the 

interaction Rob x Workers_30-64 (RobxWork); iii) the interactions Robots x Med_skilled (RobxMskill) and Robots x High_skilled (Robx_Hskill); iv) the interactions Robots x Secondary_education 

(RobxSecEduc) and Robots x Tertiary_Education (Robx_TerEduc). The set of excluded instruments includes average robot exposure of Japan and South Korea at the industry level and its interaction 

terms. The included instruments are all the exogenous variables reported in Table 3. Kleibergen-Paap Wald rk F statistic is a test for detecting weak instruments, that is, instruments poorly correlated 

with the endogenous variable. A rule of thumb is considering instruments as relevant (no weak) when the F statistics is above 10 (Baum et al., 2007). Total is the whole sample, High & Medium 

Cumulativeness (Hi-Cum) and Low-Cumulativeness (Low-Cum) group industries according to the Peneder's taxonomy discussed in section 3 and reported in Table 1.
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  Table A.6 First Stage (OLS estimations) from IV_CF Probit Model reported in Table A.2 (Control for trade exposure to World). 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

 Total Rob_exp x Work_30-64 Rob_exp x Skills Rob_exp x Education 
 Total Total Low_Cum Hi_Cum Total Low_Cum Hi_Cum Total Low_Cum Hi_Cum 

Dependent variables Rob_exp Rob_exp Rob_exp Rob_exp Rob_exp Rob_exp Rob_exp Rob_exp Rob_exp Rob_exp 

Excluded 

Instruments 
        

  

Rob_exp_Jp_Kr 0.400*** 0.293*** 2.161*** 0.292*** 0.461*** 2.979*** 0.463*** 0.347 *** 2.092*** 0.337 *** 

 (0.010) (0.009) (0.057) (0.008) (0.012) (0.057) (0.011) (0.010) (0.056) (0.010) 

Dependent variables  RobxWork RobxWork RobxWork       

Excluded 

Instruments 
        

  

RobxWork_Jp_Kr  0.394*** 3.064*** 0.388***       

  (0.013) (0.032) (0.013)       

Dependent variables     RobxMskill RobxMskill RobxMskill    

Excluded 

Instruments 
        

  

RobxMskill _Jp_Kr     0.776*** 2.337*** 0.778***    

     (0.011) (0.052) (0.010)    

Dependent variables     Robx_Hskill Robx_Hskill Robx_Hskill    

Excluded 

Instruments 
        

  

Robx_Hskill_Jp_Kr     0.773*** 3.550*** 0.771***    
     (0.017) (0.062) (0.017)    

Dependent variables        RobxSecEduc RobxSecEduc RobxSecEduc 

Excluded 

Instruments 
        

  

RobxSecEduc _Jp_Kr        0.468*** 3.626*** 0.453*** 

        (0.011) (0.032) (0.010) 

Dependent variables        RobxTerEduc RobxTerEduc RobxTerEduc 

Excluded 

Instruments 
        

  

RobxTerEduc _Jp_Kr        0.252*** 2.940*** 0.251*** 
        (0.014) (0.039) (0.014) 

Trade_exposure 

(World) 
Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Other Included 

Instruments 
Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Industry FE No Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Country x Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Region FE No Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 879,617 879,617 241,158 637,342 879,617 241,158 637,342 879,617 241,158 637,342 

Kleibergen-Paap 
Wald rk F statistic 

1535.39 741.25 851.47 747.84 467.60 541.49 479.15 478.79 605.15 526.94 

Note: Establishment level cluster-robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. The dependent variables are i) the endogenous variable Robot Exposure (Rob_exp), ii) the 

interaction Rob x Workers_30-64 (RobxWork); iii) the interactions Robots x Med_skilled (RobxMskill) and Robots x High_skilled (Robx_Hskill); iv) ); iii) the interactions Robots x Secondary_education 

(RobxSecEduc) and Robots x Tertiary_Education (Robx_TerEduc). The set of excluded instruments includes average robot exposure of Japan and South Korea at the industry level and its interaction 

terms. Trade Exposure and Other included instruments are the exogenous variables reported in Table A.2. Kleibergen-Paap Wald rk F statistic is a test for detecting weak instruments, that is, 

instruments poorly correlated with the endogenous variable. A rule of thumb is considering instruments as relevant (no weak) when the F statistics is above 10 (Baum et al., 2007). Total is the whole 

sample, High & Medium Cumulativeness (Hi-Cum) and Low-Cumulativeness (Low-Cum) group industries according to the Peneder's taxonomy discussed in section 3 and reported in Table 1. 
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  Table A.7 First Stage (OLS estimations) from IV_CF Probit Model reported in Table A.3 (Control for trade exposure to Japan and 

