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a b s t r a c t 

The co-movement of US Treasury yields suggests a long-run equilibrium relationship. Traditional coin- 

tegrated systems need to assume that interest rates are unit roots and thus implying non-stationary 

and non-mean-reverting dynamics. We postulate and estimate a fractional cointegrated model (FCVAR) 

which allows for mean reverting though highly persistent patterns. Our results point to the existence of 

such mean-reverting fractional cointegration among Treasury yields. In terms of out-of-sample forecast- 

ing, the FCVAR soundly beats the I(0) VAR model across interest rate maturities and horizons and the I(1) 

cointegrated VAR across maturities and short-horizons. The implied US term premium –across different 

maturities– proves to be quite robust across subsamples and is less volatile than the classical I(0) station- 

ary and I(1) unit root models. Our analysis highlights the role of real factors in shaping term premium 

dynamics and is extended to the UK and Germany yield curves. 

© 2023 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

1

d

a

e

t

a

o

t

i

A

C

f

f

D

M

i

L

s

p

I

p

v

t

r

d

m

t

t

I

h

0

. Introduction 

Understanding sovereign yield curve dynamics remains a fun- 

amental topic for investors, bankers, policy makers, media and 

cademics. This explains why it keeps receiving so much inter- 

st across discussions in all these quarters. A specific source of 

erm structure attention is the joint co-movement of interest rates 

cross maturities. As Fig. 1 shows, US Treasury yields track each 

ther quite closely despite their different maturities. Why is this 

he case? 
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Many equilibrium models, such as those based on no-arbitrage, 

ropose the existence of common factors (level, slope and cur- 

ature) driving yield dynamics across all maturities. At the same 

ime, researchers and policy makers have long pointed to long- 

ates embedding expectations of short-rates. As a result, both pro- 

ucing the correct short-term forecasts and capturing the com- 

on dependence of rates across maturities is of utmost impor- 

ance. This is why empirical models keep trying to improve both 

he characterization and estimation of joint bond yield dynamics. 

ndeed, correctly exploiting this cross-sectional term structure co- 

ovement has relevant economic implications for both fiscal and 

onetary policy, term premium identification, predictability of fu- 

ure macro variables as well as banking management. 

Figure 1 also suggests a potential long-run dependence across 

he different interest rates. In the term structure literature, this be- 

aviour has been traditionally characterized via cointegration tech- 

iques (see Campbell and Shiller, 1987 for a seminal study). In 

hort, traditional cointegration imposes that all interest rates are 

nit roots or I(1) processes and that they cannot wander away 

rom each other during long periods of time. While this method- 

logy has advantages, such as exploiting this long-term relation 

cross rates, this structure imposes an un-appealing non-mean 

eversion in rates. As explained by Campbell et al. (1997) and 

iebold and Rudebusch (2013) , this implies that shocks to interest 
under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. US Treasury Yields. This figure plots the historical monthly series of zero-coupon US Treasury Yields (1-year, 3-year, 5-year and 10-year) from August 1971 to April 

2018. Shaded areas reflect NBER recession periods. 
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ates have permanent effects, despite the fact that sovereign inter- 

st rates, at least in most industrialized economies, do not exhibit 

uch behavior. Moreover, though most standard unit root methods 

annot reject the presence of unit root tests individually in the in- 

erest rate series, it is well known that these methods have very 

ow power against fractional alternatives as those used in this work 

 Diebold and Rudebusch, 1991; Hassler and Wolters, 1994; Lee and 

chmidt, 1996 , etc.). 

Therefore, capturing this joint co-movement across maturities 

nd allowing for mean-reversion dynamics seem to be desirable 

eatures in term structure models. This is what we explore and 

est in this paper, where we apply multivariate fractional cointe- 

ration techniques which allow for a flexible estimation of short 

nd long-run dynamics in the term structure of interest rates. This 

conometric model simultaneously identifies the order of integra- 

ion of rates (one, zero or a fractional number) and the potential 

xistence of one (or several) cointegration relationships. Indeed, 

hether interest rates are cointegrated, fractionally cointegrated or 

on-cointegrated is an empirical question which we tackle in this 

aper. To this end, and following empirical univariate motivation 

f the fractional integration order of Treasury yields, we estimate a 

ultivariate fractional cointegration vector auto-regressive (FCVAR) 

odel ( Johansen and Nielsen, 2012 ) with US zero-coupon yields. 

We estimate the FCVAR using four interest rates capturing 

he short, medium and long ends of the yield curve for the 

S. Our findings point at a single long-run cointegration relation 

mong the four interest rates. Our estimation results show that 

he common order of integration of the interest rates is 0.765 with 

onthly data and statistically different from zero and one. Our re- 

ults thus reject modeling yields in stationary I(0) VAR and unit- 

oot cointegration frameworks, and show that, in terms of out-of- 

ample forecasting, the FCVAR beats the I(0) VAR model across in- 

erest rate maturities and horizons and the I(1) cointegrated VAR 

cross maturities and short-horizons (less than a year). 

An implication of our results is that the common macro-finance 

hocks affecting the yield curve turn out to have transitory –rather 

han permanent– though long lasting effects on the term struc- 

ure. Our results also reject the joint modeling of interest rates 

n standard stationary vector auto-regressive systems, given that 

e estimate the order of integration to be well and significantly 

bove zero. Also, we find that there exists a single long-run equi- 

ibrium relationship along the term structure of interest rates. We 

erform separate analogous FCVAR estimations for the UK and Ger- 
2 
any and find similar results for the yields’ order of integration as 

ell as a similar long-run cointegration relation. 

Our analysis provides estimates of the term premium on long- 

erm bonds, an important object of analysis for policy makers. 

igher term premia reveal that investors require higher returns 

or long-term bonds, which point at a number of macro-finance or 

olicy risks for the economy. The term premium associated with 

ur fractional cointegrated system displays a marked degree of 

ersistence and is clearly counter-cyclical. We analyze the sources 

f our term premium dynamics and show that they diverge with 

espect to term premia implied by stationary I(0) and unit-root 

(1) models. In particular, unemployment is key to understand its 

ounter-cyclical dynamics. Finally, we compute term premia across 

ifferent maturities and show that term premia associated with 

onger maturities are non-linearly higher than medium-term ma- 

urities. 

The paper proceeds as follows. Section 2 provides an empiri- 

al univariate motivation of the fractional integration approach for 

he term structure of interest rates. Section 3 summarizes the frac- 

ional cointegration econometric framework and describes the eco- 

omic implications of this modeling strategy for the term structure 

f interest rates. Section 4 discusses the data, empirical strategy 

nd estimation procedure. Section 5 presents the empirical results 

f the paper. It shows the structure of the US yield curve, the im- 

lied term premium and its economic sources –comparing to I(0) 

nd I(1) alternatives–, and the term structure of the term premium 

cross different maturities. It also performs out-of-sample forecast- 

ng analysis of interest rates across maturities and provides es- 

imations for other international yield curves (UK and Germany). 

ection 6 concludes. 

. The yield curve order of integration: A univariate perspective 

The advantage of the fractional integration framework is that it 

llows researchers to avoid choosing the order of integration of a 

ariable ex-ante. If they choose the I(0) framework ( Wright, 2011 ), 

hey give up the possibility of meaningful cointegration relation- 

hips among interest rates. If they opt for the I(1) framework 

 Campbell and Shiller, 1987 ), they give up the relevant mean- 

eversion of interest rates. Moreover, these two classical settings 

xclude the possibility of the fractional integration order, which 

eneralizes the integration order to include fractional orders (see 

ackus and Zin, 1993 ). 
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Table 1 

Fractional Order of Integration of Yields, Spread and Curvature. 

Yields Integration Order Confidence Interval 

Y1 0.86 [0.80, 0.95] 

Y2 0.87 [0.80, 0.94] 

Y3 0.87 [0.81, 0.95] 

Y4 0.88 [0.82, 0.96] 

Y5 0.89 [0.83, 0.98] 

Y6 0.89 [0.83, 0.97] 

Y7 0.91 [0.83, 0.99] 

Y8 0.90 [0.82, 0.98] 

Y9 0.89 [0.82, 0.98] 

Y10 0.90 [0.82, 0.99] 

Y10 - Y1 0.83 [0.74, 0.94] 

2 ∗Y3 - Y10 - Y1 0.68 [0.60, 0.81] 

This table shows the estimates and 95% confidence intervals of the fractional in- 

tegration model for the 1-to-10-year Treasury yields employing the context of 

Robinson ’s (1994) testing procedure with the method of Bloomfield (1973) , which 

approximates non-parametrically the ARMA part of the interest rate process. 
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1 A more general definition of fractional cointegration allows different orders 

of integration for each individual series. See, e.g., Robinson and Marinucci (2001) , 

Robinson and Hualde (2003) and others. 
2 The use of a long-run mean term μ in the FCVAR model and its interaction with 

the initial values is not yet well established in the literature. Recent papers dis- 

cussing this issue are Johansen and Nielsen (2016) and Nielsen and Shibaev (2018) . 
In this section we develop some empirical univariate motiva- 

ion to address these two main issues: First, what is the order 

f integration of interest rates? Second, do interest rates have the 

ame integration order, lending support to a cointegration frame- 

ork (either fractional or I(1))? To this end, we estimate the order 

f integration of the US Treasury yields (from 1 to 10 years) using 

he procedure by Robinson (1994) , which allows for a fractional 

rder of integration and embeds an ARMA autocorrelation pattern 

or the error terms following Bloomfield (1973) . 

