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Charcot–Marie–Tooth disease is a group of hereditary peripheral neuropathies that share clinical characteristics of progressive distal

muscle weakness and atrophy, foot deformities, distal sensory loss, as well as diminished tendon reflexes. Hundreds of causative DNA

changes have been found, but much of the genetic basis of the disease is still unexplained. Mutations in the ALS5/SPG11/KIAA1840

gene are a frequent cause of autosomal recessive hereditary spastic paraplegia with thin corpus callosum and peripheral axonal neur-

opathy, and account for �40% of autosomal recessive juvenile amyotrophic lateral sclerosis. The overlap of axonal Charcot–Marie–

Tooth disease with both diseases, as well as the common autosomal recessive inheritance pattern of thin corpus callosum and axonal

Charcot–Marie–Tooth disease in three related patients, prompted us to analyse the ALS5/SPG11/KIAA1840 gene in affected individuals

with autosomal recessive axonal Charcot–Marie–Tooth disease. We investigated 28 unrelated families with autosomal recessive axonal

Charcot–Marie–Tooth disease defined by clinical, electrophysiological, as well as pathological evaluation. Besides, we screened for all the

known genes related to axonal autosomal recessive Charcot–Marie-Tooth disease (CMT2A2/HMSN2A2/MFN2, CMT2B1/LMNA,

CMT2B2/MED25, CMT2B5/NEFL, ARCMT2F/dHMN2B/HSPB1, CMT2K/GDAP1, CMT2P/LRSAM1, CMT2R/TRIM2,

CMT2S/IGHMBP2, CMT2T/HSJ1, CMTRID/COX6A1, ARAN-NM/HINT and GAN/GAN), for the genes related to autosomal

recessive hereditary spastic paraplegia with thin corpus callosum and axonal peripheral neuropathy (SPG7/PGN, SPG15/ZFYVE26,

SPG21/ACP33, SPG35/FA2H, SPG46/GBA2, SPG55/C12orf65 and SPG56/CYP2U1), as well as for the causative gene of peripheral

neuropathy with or without agenesis of the corpus callosum (SLC12A6). Mitochondrial disorders related to Charcot–Marie–Tooth

disease type 2 were also excluded by sequencing POLG and TYMP genes. An additional locus for autosomal recessive Charcot–Marie–

Tooth disease type 2H on chromosome 8q13-21.1 was excluded by linkage analysis. Pedigrees originated in Italy, Brazil, Canada,

England, Iran, and Japan. Interestingly, we identified 15 ALS5/SPG11/KIAA1840 mutations in 12 families (two sequence variants were

never reported before, p.Gln198* and p.Pro2212fs*5). No large deletions/duplications were detected in these patients. The novel

mutations seemed to be pathogenic since they co-segregated with the disease in all pedigrees and were absent in 300 unrelated controls.

Furthermore, in silico analysis predicted their pathogenic effect. Our results indicate that ALS5/SPG11/KIAA1840 is the causative gene

of a wide spectrum of clinical features, including autosomal recessive axonal Charcot–Marie–Tooth disease.
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Introduction
Mutations in the ALS5/SPG11/KIAA1840 gene, located on