South Korea). 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

 Total Rob_exp x Work_30-64 Rob_exp x Skills Rob_exp x Education 

Sample Total Total Low_Cum Hi_Cum Total Low_Cum Hi_Cum Total Low_Cum Hi_Cum 

Dependent variables Rob_exp Rob_exp Rob_exp Rob_exp Rob_exp Rob_exp Rob_exp Rob_exp Rob_exp Rob_exp 

Excluded 

Instruments 
        

  

Rob_exp_Jp_Kr 0.325*** 0.292*** 2.834*** 0.302*** 0.459*** 3.716 *** 0.467*** 0.346 *** 2.762 *** 0.347 *** 

 (0.009) (0.009) (0.058) (0.009) (0.012) (0.054) (0.012) (0.011) (0.055) (0.011) 

Dependent variables  RobxWork RobxWork RobxWork       

Excluded 

Instruments 
        

  

RobxWork_Jp_Kr  0.401*** 3.039*** 0.399***       

  (0.013) (0.033) (0.013)       

Dependent variables     RobxMskill RobxMskill RobxMskill    

Excluded 

Instruments 
        

  

RobxMskill _Jp_Kr     0.781*** 2.296 *** 0.784***    
     (0.011) (0.053) (0.011)    

Dependent variables     Robx_Hskill Robx_Hskill Robx_Hskill    

Excluded 

Instruments 
        

  

Robx_Hskill_Jp_Kr     0.779*** 3.531*** 0.778***    

     (0.017) (0.062) (0.017)    

Dependent variables        RobxSecEduc RobxSecEduc RobxSecEduc 

Excluded 

Instruments 
        

  

RobxSecEduc _Jp_Kr        0.472*** 3.650 *** 0.460*** 
        (0.011) (0.032) (0.011) 

Dependent variables        RobxTerEduc RobxTerEduc RobxTerEduc 

Excluded 

Instruments 
        

  

RobxTerEduc _Jp_Kr        0.260*** 2.939*** 0.259*** 

        (0.014) (0.039) (0.014) 

Trade_exposure 

(Japan_Korea) 
Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Other Included 

Instruments 
Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Industry FE No Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Country x Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Region FE No Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 997,810 997,810 241,308 756,308 997,810 241,308 756,308 997,810 241,308 756,308 

Kleibergen-Paap 

Wald rk F statistic 
1434.88 719.66 1379.45 760.39 451.942 813.34 468.50 461.47 972.08 488.64 

Note: Establishment level cluster-robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. The dependent variables are i) the endogenous variable Robot Exposure (Rob_exp), ii) the 

interaction Rob x Workers_30-64 (RobxWork); iii) the interactions Robots x Med_skilled (RobxMskill) and Robots x High_skilled (Robx_Hskill); iv) ); iii) the interactions Robots x Secondary_education 

(RobxSecEduc) and Robots x Tertiary_Education (Robx_TerEduc). The set of excluded instruments includes average robot exposure of Japan and South Korea at the industry level and its interaction 

terms. Trade Exposure and Other included instruments are the exogenous variables reported in Table A.3. Kleibergen-Paap Wald rk F statistic is a test for detecting weak instruments, that is, 

instruments poorly correlated with the endogenous variable. A rule of thumb is considering instruments as relevant (no weak) when the F statistics is above 10 (Baum et al., 2007). Total is the whole 

sample, High & Medium Cumulativeness (Hi-Cum) and Low-Cumulativeness (Low-Cum) group industries according to the Peneder's taxonomy discussed in section 3 and reported in Table 1. 
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  Table A.8 First Stage (OLS estimations) from IV_CF Probit Model reported in Table A.4 (Five countries excluding Spain). 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

 Total Rob_exp x Work_30-64 Rob_exp x Skills Rob_exp x Education 

Sample Total Total Low_Cum Hi_Cum Total Low_Cum Hi_Cum Total Low_Cum Hi_Cum 

Dependent variables Rob_exp Rob_exp Rob_exp Rob_exp Rob_exp Rob_exp Rob_exp Rob_exp Rob_exp Rob_exp 

Excluded 

Instruments 
        

  

Rob_exp_Jp_Kr 0.422*** 0.211*** 1.627*** 0.224*** 0.341*** 2.264*** 0.354*** 0.242 *** 1.952*** 0.250 *** 

 (0.012) (0.010) (0.046) (0.010) (0.013) (0.050) (0.013) (0.012) (0.053) (0.012) 

Dependent variables  RobxWork RobxWork RobxWork       

Excluded 

Instruments 
        

  

RobxWork_Jp_Kr  0.424*** 3.183*** 0.422***       

  (0.014) (0.032) (0.014)       

Dependent variables     RobxMskill RobxMskill RobxMskill    

Excluded 

Instruments 
        

  

RobxMskill _Jp_Kr     0.759*** 2.956*** 0.750***    

     (0.013) (0.056) (0.013)    