Results in Table 1 show that the integration order of the Trea- 

ury yields ranges from 0.86 to 0.90, and the confidence intervals 

xclude both 0 and 1, although the right intervals for the longer 

ates are close to 1. Importantly, integration orders are not statisti- 

ally different from each other since we cannot reject the null that 

ne order is different from another. 

These results provide motivation for our subsequent analysis, 

here we propose a fractional cointegration framework to model 

reasury yields, extract the term premium of Treasury bonds and 

erive practical policy implications. We now turn to describe the 

ractional cointegration setting before moving to model estimation 

nd results interpretation. 

. Fractional cointegration 

In this section, we first briefly outline the multivariate fractional 

ointegration framework and lay out some of its general economic 

mplications. Then we go on to motivate why fractional cointegra- 

ion can be an appropriate modeling technique for the term struc- 

ure of interest rates. 

.1. Econometric setting 

Our methodology to model term structure dynamics is based 

n the concept of long memory behavior. In Appendix A we show 

ome of the fundamentals of univariate fractional integration pro- 

esses exhibiting long memory. Essentially, fractional integration 

rocesses allow the econometrician to capture strong levels of per- 

istence even in the context of mean-reverting processes. Indeed, 

heir autocorrelation function is hyperbolic, unlike the classical ex- 

onential ones of the stationary autoregressive AR (I(0)) processes. 

his is particularly interesting in the context of interest rates –the 

bject of analysis in the current paper–, where researchers have 

evised alternative econometric techniques to capture their strong 

ersistence, in non-stationary processes. 

The natural generalization of the concept of fractional integra- 

ion to the multivariate case is the idea of fractional cointegra- 

ion. In this paper, we employ the Fractionally Cointegrated Vec- 
3 
or AutoRegressive (FCVAR) model introduced by Johansen and 

ielsen (2012) . This method is used to determine the long-run 

quilibrium relationship between series. Given two real numbers 

, b, the components of the vector z t are said to be cointegrated 

f order d, b, denoted z t ∼ CI(d, b) , if all the components of z t 
re I(d) and there exists a vector a � = 0 such that s t = a ′ z t ∼
(d − b) , b > 0 . 1 The Fractionally Cointegrated Vector AutoRegres- 

ive (FCVAR) model introduced by Johansen (2008) and further 

xpanded by Johansen and Nielsen (2010, 2012) is a generaliza- 

ion of Johansen (1995) Cointegrated Vector AutoRegressive (CVAR) 

odel which allows for fractional processes of order d that cointe- 

rate to order d − b ( b > 0 ). In order to introduce the FCVAR model,

e refer first to the well-known, non-fractional, CVAR model. Let 

 t , t = 1 , . . . T be a p-dimensional I(1) time series vector. The CVAR

odel is: 

X t = α∗β∗′ X t−1 + 

k ∑ 

i =1 

�∗
i �X t−i + ε t 

= α∗β∗′ LX t + 

k ∑ 

i =1 

�∗
i �L i X t + ε t , (1) 

here � refers to the first difference operator, i.e., � = (1 − L ) , α∗

s the vector or matrix of adjustment parameters, β∗ is the vector 

r matrix of cointegrating vectors and the sequence of matrices �∗
i 

overns the short-run I(0) VAR dynamics. The simplest way to de- 

ive the FCVAR model is to replace the difference and lag operators 

and L in (1) by their fractional counterparts, �b and L b = 1 − �b , 

espectively. We then obtain: 

b X t = αβ ′ L b X t + 

k ∑ 

i =1 

�i �
b L i b X t + ε t , (2) 

hich is applied to X t = �d−b (Y t − μ) , where Y t is the p × 1 vec-

or of our series of interest and μ is a level parameter vector 

hich accommodates a non-zero starting point for the first obser- 

ation on the process. 2 α, β, � have an analogous interpretation to 
∗, β∗, �∗ in (1) but they only coincide under d = b = 1 . We there-

ore have that: 

d (Y t − μ) = αβ ′ L b �d−b (Y t − μ) + 

k ∑ 

i =1 

�i �
d L i b (Y t − μ) + ε t , (3) 

here ε t is p-dimensional independent and identically distributed 

ith mean zero and covariance matrix �. The parameters have the 

sual interpretations known from the CVAR model. In particular, 

and β are p × r matrices, where 0 ≤ r ≤ p. The columns of β
re the cointegrating relationships in the system, that is to say the 

ong-run equilibria. The parameters �i govern the short-run behav- 

or of the variables –with k being the lag length of the VAR– and 

he coefficients in α represent the speed of adjustment towards 

quilibrium for each of the variables. Thus, the FCVAR model per- 

its simultaneous modelling of the long-run equilibria, the adjust- 

ent responses to deviations from the equilibria and the short- 

un dynamics of the system. Notice that the cointegration intu- 

tion in the fractional case is analogous to the I(1) case, i.e. that 

here is a long-run relation among the variables. In Johansen and 

ielsen (2012) and Nielsen and Popiel (2016) one can find estima- 

ion and inference explanations of the model, and the latter pro- 

ides Matlab computer programs for the calculation of estimators 

nd test statistics. 
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.2. Why an FCVAR model for the yield curve? 

We now discuss several features of the FCVAR to model yield 

urve dynamics. The first one is model generality and flexibility. 

he FCVAR model lets the data at the same time (i) determine the 

rder of integration of interest rates –without having to resort to 

nit root or fractional integration pre-testing on the order of in- 

egration ex-ante (with the well-known lack of statistical power 

f unit root tests)– and (ii) estimate the joint multivariate model 

ynamics allowing for the combination of short and long-memory 

ynamics. In particular, the FCVAR can accommodate fractional 

ntegration. Empirically, several authors have shown that interest 

ates tend to display significant fractional integration dynamics, 

s found in Backus and Zin (1993) , Gil-Alana and Moreno (2011) ,

sterrieder (2013) , Abbritti et al. (2016) and Golinski and Zaffa- 

oni (2016) , among many others. Theoretically, and inspired by the 

ork of Robinson (1978) and Granger (1980) , Altissimo and Zaffa- 

oni (2009) show that aggregation of sub-indices can explain in- 

ation persistence. If aggregation explains fractional integration in 

nflation, then interest rates can all inherit fractional integration 

ue to standard inflation targeting strategies by monetary policy 

akers. 

Second, the proposed FCVAR model also allows for explicit 

ong-run relations among the yields since it endogenously esti- 

ates the (potential) cointegration relationships among the yields. 

(1)-cointegration has been proposed in the term structure lit- 

rature by several authors, such as Campbell and Shiller (1987) , 

ieslak and Povala (2015) and Bauer and Rudebusch (2020) . The 

dvantage of our model is that the FCVAR accommodates coin- 

egration without the need to assume I(1) dynamics for inter- 

st rates, since interest rates can be cointegrated and individually 

ean-reverting. In sum, given the separate evidence of fractional 

ntegration for yields and cointegration, it seems sensible to fea- 

ure them jointly in order to capture the correct joint yield dy- 

amics. 

Third, by identifying the actual integration order of the vari- 

bles and the potential cointegration relations, it avoids potentially 

mportant mis-specifications in key policy objects, such as the term 

remium, as we show in the paper. In particular, letting the data 

hoose the order of integration represents an important advan- 

age, avoiding the risk of over/under-differencing the variables. As 

hown by Cochrane and Piazzesi (2008) , by assuming I(1) cointe- 

ration or an I(0) VAR model, we may be mis-specifying the model 

stimates, parameters, test restrictions and implied dynamics, such 

s the term premium. This has become a very relevant issue in 

ecent times, as both academics and policy makers strive to under- 

tand the effects of quantitative easing policies (and subsequent ta- 

ering) on term premium dynamics (see Yellen, 2017 , among oth- 

rs). 

One limitation of the FCVAR model is that it is a model for in-

ividual interest rates (4 in our case, as we show below) and not 

or the entire yield curve. It is thus different from popular mod- 

ls, such as the affine term structure models which model the full 

ield curve. Despite this fact, our model includes information on 

he short, medium and long ends of the yield curve, thus incorpo- 

ating a wealth of macro-finance information to identify the expec- 

ations of the short-rate and thus the term premium. By including 

he cointegration relation, it accounts for long-run co-movements 

cross interest rates, providing an interesting economic interpreta- 

ion. Moreover, as shown below, the FCVAR out-of-sample forecasts 

f interest rates are better than the I(0)VAR (across maturities and 

orecast horizons) and the I(1) CVAR models (across maturities and 

hort forecast horizons). 