chromosome 15q21.1, cause autosomal recessive hereditary

spastic paraplegia (ARHSP; OMIM #604360), frequently

associated with thin corpus callosum and axonal peripheral

neuropathy (Stevanin et al., 2007a, b; Lo Giudice et al.,

2014), as well as autosomal recessive juvenile amyotrophic

lateral sclerosis (ARJALS; OMIM %602099), characterized

by slowly progressive spasticity of limb and facial muscles

with distal amyotrophy of hands and feet (Orlacchio et al.,

2010). Charcot–Marie–Tooth (CMT) disease is a hereditary

peripheral neuropathy characterized by slowly progressive

distal muscle weakness, atrophy, and mild sensory loss, pri-

marily in lower limbs. It is the most common degenerative

disorder of the peripheral nervous system, with a global

prevalence of 1 in 2500 (Tazir et al., 2013). Phenotypes

are grouped within the hereditary motor and sensory neu-

ropathies (HMSNs; Dyck and Thomas, 2005) and can be

divided into demyelinating (CMT1), axonal (CMT2), and

intermediate forms, on the basis of electrophysiological

criteria as well as pathological features (Dyck et al.,

1968). In CMT2, peripheral nerves are neither enlarged

nor hypertrophic, with normal or near-normal conduction

velocities; the disease course is highly variable, ranging

from mild to severe forms (Feely et al., 2011; Tazir

et al., 2014). The subtypes belonging to ARCMT2 share

common and distinctive clinical features, e.g. CMT2B2 is

characterized by sensory deficits, whereas CMT2K is char-

acterized by hoarse voice and vocal cord paresis

(Claramunt et al., 2005; Leal et al., 2009). To date,

ARCMT2 has been associated with mutations in only a

few genes, and many forms are still unrecognized (Bird,

1993-2015). Recent advances in the molecular genetics of

Charcot–Marie–Tooth disease have contributed to the

classification and diagnosis of this heterogeneous disease

(Jerath and Shy, 2015).

The overlap between CMT2 and hereditary spastic para-

plegia (Timmerman et al., 2013; Fridman and Murphy,

2014), as well as the fact that the ALS5/SPG11/

KIAA1840 gene product (spatacsin) is implicated in

axonal maintenance and cargo trafficking (Pérez-Brangulı́

et al., 2014), and the common autosomal recessive in-

herited findings of thin corpus callosum and CMT2 in

three related patients, motivated us to investigate the

ALS5/SPG11/KIAA1840 gene in families with ARCMT2

with no causative gene identified.

Materials and methods

Patients

This study was performed according to a protocol reviewed
and approved by the Ethics Committee of the Istituto di
Ricovero e Cura a Carattere Scientifico Santa Lucia, Rome,
Italy. After obtaining informed consent, patients were recruited
by a network of neurologists in Italy, Brazil, Canada, England,
and Japan, with a significant background in peripheral
neuropathy.

The study focused on 28 unrelated pedigrees with ARCMT2
and without genetic assessment. The diagnosis of ARCMT2
was based on neurological findings, familial history, along
with neurophysiological characteristics (Bird, 1993-2015).
Flexor and extensor muscle strength was assessed manually
using the standard Medical Research Council Scale (Medical
Research Council, 1981). The Functional Disability Scale and
the Charcot–Marie–Tooth Neuropathy Score assessed the sta-
ging of the disease (Birouk et al., 1997; Murphy et al., 2011).

All affected subjects under the age of 18 were investigated for
IQ through the Wechsler Intelligence Scales for Children IV,
including the Wechsler Memory Scale (http://alpha.fdu.edu/ps
ychology/WISCIV_Index.htm). According to the criteria of the
Diagnostic and Statistical Manual of Mental Disorders, Fifth
Edition (American Psychiatric Association, 2013), mental re-
tardation was considered when the IQ was 470 before the
age of 18. Adults were evaluated by Mental Deterioration
Battery (Carlesimo et al., 1996) to assess cognitive impairment.
Brain MRI was obtained in all affected individuals, with the
exception of eight subjects. Haematological and biochemical
profiles, as well as lysosomal enzyme assay of b-hexosaminidase
A and B in peripheral blood leucocytes, were performed in at
least one patient within each family. CSF analysis was available
in 21 patients. Vitamins B1, B2, B6, B9, B12, and E were mea-
sured in all patients.

Nerve conduction study was carried out with a surface skin
temperature between 32�C and 34�C. Nerves were analysed
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bilaterally in upper and lower limbs using percutaneous stimula-
tion and surface recording electrodes. Concentric needle EMG
was performed in muscles of upper and lower limbs: spontaneous
activity, duration, and amplitude of motor unit action potentials,
as well as motor unit action potentials, interference pattern
during maximal voluntary contraction, were recorded.

Sural nerve biopsy was available in 25 patients. Light mi-
croscopy preparations, and the electron microscopic analysis in
one patient, were performed according to standard methods
(Palumbo et al., 2002).

Genetic analyses

Genomic DNA was extracted from peripheral blood using the
Promega Wizard� Genomic DNA isolation kit. Linkage study
of the 28 families with ARCMT2 was performed using micro-
satellite markers flanking the ALS5/SPG11 locus, as previously
described (Orlacchio et al., 2010). In the probands, all the
coding exons of ALS5/SPG11/KIAA1840 and at least 50 bp
of flanking intronic sequence were PCR-amplified by primer
pairs, as previously described (Stevanin et al., 2007a), and
by Roche FastStartTM PCR Master Mix polymerase. All the
PCR-amplified products were purified using a Qiagen PCR
purification kit. Purified products were sequenced with respect-
ive forward and reverse primers by an Applied Biosystems
3130 Genetic Analyzer. Sequence analysis was performed
using SeqScape software (v2.6; Applied Biosystems). Large
genomic rearrangements of ALS5/SPG11/KIAA1840 gene
were investigated by multiplex ligation-dependent probe amp-
lification method with the P306-B1 SPG11 probe mix, contain-
ing probes for each of the 40 KIAA1840 exons. Data were
collected and analysed with GeneScan software (v.3.1.2;
Applied Biosystems). For each sample, peak areas were calcu-
lated and compared with three wild-type controls, using
Coffalyser software (v.7.0; MRC Holland).