Dependent variables     Robx_Hskill Robx_Hskill Robx_Hskill    

Excluded 

Instruments 
        

  

Robx_Hskill_Jp_Kr     0.787*** 3.515*** 0.784***    

     (0.019) (0.062) (0.019)    

Dependent variables        RobxSecEduc RobxSecEduc RobxSecEduc 

Excluded 

Instruments 
        

  

RobxSecEduc _Jp_Kr        0.498*** 3.400*** 0.487*** 

        (0.012) (0.032) (0.012) 

Dependent variables        RobxTerEduc RobxTerEduc RobxTerEduc 

Excluded 

Instruments 
        

  

RobxTerEduc _Jp_Kr        0.299*** 2.830*** 0.299*** 

        (0.016) (0.043) (0.016) 

Included 

Instruments 
Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Industry FE No Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Country x Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Region FE No Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 972,891 972,891 305,134 667,127 972,891 305,134 667,127 972,891 305,134 667,127 

Kleibergen-Paap 

Wald rk F statistic 
1234.02 311.39 734.02 354.41 211.48 238.37 479.15 203.88 518.57 233.21 

Note: Establishment level cluster-robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. The dependent variables are i) the endogenous variable Robot Exposure (Rob_exp), ii) the 

interaction Rob x Workers_30-64 (RobxWork); iii) the interactions Robots x Med_skilled (RobxMskill) and Robots x High_skilled (Robx_Hskill); iv) the interactions Robots x Secondary_education 

(RobxSecEduc) and Robots x Tertiary_Education (Robx_TerEduc). The set of excluded instruments includes average robot exposure of Japan and South Korea at the industry level and its interaction 

terms. The included instruments are all the exogenous variables reported in Table 3. Kleibergen-Paap Wald rk F statistic is a test for detecting weak instruments, that is, instruments poorly correlated 

with the endogenous variable. A rule of thumb is considering instruments as relevant (no weak) when the F statistics is above 10 (Baum et al., 2007). Total is the whole sample, High & Medium 

Cumulativeness (Hi-Cum) and Low-Cumulativeness (Low-Cum) group industries according to the Peneder's taxonomy discussed in section 3 and reported in Table 1.
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Table A.9 Group differences in Average Partial Effects estimated in Tables 3, A.2, A.3, A.4. 

Note: Establishment level cluster-robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Columns 1, 2, 4, 5, 7, 8, 10 and 11 show 

average partial effects (APEs) already reported in the tables above for the two sub-samples (groups) LowCum and HighCum. Columns 3, 6, 9 and 12 

report the group differences between APEs and their standard errors. We follow Mize, Doan and Long (2019) by assuming non-zero cross-model 

covariance and applying a SUEST method where we re-estimated simultaneously APEs for Low- and High-Cum industries. The Stata’s routine based 

on generalized structural equation modeling command gsem, that makes postestimation calculation of APEs much simpler, has been used. 

 

 

Figure A.1 Robot density in the EU-6 compared to robot density of Japan and Korea 

 
OECD Statistics, Labour Force Survey; International Federation of Robotics (IFR). Note. Robots and employment refer to 

all industries. For these aggregated figures robots are normalised by OECD employment statistics.

 APEs from Table 3 APEs from Table A.2 

 Low_Cum Hi-Cum Diff: LowCum - HighCum Low_Cum Hi-Cum Diff: LowCum - HighCum 

 (1) (2) (3) (4) (5) (6) 

Endogenous 

Variables 
      

Rob x Med_skilled 0.002*** 0.000 0.002*** 0.001*** 0.000 0.001** 

 (0.001) (0.000) (0.001) (0.000) (0.000) (0.000) 

Rob x High_skilled 0.002*** -0.001*** 0.003*** 0.000 -0.001*** 0.001*** 

 (0.001) (0.000) (0.001) (0.000) (0.000) (0.001) 

Rob x Sec_Educ 0.001*** -0.0005*** 0.002*** 0.001** -0.0003*** 0.0014*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Rob x Tert_Educ 0.001** -0.002*** 0.003*** 0.001* -0.002*** 0.003** 

 (0.001) (0.000) (0.001) (0.000) (0.000) (0.001) 

 APEs from Table A.3 APEs from Table A.4 

 Low_Cum Hi-Cum Diff: LowCum - HighCum Low_Cum Hi-Cum Diff: LowCum - HighCum 

 (7) (8) (9) (10) (11) (12) 

Endogenous 

Variables 
      

Rob x Med_skilled 0.001*** 0.000 0.001** 0.002*** -0.000 0.002*** 

 (0.000) (0.000) (0.000) (0.001) (0.000) (0.001) 