Of course, there are other alternative interesting techniques for 

odeling interest rates. One of them is regime switching (see 

ng and Bekaert, 2002 and Baele et al., 2015 , among others). 
4

egime switching has the appealing feature of allowing shifts in 

eaningful key reduced-form or policy parameters, such as the re- 

ction to inflation deviations from target or changes in interest rate 

nertia induced by financial stability purposes. These shifts influ- 

nce the whole term structure, thus shaping joint yield dynamics. 

hile the fractional cointegration approach does not model these 

arameter shifts, it can be consistent with regime switching dy- 

amics. Indeed, as explained by Diebold and Inoue (2001) , the dy- 

amics of fractional integration and regime switching are easily 

onfused, with fractional integration being able to capture some 

f the embedded autocorrelations derived from regime switching 

rocesses. 

Another interesting modeling alternative for interest rate is the 

ne based on “near-cointegration” proposed in Jardet et al. (2013) . 

hey propose a no-arbitrage term structure model that takes into 

ccount the persistence of the variables (short-rate, the spread be- 

ween the long and the short rates, and GDP growth) by using a 

near cointegration” approach. Using this method, they still impose 

nteger degrees of differentiation, not taking into account the pos- 

ibility of fractional values, unlike in the present work. 

. Data and estimation 

In our empirical work, we employ monthly series correspond- 

ng to the U.S. Treasury Yield Curve. The data was obtained online 

rom the work by Gürkaynak et al. (2007) . Their yield curve esti- 

ates are updated periodically and provide a benchmark US Trea- 

ury zero-coupon yield curve. In our extension to other countries, 

e use publicly available yields from Germany and the UK. Our 

aseline specification includes four series, namely the one, three, 

ve and ten year Treasury yields. In this way, our data vector Y t 
ncludes information about the short, medium and long end of 

he yield curve. By including different parts of the term structure, 

ur model captures key macro-finance information, including fu- 

ure economic and financial expectations. Our dataset covers ob- 

ervations from August 1971 up to April 2018. Figure 1 shows the 

ynamics of the four interest rates for our sample period. 

In terms of estimation, we proceed as follows: We first assume 

hat a sample of length T + N is available on Y t , where N denotes

he number of observations used for conditioning. As shown in 

ohansen and Nielsen (2012) , model (3) can be estimated by con- 

itional maximum likelihood, conditioned on N initial values, by 

aximizing the following function: 

og L T ( λ) = −T 

2 

( log ( 2 π) + 1 ) 

− T 

2 

log det 

{ 

T −1 
T + N ∑ 

t= N+1 

ε t ( λ) ε t ( λ) 
′ 
} 

. (4) 

or model (3) the residuals are: 

 t ( λ) = �d ( Y t − μ) − αβ
′ 
�d−b L b ( Y t − μ) −

k ∑ 

i =1 

�i �
d L i b ( Y t − μ) , 

(5) 

ith λ = (d, b, μ′ , vec (α) ′ , vec (β) ′ , vec (�1 ) 
′ . . . vec (�k ) 

′ ) ′ . 
t is shown in Johansen and Nielsen (2012) and 

olatabadi et al. (2016) that, for fixed (d, b) , the estimation 

f model (3) is carried out as in Johansen (1995) . In this way

he parameters μ, α, β, �1 . . . �k can be concentrated out of the 

ikelihood function. Then we only need to optimize the profile 

ikelihood function over the two fractional parameters, d and 

. As explained by Johansen and Nielsen (2018) , the likelihood 

atio test of the usual CVAR is asymptotically χ2 (2) and the 

ikelihood ratio test of the hypothesis that d = b in the fractional 

odel is asymptotically χ2 (1) . Hence these tests are very easy to 
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Table 2 

LR Test, US Treasury Yields, d = b v/s d � = b. 

Unrestricted log-like: 1361.136 

Restricted log-like: 1357.200 

LR statistic: 7.873 

p-value (Bootstrap): 0.183 

This table shows the bootstrap results of the Likelihood Ratio (LR) Test, testing the 

likelihood of the FCVAR model with d different from b and the FCVAR model with 

the restricted model where d = b. 

Table 3 

LR Test, US Treasury Yields, CVAR v/s FCVAR. 

Unrestricted log-like: 1357.200 

Restricted log-like: 1345.663 

LR statistic: 23.073 

p-value (Bootstrap): 0.003 

This table shows the bootstrap results of the Likelihood Ratio (LR) Test, testing the 

likelihood of the FCVAR model vis à vis the I(1) CVAR model. 

Table 4 

Cointegrating Rank Test, US Treasury Yields. 

Rank Log-Likelihood LR statistic 

0 1343.603 60.193 

1 1361.136 25.127 

2 1371.076 5.248 

3 1372.619 2.162 

4 1373.700 —- 

This table shows the results of the cointegrating rank test for the FCVAR model. In 

bold, the selected cointegration rank. 
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mplement and can be calculated using the software package of 

ielsen and Popiel (2016) 

. Empirical results 

In this section we present and discuss the first empirical re- 

ults of the paper. We first show the estimates of the FCVAR model 

nd discuss the long-run dynamic implications for yields. We then 

xtract the FCVAR-forward term premium, compare it with alter- 

ative I(0) and I(1) counterparts and provide an interpretation of 

ts underlying economic sources. We also derive results on the im- 

lied term structure of yield term premia and provide subsample 

nalysis. In a subsequent out-of-sample analysis, we show that our 

CVAR model outperforms the I(0) VAR model at all horizons. It 

lso outperforms the CVAR when the forecast horizon is approxi- 

ately below 1 year, while it does equally well for longer horizons. 

n the last subsection, we estimate the FCVAR and obtain the im- 

lied forward term premia for two additional yield curves: UK and 

ermany. 

.1. Baseline estimates 

.1.1. FCVAR orders of integration 

The dataset in Gürkaynak et al. (2007) provides daily data of 

reasury yields from maturities 1-year to 30 years. To capture 

ome relevant maturities at the short, medium and long end of 

he yield curve, we work with the 1-year ( i (12) 
t ), 3-year ( i (36) 

t ), 5-

ear ( i (60) 
t ) and 10-year ( i (120) 

t ) US Treasury yields. 3 We work with

he monthly frequency, as results can then be related to key macro 

ariables, such as unemployment, consumer inflation or industrial 

roduction. We use end-of-the-month interest rate observations 

ver each month to construct the monthly dataset, which spans 

he August 1971-April 2018 sample period. 

We proceed as follows. We first run the FCVAR unrestricted and 

hen estimate the model assuming that d = b. This second model 

s a relevant one, as it implies that the cointegration residual is 

he classical I(0).When we run the unrestricted FCVAR system, we 

btain the following estimated model: 

0 . 756 (Y t − μ) = αβ ′ L 1 . 184 �
0 . 756 −1 . 184 (Y t − μ) 

+ 

k ∑ 

i =1 

�i �
0 . 756 L i 1 . 184 (Y t − μ) + ε t . (6) 

esults are based on a VAR(1) for short-run dynamics ( k = 1 ), as

elected by the Hannan-Quinn criterion. 4 The parameter d is esti- 

ated to be 0.756 (with standard deviation 0.034) and the param- 

ter b is estimated to be 1.184 (with standard deviation 0.087). 5 

his implies that the error term displays anti-persistence, being 

herefore stationary and with the shocks reverting more often than 

hose expected from a random series. When we impose that d = b, 

e obtain the following results: 

0 . 765 (Y t − μ) = αβ ′ L 0 . 765 (Y t − μ) 

+ 

k ∑ 

i =1 

�i �
0 . 765 L i 0 . 765 (Y t − μ) + ε t . (7) 
3 By using the 1-year interest rate as the short-term interest rate, our term pre- 

ium is an approximation to the true term premium, as the riskless rate is the 

-month interest rate. 
4 Other likelihood criteria, such as AIC and BIC, produced the same result. This is 

 relevant issue noting that the FCVAR model can suffer from identification issues 

hen the number of lags is unknown (see Carlini and Santucci de Magistris, 2017 ). 
5 This large number can be a consequence of the conditioning on few initial val- 

es, although the conclusions of our study seem not to be affected by this large 

umber. 
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he estimates imply a unique fractional cointegration relation with 

= 0.765 –very similar to our benchmark 0.756– and a standard de- 

iation of 0.050, with a 95% confidence interval including the set 

0.688, 0.824). Given the similarity of the estimates, we now assess 

tatistically the restriction d = b. A likelihood ratio (LR) test com- 

aring the likelihoods of the unrestricted model ( d � = b) and the

estricted model ( d = b), has a p-value of 0.014. However, it could 

e the case that this test overejects due to size distortions. Hence, 

e run a bootstrap simulation of the likelihood ratio test. When 

e run this small-sample study, we indeed find that one cannot 

eject that d = b ( p-value = 0.183) –see Table 2 –. Table 3 also shows

he results of a small-sample LR test which reveals that the I(1) 

VAR is rejected in favor of the FCVAR. Hence, throughout the pa- 

er, we show the results implied by the model under d = b. We

ote however, that subsequent results turn out quite similar under 

oth specifications. 

Table 4 reports the cointegrating rank test –analogous to a coin- 

egration test– and identifies a single long-run cointegration rela- 

ion for interest rates. In turn, the alternative of not having a coin- 

egrating relationship is clearly rejected. Hence, the FCVAR model 

s validated. Finally, the level parameter μ (with associated stan- 

ard errors in parentheses) is estimated at: 

ˆ = 

[
5 . 254 5 . 769 6 . 010 6 . 123 

(0 . 440) (0 . 377) (0 . 341) (0 . 308) 

]′ 

.1.2. FCVAR long-run analysis 

The estimated single long-run fractional cointegra- 

ion vector for the US term structure implies that ˆ β = 

 

1 . 0 0 0 , −3 . 314 , 3 . 240 , −0 . 903 ] 
′ , where the elements of 

his vector are associated with the 1, 3, 5 and 10-year bond rates, 

espectively. Thus, while loadings on the medium end of the yield 

urve are more than twice higher than those in the short and long 

nds, the sum of the four loadings is close to zero. Our estimates 

hus imply the existence of three stochastic trends and one cointe- 

ration relationship. While there are alternative underlying models 
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Table 5 

Forward Term Premium, Risk Neutral Rate: Descriptive Statistics. 

Variable Mean St.dev. 

I(0)-VAR Risk neutral rate 5.011 1.351 

Forward Term Premium 2.030 1.741 

I(1)-CVAR Risk neutral rate 5.212 3.628 

Forward Term Premium 1.802 1.750 

FCVAR Risk neutral rate 5.366 2.964 

Forward Term Premium 1.648 1.190 

This table shows the mean and standard deviation of the forward term premium 

and risk neutral rates implied by the three alternative term structure models. 
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6 The forward term premium (as well as the yield term premium defined below) 

embeds a convexity term, given that our model is homoscedastic. This convexity 

term, which depends on the maturity of the term premium, is constant and there- 

fore does not affect the term premium dynamics. 
onsistent with our results, Appendix B shows an example where 

ach of the three yields loads on a different set of stochastic 

rends. While one of the stochastic trend affects all yields, the 

ifferent combinations of stochastic trends make these three yields 

isplay three different stochastic trends themselves. The fourth 

ield, in turn, is a linear combination of the other three yields and 

his combination is precisely the long-run cointegration relation 

mong the yields. The finding of this single long-run cointegration 

ector –together with this model setting– is consistent with the 

xistence of an underlying stochastic trend affecting all yields and 

riggering long-run parallel shifts in the yield curve –similar to the 

lassical level factor in the term structure literature–. Additionally, 

his model accommodates two alternative underlying stochastic 

rends which can cause permanent shifts in the yield curve slope 

nd curvature. This is consistent with our univariate estimation of 

he fractional integration order of the spread and the curvature 

see last two rows of Table 1 ), which are estimated to be 0.83 and

.68, both statistically different from 0 and 1. 

The corresponding speed of adjustment vector is estimated at: 

ˆ = 

[
0 . 111 0 . 229 0 . 253 0 . 283 

(0 . 102) (0 . 089) (0 . 083) (0 . 075) 

]′ 

As a result, the implied speed of adjustment with respect to 

eviations from the long-run relationship is the fastest (and sta- 

istically significant, given the standard deviation) for the 10-year 

ate. In contrast, the 1-year rate adjustment to deviations from 

his fractional cointegration is very sticky, almost null (and statisti- 

ally non-significant, given the standard deviation). The short-rate 

hus tends to be less driven by the long-run relation among rates 

nd more influenced by its own short-run dynamics, at least at 

igh frequencies. So, shocks affecting specifically the medium and 

ong-end of the yield curve –and which generate deviations from 

he long-run relationship– are transmitted to the short-rate very 

lowly, while specific shocks affecting the short and medium ends 

f the yield curve –and, again, to the extent that they generate de- 

iations from the long-run relationship– are transmitted to the 10- 

ear rate relatively fast. 

.1.3. Robustness analysis: Integration order across yields 

By construction, one restriction of the FCVAR model is that it 

onstrains all the Treasury yields to have the exact same integra- 

ion order. One may argue that yields could have different inte- 

ration orders and thus should not be cointegrated. We entertain 

his possibility and estimate an alternative Fractional VAR model, 

hich allows for different integration orders across yields. In par- 

icular, we estimate a VARFIMA(1, D ,0), i.e. allowing for a first order 

AR without any MA part, and fractional dynamics ( D is a 4 × 4

iagonal matrix where each entry includes the (potentially) frac- 

ional order of integration of each yield). Our estimates imply that 

he orders of integration are (with standard errors in parentheses) 

.771 (0.076), 0.783 (0.0 65), 0.799 (0.0 61) and 0.823 (0.059) for the 

, 3, 5 and 10-year yields, respectively. We cannot statistically re- 

ect that the parameters are the same, thus lending support to the 

CVAR specification. Moreover, neither of these values is signifi- 

antly different from the FCVAR estimate of the common integra- 

ion order, which is 0.765. 

.2. Term premium analysis 

Once we have determined that Treasury yields are fractionally 

ointegrated, we can examine the implied forward term premium. 

ollowing Wright (2011) , we compute the forward term premium 

s the model-implied five-to-ten-year forward rate minus the av- 

rage expected one-year interest rate from five to ten years hence: 
6 
f t p t = f (120 −60) 
t − 1 

5 

E t 

9 ∑ 

j=5 

i (12) 
t+12 j 

. (8) 

ased on the estimates of our FCVAR model, we can identify the 

mplied baseline forward term premium ( f t p t ). 
6 This is plotted in 

ig. 2 . As the figure shows, the implied forward term premium is 

arkedly counter-cyclical and no clear trend emerges. While the 

orward term premium is positive during most of the sample pe- 

iod, it also displays low negative values at the end of the 70s and 

eginning of the 80s (reaching values around -0.5%). During the 

ecent 2008 financial crisis, the forward term premium also in- 

reased to values higher than 3%, but it has declined since then, 

ith forward term premium levels below 1% by the end of the 

ample. 

Table 5 shows the mean and standard deviation of the forward 

erm premia and risk-neutral rates implied by the I(0)-VAR, I(1)- 

VAR and FCVAR models, respectively. The I(0)-VAR model gener- 

tes the least variable risk neutral rate, due to the fast mean re- 

ersion of forward-looking expectations. The opposite is the case 

or the CVAR model, where expectations are the most volatile. The 

CVAR model is the one which clearly delivers the most stable 

orward term premium in terms of standard deviation (one third 

ower than the CVAR and I(0)-VAR counterparts). Its mean is also 

he lowest, 20 and 40 basis points lower than the CVAR and I(0)- 

AR models, respectively. Table 6 shows the correlation of the for- 

ard term premia and risk-neutral rates with four macro variables: 

ederal Funds rate, unemployment, industrial production growth 

nd the forward term premium itself. While the FCVAR and the 

VAR forward term premia display a negative correlation with the 

ederal Funds rate, this correlation is positive for the I(0)-VAR. 

lso, the risk-neutral rates implied by the FCVAR and the CVAR 

ave a negative correlation with their respective forward term pre- 

ia, whereas the opposite is the case for the I(0)-VAR. All term 

remia have a positive correlation with unemployment, a theme 

e revisit below. 

The top graph in Fig. 3 plots the forward term premia implied 

y the following three models: FCVAR, I(0) VAR and I(1) CVAR. It 

hows how the I(0)-implied forward term premium is substantially 

igher during the early 80s and becomes increasingly negative 

ince 2015. The differences are quite sizable during some periods. 

he I(0)-implied forward term premium is higher than the FCVAR- 

erm premium from 1976 to 1995 (reaching a difference of almost 

% in the early 80s). This gap exhibits a downward trend, reveal- 

ng the downward trend in the I(0) implied forward term premium 

uring the first part of the sample. The downward trend in the 

(0)-implied forward term premium thus reveals the challenge that 

(0) models face when describing the true counter-cyclical nature 

f the forward term premium (see, e.g., Bauer et al., 2012 small- 
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Fig. 2. Forward Term Premium FCVAR. This figure plots the monthly 10-5 forward term premium implied by the FCVAR. Shaded areas reflect NBER recession periods. 

Table 6 

Forward Term Premium, Risk Neutral Rate: Descriptive Statistics. 

Variable Corr w/FFR Corr w/ftp Corr w/unempl Corr w/ � Y 

I(0)-VAR Risk neutral rate 0.936 0.503 -0.024 0.190 

Forward Term Premium 0.564 1 0.578 -0.059 

I(1)-CVAR Risk neutral rate 0.981 -0.709 0.096 0.106 

Forward Term Premium -0.749 1 0.358 -0.132 

FCVAR Risk neutral rate 0.968 -0.422 0.134 0.069 

Forward Term Premium -0.524 1 0.484 -0.042 

This table shows the correlations of the three alternative forward term premia and risk neutral rates with 

several macro-finance variables: Federal Funds Rate, forward term premium, unemployment and industrial 

production growth, respectively. 
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ample analysis of I(0)-type models). In contrast to the I(0)-implied 

odel, the CVAR-implied forward term premium is lower than the 

CVAR-implied one during most of the first 15 years of the sam- 

le. This difference reaches its maximum value in the last years 

f the 70s and the first years of the 80s (reaching beyond -3%), 

hen Treasury yields were especially volatile due to monetary pol- 

cy tightening in an era of high inflation rates. 
ig. 3. Differences in Forward Term Premium: I(0) and CVAR v/s FCVAR. This figure plots

reas reflect NBER recession periods. 