Rob x High_skilled 0.001* -0.001*** 0.002** 0.002*** -0.001*** 0.003*** 

 (0.000) (0.000) (0.000) (0.001) (0.000) (0.001) 

Rob x Sec_Educ 0.000 -0.0005*** 0.001** 0.001*** -0.0004*** 0.0014*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Rob x Tert_Educ 0.001* -0.002*** 0.003*** 0.001** -0.002*** 0.003*** 

 (0.000) (0.000) (0.001) (0.001) (0.000) (0.001) 
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i We also use additional data to normalise robots (EUKLEMS) or to perform robustness checks (Eurostat data for 

trade and national accounts, and UN Comtrade database for international trade in R&D). 
ii Although SES is conducted over many European countries, singling out our sample was the result of a trade-off among 

a number of data limitations. First, many countries included in the SES dataset do not report a sufficient industry 

breakdown for correctly mapping economic activities into High & Medium and Low-Knowledge Cumulativeness 

industries. This is the case for Denmark and Finland. Germany also falls in this group in 2006. The importance of this 

country in terms of robot adoption led us to retain it for 2010 and 2014. Second, in many Eastern European countries, 

robot adoption figures are close to zero. Third, several countries are not covered in Peneder's study (2010) on knowledge 

cumulativeness. Unfortunately, for other countries such as Sweden, that is important in terms of robot adoption, SES does 

not report data for temporary workers. Fortunately, our sample includes the biggest five economies of the former EU-28 

and, in 2014, they still account for 85% of all robots introduced in the EU-28. 
iii Following Graetz & Michaels (2018), we do not use the IFR categories 'all other manufacturing', 'all other non-

manufacturing', and 'unspecified'. This is because the bulk of robots from the latter three industries is included in 

'Unspecified' and the risk of misallocation of these robots among industries is high. We use weights based on shares of 

employees to split robots in the R&D and in the Education sectors. The motivation is that Peneder's taxonomy does not 

include Education, but covers R&D as an industry with high knowledge cumulativeness (see Table 1). 
iv Differently from Acemoglu & Restrepo (2020), our dependent variable is not the cumulated days of employment over 

years, but the probability to have a temporary job in 2006, 2010 and 2014 respectively. We assume that 10 years of robot 

exposure is a sufficient time to shape the propensity of firms to employ temporary workers. 
v Eurostat, Statistics explained, online documents, https://ec.europa.eu/eurostat/statistics-

explained/index.php?title=Glossary:High-tech  
vi Since we have a hierarchical model with different potential levels for clustering, we follow the Abadie et al. (2022) 

suggestions to decide what to cluster over and assume that besides the assignment process, the sampling process and the 

level to which the heterogeneity of treatment emerges do matter. Despite robot exposure is at country-industry level, we 

have to consider that the Structure of Earnings Survey relies on a two-stages sample design, where a stratified sample of 

local units (establishments) is drawn in the first stage, and a simple sample of employees is taken within each of the 

selected local units, in the second stage. Further, almost all our key results stem from interactions between country-by-

industry level robot exposure and individual level age, skills and education. It means that we should observe heterogeneity 

of the treatment (robot exposure) within the country-by-industry level cluster. Eventually, it is plausible to assume that, 

being other individual characteristics equal, the probability to get a temporary contract is correlated for employees within 

the same establishment/firm as result of a specific strategy conducted by companies. Even though we do not directly focus 

on the company level, we hypothesised different behaviour among companies in the same industry (see H.3b and H.3c) 

and control for their productivity dispersion (see discussion about its effects on section 5.1).  For these reasons, we 

conjecture that correlation of errors at establishment level is more important than that at the country-by-industry level.  
vii APE is the numerical derivative of the probability to get a temporary contract with respect to a variable of interest for 

each observation using the other covariates as they were observed, and then the average of all these individual marginal 

effects across the sample. 
viii In high-cum industries (Table 3, column 10), robot exposure only reduces the probability to get temporary jobs for 

high-educated workers, whereas the APE is positive for individuals with both primary (0.001) and secondary educational 

attainments (-0.0005 + 0.001=+0.0005). We do not go through this result because it is not confirmed by robustness tests 

(see Tables A.2, A.3 and A.4, columns 10). 
ix The total effect of robots for workers with secondary educational attainment (Rob x Sec_Educ) is the algebraic sum of 

the coefficients Rob_Exposure + Rob x Sec_Educ. 
x Graetz and Michaels find that, unlike ICT, automation does not polarize the labor market, since the negative effects of 

robots on hours worked by the least educated workers are no lower than those of the middle skilled.  
xi As already reported for results in Table 3, all the differences between the APEs of interest estimated across the two 

technological regimes (low- vs high-cum) in Tables A.2, A.3 and A.4, are statistically significant (see Table A.9, columns 

6, 10 and 12). 

 