7

By the last years of the sample –at the time of policy rates 

lose to the zero lower bound–, important differences remain and 

hey have different signs depending on the model at hand: Around 

.5% higher in the CVAR and around 2% lower in the I(0) VAR. The 

rst column of Fig. 4 examines the patterns in the 1-year rate ex- 

ectations for the three models during the post-2006 period for 

hree alternative horizons (1-year, 5-year and 10-year). Differences 
 the three monthly 10-5 forward term premia (CVAR, FCVAR and I(0)-VAR). Shaded 
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Fig. 4. Differences in Long-Term Expectations, Forward Term Premium and Risk-Neutral Rates: I(0) and CVAR v/s FCVAR. The graphs in the left column show the long-term 

expectations of the 1-year rate implied by the three models (I(0)-VAR, I(1)-CVAR and FCVAR (I(d))) for different horizons (1-year, 5-years and 10-years ahead), whereas those 

in the right column plots the implied forward term premium and risk-neutral rates across the three models together with the 10-5-year forward rate. 
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Table 7 

Forward Term Premium Drivers: Multiple Regression Model. 

1990m4-2018m4 FTP I(0) FTP I(1) FTP FCVAR 

Constant -5.87 ∗∗∗ -0.47 -0.56 

(0.91) (0.58) (0.47) 

Long-run Inflation Disagreement 1.87 ∗∗∗ -0.58 ∗∗∗ -0.25 

(0.28) (0.21) (0.17) 

Unemployment Rate 0.25 ∗∗∗ 0.77 ∗∗∗ 0.54 ∗∗∗

(0.07) (0.06) (0.06) 

Recession dummy 0.29 0.63 ∗∗ 0.08 

(0.25) (0.28) (0.17) 

Adj. R2 0.45 0.59 0.50 

This table shows the result of the simple OLS regressions of the alternative forward 

term premium on macro-finance variables. Newey-West-corrected standard errors 

appear in parentheses. 
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re striking. While the I(0) model produces long-run (10-year) ex- 

ectations above 4% (close to the full sample average) –implying a 

egative term premium by the end of the sample (see top graph in 

he second column of Fig. 4 )–, the opposite is the case for the I(1)-

VAR, where implied expectations are very close to zero (in fact 

hey are negative during almost three years!). The FCVAR-implied 

ong-run expectations are between 1 and 2%, showing a realistic 

low mean reversion in the context of a slow economic recovery. 

n sum, our FCVAR-identified forward term premium is less volatile 

han its I(0) and CVAR counterparts. Our analysis shows that this 

s due to the fact that the I(0) model impinges too little volatil- 

ty to the risk-neutral rate, whereas the CVAR imparts too much 

olatility. 

Theoretical and empirical research identifies two main reasons 

ehind an increase in term premia: On the one hand, an increase 

n inflation uncertainty (see, e.g., Wright, 2011 ) and on the other 

n increase in economic risk (see e.g. Bauer et al., 2012 ). Thus, a

orrect identification of the term premium is crucial for an un- 

erstanding of the economic forces behind term premium dynam- 

cs as well as for the appropriate policy response. In fact, these 

wo risk factors call for opposite monetary policy response: Cen- 

ral banks should increase interest rates if increasing risk premia 

eflect inflation uncertainty, while they should reduce them when 

 spike in term premia reflects economic and financial risk (see 

elated comments in Bernanke, 2006 ). It is therefore quite impor- 

ant to understand which one is likely to be the dominating factor 

ehind eventual term premium increases. 

To shed some light on this issue, we follow, e.g, Backus and 

right (2007) , Gagnon et al. (2011) , and Wright (2011) , which in-

roduce the following ordinary least squares regression model so as 

o explain historical time variation in the forward term premium: 

f t p t = α + βx t + ηt , (9) 
8 
here f t p t is a measure of the forward term premium –I(0)- 

AR, FCVAR or CVAR–, x t denotes a vector of regressors and ηt 

s the error term. In practice, we will consider two models. In 

he first model, which is very similar to the ones in Backus and 

right (2007) , Wright (2011) and Bauer et al. (2012) , we regress 

he forward term premium on measures of inflation uncertainty 

nd real economic activity. Specifically, we measure inflation un- 

ertainty with the long-run inflation disagreement series measured 

y the Michigan Survey of Consumers, which captures the in- 

erquartile range of five-to ten-year-ahead inflation expectations. 

usiness cycle uncertainty is captured with the unemployment rate 

nd an NBER recession dummy. 

We compare in Table 7 the results obtained with the I(0)-VAR 

P, the CVAR and the FCVAR term premium. The dimension of the 

ull sample, which starts in April 1990 and finishes in April 2018, 

s constrained by the availability of the long-run inflation disagree- 

ent series. We find that the correct identification of the persis- 
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Table 8 

Forward Term Premium Drivers: Alternative Model. 

1990m4-2017m12 FTP I(0) FTP I(1) FTP FCVAR 

Constant -5.56 ∗∗∗ 0.46 0.08 

(0.89) (0.57) (0.46) 

Long-run Inflation Disagreement 2.28 ∗∗∗ 0.65 ∗∗∗ 0.61 ∗∗

(0.30) (0.19) (0.15) 

Unemployment Residual 0.25 ∗∗∗ 0.77 ∗∗∗ 0.54 ∗∗∗

(0.07) (0.06) (0.06) 

Recession dummy 0.29 0.63 ∗∗ 0.08 

(0.25) (0.28) (0.19) 

Adj. R2 0.45 0.59 0.50 

This table shows the result of the OLS regressions of the alternative forward term 

premium on macro-finance variables. The Unemployment Residual variable is the 

residual of the unemployment rate regression on a constant and long-run inflation 

disagreement. Newey-West-corrected standard errors appear in parentheses. 
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ence of the forward term premium has a strong influence in their 

nterpretation. While the stationary I(0) forward term premium is 

trongly positively related to inflation uncertainty, the opposite is 

he case for the unit root-I(1) forward term premium, as the condi- 

ional correlation with inflation uncertainty is negative. In contrast, 

he results of the FCVAR model show no evidence of correlation 

ith our measure of inflation uncertainty. 

The differences between the results obtained with the station- 

ry I(0) model and the ones of the I(1) and FCVAR alternatives are 

ue to the implied volatility of the risk neutral rate. As explained 

y Bauer et al. (2012) , the stationary I(0) model implies too fast 

ean reversion of expected interest rates and too little volatility 

f the risk neutral rate. As a consequence, the term premium iden- 

ified with the I(0) model inherits the trend of nominal interest 

ates, which is in turn related to the downward inflation trend. In 

he I(1) and FCVAR specifications, instead, the risk neutral rates re- 

pond much more to changes in the short rate, and the implied 

erm premium does not inherit the downward trend of nominal 

nterest rates and inflation. Interestingly, the recession dummy is 

ignificant in the I(1) model but not in the FCVAR model. 

To control for the correlation between unemployment and in- 

ation uncertainty, we correct the baseline regression by substi- 

uting the unemployment variable for the residuals of the unem- 

loyment regression on a constant and long-run inflation disagree- 

ent. Table 8 shows the associated results. In this instance, long- 

un inflation disagreement enters also significantly in the term 

remium regressions for the FCVAR and CVAR models, but this 

elationship is weaker and less robust, and appears to be domi- 

ated by the strong relationship between term premium and un- 

mployment rates. Overall, our results are in line with the findings 

f Bauer et al. (2012) , who claim that a more precise estimation 

f the persistence of interest rates is crucial to avoid too fast mean 

eversion of expected interest rates and thus an underestimation of 

isk neutral rates. While these regression specifications are admit- 

edly very simple, their insights carry over to regression models 

ith additional controls considered by Gagnon et al. (2011) (core 
ig. 5. Term Structure of Yield Term Premia: FCVAR. The top figure shows the FCVAR-im

ield term premia following equation (10). The bottom figure plots the associated risk-neu

9 
CE inflation, interest rate volatility and the Economic Policy Un- 

ertainty index of Baker et al., 2016 ). 

We now turn to analyze the term structure of the term premia. 

or our baseline analysis, we have chosen a standard forward term 

remium (the difference between the five-to-ten-year forward rate 

nd the average of the five expected 1-year rates 5 years hence), 

ut we can alternatively compute the three following yield term 

remia based on a standard decomposition: 

t p (n ) 
t = i (12 n ) 

t − 1 

n 

E t 

n −1 ∑ 

j=0 

i (12) 
t+12 j 

, (10) 

here n can be equal to 3, 5 or 10 years. Figure 5 shows these

hree yield term premia together with the baseline one. Results are 

uite sensible and reveal three key features. First, the yield term 

remia are highly correlated and clearly counter-cyclical. Second, 

ield term premia associated with longer maturities are higher 

han shorter maturities. Third, differences across yield term premia 

re clearly non-linear: They become larger at high values across 

erm premia. 
plied yield term premia computed at different maturities, ie. the 3, 5 and 10-year 

tral rates. 
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Fig. 6. Term Structure of Yield Term Premia: VAR, FCVAR, CVAR. The top figure shows the term structure of yield term premia for the (from left to right) FCVAR, I(0)VAR and 

I(1) CVAR models. The yield term premia are computed at different maturities, ie. the 3, 5 and 10-year yield term premia following equation (10). The bottom figure plots 

the associated risk-neutral rates. 

Fig. 7. Yield Term Premium Comparison Across Models. This Figure compares our FCVAR-implied yield term premium with those by Kim and Wright (2005) (YTP KW) and 

Adrian et al. (2013) (YTP ACM). All term premia are 10-year yield term premia. Shaded areas reflect NBER recession periods. 
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We shed further light on the term structure of yield term pre- 

ia by graphing the 3 term premia for the 3 models (FCVAR, I(1)- 

VAR, I(0) VAR), together with the associated risk-neutral rates. 

esults are shown in Fig. 6 . Overall, the yield term premia esti- 

ated by the FCVAR display less volatility than the other 2 sets of 

ounterparts. The I(0) VAR-implied yield term premia all display a 

lear downward trend, with very large differences across yield pre- 

ia during some periods, such as the 1980s. The I(1) CVAR-implied 

ield term premia display counter-cyclical dynamics but take unre- 

listic negative values in the 1970s. 
10 
Figure 7 compares our FCVAR-implied yield term premium with 

hose by Kim and Wright (2005) and Adrian et al. (2013) . This 

omparison is done for the 10-year term premium (YTP10), which 

s available from these authors. The figure shows that our implied 

erm premium presents a clearer countercyclical pattern than the 

ther two term premia. These alternative term premia display a 

lear downward trend starting in the early 80s and continuing in 

he 90s (this is also the case in the term premium derived by 

right, 2011 ). This is due to the fact that these two term pre-

ia are based on an I(0) model for the factors –which we reject 
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Fig. 8. Forward Term Premium Subsample Stability: FCVAR. This figure compares the baseline full sample term premium (10-5 forward term premium) with that associated 

with other subsamples: Pre-2008 (top graph), post-1979 (medium graph) and post-1990 (bottom graph). 
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n statistical grounds–. As a result, their long-term expectations of 

he short-rate are quite flat and most of the secular drop of the 

ong-rate is attributed to the term premium. This is an important 

ifference between our term premium and the other two which 

e also address throughout the paper (see also this point raised 

n Bauer et al., 2012 , through a small-sample analysis of the I(0) 

AR). 
ig. 9. Forward Term Premium Subsample Stability: FCVAR, VAR, CVAR. This figure com

hat associated with other subsamples: FCVAR (top graph), I(0) VAR (medium graph) and

erm premium with the pre-2008 and the post-1990 counterparts. 

11 
As a last exercise in this subsection, we derive the forward term 

remium for alternative subsamples. One potential limitation of 

oth forward and yield term premium computations is that they 

ay be quite sensitive to sample selection. We now elaborate on 

his point and compare our results with those of the two alterna- 

ive forward term premia (I(1)-CVAR and I(0) VAR). Figure 8 shows 

he baseline forward term premia implied by our FCVAR model 
pares the baseline full sample term premium (10-5 forward term premium) with 

 I(1) CVAR (bottom graph). Each graph compares the full sample baseline forward 
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Fig. 10. Forward Term Premia: UK, Germany (FCVAR, I(0) VAR, I(1) CVAR). This figure plots the baseline implied term premia (10-5 forward term premia) across models 

(FCVAR, I(0) VAR, I(1) CVAR) for the UK (left graph) and Germany (right graph). 

Fig. 11. Forward Term Premia: US, UK, Germany (FCVAR, I(0) VAR, I(1) CVAR). This figure plots the baseline (10-5 forward term premium) term premia of the three countries 

(US, UK, Germany) implied by the three models: FCVAR (top graph), I(0) VAR (medium graph) and CVAR (bottom graph). 

12 
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Table 9 

Diebold-Mariano Test: Recursive Scheme. 

Accuracy of the out of sample forecast for the 1-year yield 

Horizon in months 

1 3 6 9 12 36 60 120 

FCVAR 0.24 0.56 0.91 1.17 1.40 2.14 2.23 2.87 

CVAR 0.28 0.67 1.02 1.25 1.45 2.11 2.07 2.45 

VAR 0.31 0.72 1.10 1.45 1.85 3.68 4.63 5.28 

DM - 1 4.85 ∗∗∗ 2.97 ∗∗∗ 1.57 1.62 2.05 ∗∗ 1.55 1.19 0.63 

DM - 2 6.34 ∗∗∗ 3.38 ∗∗∗ 1.93 ∗ 1.08 0.60 -0.34 -1.62 -0.64 

Accuracy of the out of sample forecast for the 3-year yield 

Horizon in months 

1 3 6 9 12 36 60 120 

FCVAR 0.27 0.56 0.83 1.00 1.15 1.64 1.90 2.93 

CVAR 0.29 0.63 0.88 1.04 1.17 1.56 1.68 2.50 

VAR 0.31 0.68 0.98 1.29 1.63 3.29 4.44 5.26 

DM - 1 4.19 ∗∗∗ 2.83 ∗∗∗ 1.62 2.14 ∗∗ 2.46 ∗∗ 1.60 1.17 0.63 

DM -2 3.59 ∗∗∗ 2.56 ∗∗ 1.27 0.67 0.37 -0.91 -1.41 -0.64 

Accuracy of the out of sample forecast for the 5-year yield 

Horizon in months 

1 3 6 9 12 36 60 120 

FCVAR 0.25 0.51 0.72 0.84 0.96 1.30 1.72 2.83 

CVAR 0.27 0.56 0.76 0.87 0.97 1.21 1.46 2.42 

VAR 0.29 0.61 0.87 1.14 1.43 2.98 4.19 5.07 

DM - 1 4.05 ∗∗∗ 2.80 ∗∗∗ 1.88 ∗ 2.41 ∗∗ 2.57 ∗∗ 1.62 1.17 0.63 

DM - 2 2.92 ∗∗∗ 2.22 ∗∗ 1.04 0.57 0.25 -1.12 -1.27 -0.63 

Accuracy of the out of sample forecast for the 10-year yield 

Horizon in months 

1 3 6 9 12 36 60 120 

FCVAR 0.22 0.41 0.57 0.65 0.73 0.92 1.45 2.56 

CVAR 0.23 0.45 0.61 0.69 0.75 0.84 1.21 2.21 

VAR 0.25 0.49 0.72 0.95 1.15 2.51 3.69 4.62 

DM - 1 3.62 ∗∗∗ 2.62 ∗∗∗ 2.27 ∗∗ 2.55 ∗∗ 2.54 ∗∗ 1.63 1.17 0.62 

DM - 2 3.09 ∗∗∗ 2.12 ∗∗ 1.34 0.96 0.59 -1.73 ∗ -1.20 -0.62 

This table shows the Mean Absolute Errors (MAEs) of forecasts for the 1-year, 3-year, 5-year 

and 10-year Treasury yields and for different forecasting horizons, from h = 1 month to h = 120 

months. The data are monthly from 1971:m8 to 2018:m4. The models are estimated with a 

recursive scheme, that is using an expanding estimation window using all data available up 

to each forecast date starting in 1986:m7 (when around 15 years of data are available) until 

2018:m4. Last rows in each panel report the Diebold and Mariano (1995) statistic with a 

small-sample correction comparing the FCVAR with the VAR (DM-1) and the FCVAR with 

the CVAR (DM-2). Stars denote significance at the 1%( ∗∗∗), 5%( ∗∗) and 10%( ∗) level. 
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or alternative subsamples. The top graph compares the full-sample 

orward term premium with an alternative sample ending in 2008, 

ight before the financial crisis. The two forward term premia turn 

ut to be very similar across these two subsamples. The graphs be- 

ow show the differences of forward term premia across two other 

ubsamples (post-1979 and post-1990). In this latter subsample 

ifferences seem more noticeable, but overall dynamics are quite 

imilar. We thus conclude that the FCVAR forward term premium 

s quite robust across subsamples despite relevant macro and mon- 

tary policy changes during our baseline sample. 

Figure 9 shows the subsample forward term premia across 

odels. It shows that the I(0) model –the most commonly used 

n forward term premium analysis– is the most unstable one, with 

ome important discrepancies across subsamples. In contrast, the 

(1) CVAR-implied term premia are very stable. This should come 

s no surprise since the I(1) model by construction depends almost 

ntirely on the previous period interest rate, independently of the 

ubsample taken. 
13
.3. Out-of-sample forecasting 

How well does the FCVAR perform in out-of-sample forecast- 

ng of interest rates? We turn to this important question in this 

ubsection, as we assess the performance of the FCVAR in pre- 

icting interest rates out-of-sample across maturities and forecast 

orizons relative to the I(0) VAR and the CVAR models. Relevant 

ifferences across models would have important implications for 

ond return, term premium and monetary policy predictability. 

Table 9 shows the results of the Diebold and Mari- 

no (1995) (DM) test of equal accuracy applied to our FCVAR, CVAR 

nd VAR models. In order to derive the DM tests, the models are 

stimated with a recursive scheme, that is using an expanding es- 

imation window using all data available up to each forecast date 

tarting in 1986:m7 (when around 15 years of data are available) 

ntil 2018:m4. Then we report the Mean Absolute Errors (MAEs) of 

orecasts for the 1-year, 3-year, 5-year and 10-year Treasury yields 

nd for different forecasting horizons, from h = 1 month to h = 120 
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Table 10 

Diebold-Mariano Test: Rolling Scheme, Window = 180 months. 

Accuracy of the out of sample forecast for the 1-year yield 

Horizon in months 

1 3 6 9 12 36 60 120 

FCVAR 0.23 0.51 0.81 1.00 1.20 2.22 2.46 3.16 

CVAR 0.28 0.67 1.02 1.24 1.45 2.12 2.08 2.45 

VAR 0.31 0.74 1.06 1.30 1.65 2.93 3.39 4.21 

DM - 1 5.41 ∗∗∗ 3.91 ∗∗∗ 2.28 ∗∗ 2.00 ∗∗ 2.23 ∗∗ 1.05 0.90 0.59 

DM - 2 5.44 ∗∗∗ 3.13 ∗∗∗ 2.08 ∗∗ 1.81 ∗ 1.57 -1.16 -1.38 -0.60 

Accuracy of the out of sample forecast for the 3-year yield 

Horizon in months 

1 3 6 9 12 36 60 120 

FCVAR 0.26 0.54 0.78 0.92 1.06 1.76 2.13 3.26 

CVAR 0.29 0.63 0.89 1.04 1.17 1.56 1.68 2.50 

VAR 0.32 0.71 0.97 1.20 1.50 2.65 3.23 4.17 

DM - 1 4.60 ∗∗∗ 3.71 ∗∗∗ 2.18 ∗∗ 2.31 ∗∗ 2.51 ∗∗ 1.31 0.97 0.57 

DM - 2 2.86 ∗∗∗ 2.17 ∗∗ 1.27 1.05 0.94 -1.27 -1.23 -0.60 

Accuracy of the out of sample forecast for the 5-year yield 

Horizon in months 

1 3 6 9 12 36 60 120 

FCVAR 0.26 0.50 0.71 0.82 0.92 1.46 1.98 3.15 

CVAR 0.27 0.56 0.76 0.87 0.97 1.21 1.45 2.41 

VAR 0.30 0.65 0.87 1.09 1.34 2.38 3.02 3.97 

DM - 1 4.16 ∗∗∗ 3.53 ∗∗∗ 2.07 ∗∗ 2.33 ∗∗ 2.43 ∗∗ 1.37 0.95 0.55 

DM - 2 1.55 1.65 ∗ 0.81 0.59 0.46 -1.34 -1.12 -0.59 

Accuracy of the out of sample forecast for the 10-year yield 

Horizon in months 

1 3 6 9 12 36 60 120 

FCVAR 0.22 0.42 0.60 0.69 0.77 1.13 1.73 2.89 

CVAR 0.23 0.45 0.61 0.68 0.75 0.84 1.20 2.21 

VAR 0.26 0.53 0.74 0.94 1.13 1.99 2.61 3.57 

DM - 1 4.01 ∗∗∗ 3.28 ∗∗∗ 1.98 ∗∗ 2.21 ∗∗ 2.26 ∗∗ 1.35 0.90 0.51 

DM - 2 1.11 1.07 0.19 -0.20 -0.30 -1.49 -1.08 -0.59 

This table shows the Mean Absolute Errors (MAEs) of forecasts for the 1-year, 3-year, 5- 

year and 10-year Treasury yields and for different forecasting horizons, from h = 1 month to 

h = 120 months. The data are monthly from 1971:m8 to 2018:m4. The models are estimated 

with a rolling scheme with a window of 180 months. Last rows in each panel report the 

Diebold and Mariano (1995) statistic with a small-sample correction comparing the FCVAR 

with the VAR (DM-1) and the FCVAR with the CVAR (DM-2). Stars denote significance at 

the 1%( ∗∗∗), 5%( ∗∗) and 10%( ∗) level. 
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onths. As in Bauer and Rudebusch (2020) , we compute the DM 

est with a rectangular window for the long-run variance and the 

mall-sample adjustment of Harvey et al. (1997) . One problem is 

hat for very long forecast horizons, the long-run variance is esti- 

ated with considerable uncertainty because there are only a few 

on-overlapping observations in our sample. This explains why the 

ignificance level of our results goes down for long horizons. Two 

ey results emerge from Table 9 . First, the FCVAR persistently beats 

he VAR in forecasting accuracy across interest rate maturities and 

orecast horizons (and statistically significant for h ≤ 12 months). 

econd, the FCVAR beats the CVAR in forecasting accuracy for very 

hort horizon, while the performances for h ≥ 6 months are simi- 

arly accurate. 

In the previous analysis, we adopted a recursive scheme, i.e. 

he size of the sample used in the estimation increases with each 

bservation. To avoid the problem of competing forecasts using 

ested models, we repeated the same exercise using a rolling 

cheme, which uses only a fixed number of observations for pa- 

ameter estimation. Specifically, we fixed the window to 180 ob- 

ervations (15 years). Table 10 shows the results of the analogous 

ut-of-sample exercises. This new analysis confirms the previous 

esults, highlighting the superiority of the FCVAR with respect to 
14 
he I(0) VAR across maturities and at all horizons. The FCVAR also 

eats the I(1) CVAR at all maturities across most horizons below 

 year, while they perform similarly for longer horizons. All in all, 

he relative out-of-sample FCVAR performance is very good. 

.4. International term premia 

The previous analysis suggests that the FCVAR model provides 

 realistic representation of the yield curve dynamics in the United 

tates. An interesting question is whether these findings can be ex- 

ended to other countries. To address this issue, in this section we 

stimate the FCVAR model for two other advanced economies, the 

K and Germany. The data for the UK is from the Bank of England, 

nd covers the sample from December 1972 to April 2018. The data 

or Germany is from the Bundesbank and covers the sample from 

eptember 1972 to April 2018. As for the US, results are based on 

 VAR(1) for short-run dynamics. 

Table 11 shows the estimated values for the parameters d (es- 

imation was also carried out under d = b). Our tests allow us to 

eject the hypothesis that interest rates are stationary I(0). While 

e do not report them for brevity, tests also reject the I(1) cointe- 

ration in favor of fractional cointegration. 



M. Abbritti, H. Carcel, L. Gil-Alana et al. Journal of Banking and Finance 149 (2023) 106777 

Table 11 

FCVAR Orders of Integration, US, UK and Germany. 

US UK GER 

d 0.765 0.868 0.867 

(0.050) (0.036) (0.037) 

This table shows the estimates of the orders of integration of the FCVAR models for 

the three countries analyzed in this study: United States (US), United Kingdom (UK) 

and Germany (GER). Standard errors appear in parentheses. 
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We also test for the presence of fractional cointegration 

elationships between interest rates. As in the case of the 

S, we find the presence of a single fractional cointegrat- 

ng relationship for the UK and Germany. The implied sin- 

le cointegrating vectors for the UK and Germany are, respec- 

ively ˆ β
′ 
(UK) = [1 , −6 . 448 , 7 . 403 , −1 . 924] 

′ 
, and 

ˆ β
′ 
(GER ) =

1 , −3 . 959 , 4 . 025 , −1 . 101] 
′ 
. Interestingly, the interpretation

f the two estimated cointegrating vectors is essentially the same 

s in the US case. They imply that this model can accommodate 

oth long-run yield curve parallel shifts and long-run slope shifts. 

Figure 10 shows the risk neutral rates and forward term pre- 

ia implied by the VAR, CVAR and FCVAR models for the UK and 

ermany. As was the case for the US, an accurate estimation of 

he persistence of interest rates is crucial for the identification 

nd interpretation of forward term premium dynamics. For both 

ountries, the I(0) forward term premium is relatively stable and 

resents a downward trend inherited by the interest rates. This 

appens because, by implying too fast mean-reversion of interest 

ate changes, the VAR model tends to underestimate the variability 

f risk neutral rates. On the contrary, the CVAR and FCVAR imply 

ore volatile risk neutral rates and countercyclical forward term 

remia –probably too volatile in the case of the CVAR–. Impor- 

antly, the different models imply starkly different forward term 

remia dynamics. For example, in both countries forward term 

remia implied by the stationary VAR are around 4 percent higher 

han the ones implied by the FCVAR in the early 1980s and 1990s. 

he differences with the CVAR are smaller but still non-negligible. 

As a final exercise, Fig. 11 shows the implied forward term pre- 

ia of the three countries –the US, the UK and Germany– with 

he three models. Three facts stand out. First, in all cases the FC- 

AR model implies quite different forward term premia dynamics 

rom the ones implied by the I(0) VAR. This is likely to be impor-

ant for economic interpretation and policy-making. For example, 

n the US in 2018 the forward term premium is around -2 percent 

ccording to the VAR model while slightly positive according to the 

CVAR model. Second, the US forward term premium is the least 

olatile of the three countries according to the FCVAR model, while 

he most volatile according to the VAR model. Finally, the FCVAR 

odel implies a strong increase in synchronization and correlation 

tarting with the financial crisis, while the forward term premia 

mplied by the VAR model significantly depart after 2010. 

. Conclusions 

This paper presents a yield curve model for interest rates cap- 

uring both a long run equilibrium relationship among the U.S. 

reasury yields and the joint short-run dynamics. Our estimates 

f the flexible FCVAR model confirmed the existence of this pat- 

ern and characterized interest rates as a fractionally cointegrated 

nd mean-reverting process. Our analysis also rejects some of the 

tandard stationary I(0) and unit-root alternatives to joint mod- 

lling of interest rates. The estimates implied by our general FC- 

AR model are thus able to capture both the low-frequency move- 

ents in bond yields and the mean reversion commonly assumed 

n many financial models. We show that the implied forward term 
15 
remium is quite robust to alternative subsamples and also derive 

he forward term premia for the UK and Germany. 

As an important outcome of our exercise, this term structure 

odel affords the identification of a credible term premium which 

an be readily used by both academics and policy makers. This can 

e done for different term premia maturities. As shown in the pa- 

er, term premia associated with longer maturities are non-linearly 

igher than shorter maturities. We also shed light on the sources 

f the term premium, which are mainly real, i.e. while economic 

rowth lowers the term premium, economic slack and recessions 

ncrease the risk priced by investors in long-term bonds. Impor- 

antly, in terms of out-of-sample forecasting, the FCVAR beats the 

(0) VAR model across interest rate maturities and horizons and 

he I(1) cointegrated VAR across maturities and short-horizons. 

This article can be extended in several directions. Firstly, the 

erm premium here has been specified in terms of a long memory 

roperty, characterized by a spectral density function which has 

 pole or singularity at the smallest (zero) frequency. However, it 

ight be the case that the spectrum of the term premium contains 

eaks at other frequencies, referring, for example, to the business 

ycles. In this context, Gegenbauer (fractionally integrated) pro- 

esses can be employed as an alternative to the standard I( d) ap- 

roach used in this work. In addition, the FCVAR can be extended 

y adding other macro-finance variables potentially cointegrated 

ith interest rates. Work in these directions is now in progress. 
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ppendix A. Fractional integration 

Given a covariance stationary process x t , t = 0 , ±1 , . . . , a series 

as long memory if its spectral density function contains a pole 

r singularity at least at one frequency in the spectrum. Alterna- 

ively, it can be defined in the time domain by saying that x t dis-

lays the property of long memory if the infinite sum of the auto- 

ovariances is infinite. A typical model satisfying the above two 

roperties is the fractionally integrated or I(d) model, where d is 

 positive value and can be formulated as: 

1 − L ) d x t = u t , t = 1 , 2 , . . . , (A.1)

ith x t = 0 for t ≤ 0 , where L represents the lag-operator, i.e. 

 

k x t = x t−k , and u t is an I(0) or short-memory process, defined in

he frequency domain as a process with a spectral density function 

hat is positive and bounded at all frequencies. Note that in this 

ontext, if d > 0 , the spectral density function of x t is unbounded

t the smallest (zero) frequency, and the polynomial in the left 

and side of equation (A.1) can be written for all real d as: 

1 − L ) d = 

∞ ∑ 

j=0 

(
d 
j 

)
(−1) j L j 

= 

(
1 − dL + 

d(d − 1) 

2! 
L 2 − d(d − 1)(d − 2) 

3! 
L 3 . . . 

)
, 

(A.2) 
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nd thus: 

1 − L ) d x t = x t − d x t−1 + 

d (d − 1) 

2 

x t−2 

− d(d − 1)(d − 2) 

6 

x t−3 + . . . , (A.3) 

o that Eq. (A.1) can be expressed as: 

 t = d x t−1 − d (d − 1) 

2 

x t−2 + 

d (d − 1)(d − 2) 

6 

x t−3 − . . . + u t . 

(A.4) 

Thus, the differencing parameter d plays a crucial role in de- 

cribing the degree of dependence (persistence) in the data: The 

igher the value of d is, the higher the level of dependence be- 

ween observations is. Three values of d are of particular inter- 

st. First, the case of d = 0 that implies short memory behaviour 

s opposed to the case of long memory with d > 0 . Second, d =
.5, since x t becomes non-stationary as long as d ≥ 0 . 5 . 7 Finally, if

 < 1 x t is mean reverting with the effect of the shocks disappear-

ng in the long-run, contrary to what happens if d ≥ 1 with shocks 

aving permanent effects and lasting forever. 

ppendix B. A 4-Factor Model consistent with the FCVAR 

As shown in Section 4 , our results imply the existence of 3 

tochastic trends and 1 cointegration relationship among the 4 

ields in our estimation (the 1-year, 3-year, 5-year and 10-year 

ields). While there are alternative specifications consistent with 

he estimated FCVAR results, here we propose a particular time se- 

ies model specification. 

The model is constructed through 3 different underlying 

tochastic trends ( τ1 ,t , τ2 ,t and τ3 ,t ) affecting yields. These stochas- 

ic trends have all the same order of integration d. In turn, yields 

re also affected by s t , a stationary variable of order d − b. The first

hree model equations, for the 1, 3 and 10-year yields, become: 

 

(12) 
t = A 1 + B 11 τ1 ,t + B 12 s t (B.1) 

 

(36) 
t = A 2 + B 21 τ1 ,t + B 22 τ2 ,t + B 23 s t (B.2) 

 

(120) 
t = A 3 + B 31 τ1 ,t + B 32 τ3 ,t + B 33 s t . (B.3) 

his set of three equations imply three independent stochastic 

rends for the three yields, each of which is an I(d) process. Since 

ach of these three yields depends on different underlying stochas- 

ic trends, they are not cointegrated among themselves. However, 

nd following our estimates, a linear combination of these three 

ields and the 5-year yield ( i (60) 
t ) is cointegrated, so that: 

′ Y t = s t , (B.4) 

here Y t = [ i (12) 
t i (36) 

t i (60) 
t i (120) 

t ] ′ , and given that ˆ β
′ =

1 , −2 . 598 , 2 . 347 , −0 . 760] 
′ 
, 

 

(60) 
t = a + b 1 τ1 ,t + b 2 τ2 ,t + b 3 τ3 ,t + cz t (B.5) 

here: 

a = 

2 . 598 A 2 + 0 . 76 A 3 − A 1 

2 . 347 

b 1 = 

2 . 598 B 21 + 0 . 76 B 31 − B 11 

2 . 347 
7 It is non-stationary in the sense that the variance of the partial sums increases 

n magnitude with d. 

p

t

16 
b 2 = 

2 . 598 B 22 

2 . 347 

b 3 = 

0 . 76 B 32 

2 . 347 

nd c = 

2 . 598 B 23 + 0 . 76 B 33 − B 12 

2 . 347 

. 

This 4-factor model is consistent with the underlying model 

f Johansen (2008) (Section 1), which gives rise to the FCVAR 

hich we estimated. Notice that in this particular model, there is a 

tochastic trend τ1 ,t affecting all yields. This stochastic trend could 

e seen as the traditional level factor, which in the recent work of 

auer and Rudebusch (2020) is an I(1) variable shifting all yields 

n similar amounts. Additionally, our model displays two other un- 

erlying stochastic trends ( τ2 ,t and τ3 ,t ), which enrich the model 

ynamics. These two trends affect the 3, 5 and 10 year yields and 

an also have a long-run effect in the yield curve. Only the 5-year 

ield includes all stochastic trends, capturing all stochastic trends 

resent in both short and long-term yields. 8 

Finally, the yield curve slope loads on the three stochastic 

rends: The 3-year slope loads on τ1 ,t and τ2 ,t , the 10-year slope 

oads on τ1 ,t and τ3 ,t , whereas the 5-year slope loads on τ1 ,t , 

2 ,t and τ3 ,t . Under similar loadings of yields on τ1 ,t , long-run 

ield curve shifts can accommodate approximately parallel shifts 

n the yield curve. For different loadings across maturities, this 

odel can accommodate persistent changes in the slope dynam- 

cs. To sum up, this model can accommodate both permanent 

hanges in the level and the slope of the term structure of interest 

ates. 
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