The segregation analysis within the family and the surveil-
lance of mutations in the control population were performed
using a PCR-restriction fragment length polymorphism
method. Three hundred control chromosomes were obtained
from healthy volunteers of mixed ethnic origins, including
Caucasian, Brazilian and Japanese.

An in silico pathogenicity prediction tool (Mutation Taster,
http:www.mutationtaster.org) was used to predict the effect of
the novel mutations identified, as previously described (Carosi
et al., 2015).

In all probands, we performed direct sequencing of all exons
and flanking introns of CMT2A2/HMSN2A2/MFN2 (OMIM:
#609260; Nicholson et al., 2008), CMT2B1/LMNA (OMIM:
#605588; De Sandre-Giovannoli et al., 2002), CMT2B2/
MED25 (OMIM: #605589; Leal et al., 2009), CMT2B5/
NEFL (OMIM: #607734; Yum et al., 2009), ARCMT2F/
dHMN2B/HSPB1 (OMIM: #608634; Houlden et al., 2008),
CMT2K/GDAP1 (OMIM: #607831; Claramunt et al., 2005),
CMT2P/LRSAM1 (OMIM: #614436; Guernsey et al., 2010),
CMT2R/TRIM2 (OMIM: #615490; Pehlivan et al., 2015),
CMT2S/IGHMBP2 (OMIM: #616155; Cottenie et al.,
2014), CMT2T/HSJ1 (OMIM: #616233; Gess et al., 2014),
CMTRID/COX6A1 (OMIM: #616039; Tamiya et al., 2014),
ARAN-NM/HINT (OMIM: #137200; Zimoń et al., 2012),
GAN/GAN (OMIM: #256850; Bomont et al., 2000), SPG7/
PGN (OMIM: #607259; Casari et al., 1998), SPG15/
ZFYVE26 (OMIM: #270700; Hanein et al., 2008),

SPG21/ACP33 (OMIM: #248900; Simpson et al., 2003),
SPG35/FA2H (OMIM: #612319; Pierson et al., 2012),
SPG46/GBA2 (OMIM: #614409; Hammer et al., 2013;
Martin et al., 2013), SPG55/C12orf65 (OMIM: #615035;
Spiegel et al., 2014), SPG56/CYP2U1 (OMIM: #610670;
Tesson et al., 2012), and SLC12A6 (OMIM: #604878;
Howard et al., 2002). Direct sequencing of POLG (OMIM:
#174763; Van Goethem et al., 2001) and TYMP (OMIM:
#131222; Nishino et al., 2000) genes was also carried out to
exclude mitochondrial disorders related to CMT2 (Cassereau
et al., 2014). Furthermore, linkage to chromosome 8q13-21.1
was performed to investigate autosomal recessive CMT2H, as
previously reported (Barhoumi et al., 2001).

Results

Genetic findings

Linkage analysis in 28 unrelated pedigrees with ARCMT2

highlighted homozygous haplotypes with positive logarithm

of odds score in all affected subjects from consanguineous

parents of nine families (Families RM-501, RM-588,

RM-603, RM-626, SP-012, SP-026, TOR-018, TOR-029

and TK-031), showing a cumulative two-point logarithm of

odds score of 11.76 at the recombination fraction � = 0.0 for

marker D15S537 (Fig. 1). The other ARCMT2 families

showed heterozygous haplotypes and three of these kindred

(Families RM-801, RM-888, and CAM-006) had positive

logarithm of odds score in all affected individuals, showing

a cumulative two-point logarithm of odds score of 6.29 at the

recombination fraction � = 0.0 for marker D15S537 (Fig. 1).

All other ARCMT2 pedigrees with heterozygous haplotypes

had a negative or borderline significant cumulative logarithm

of odds score by the genetic program HOMOG (Ott, 1983).

We detected 15 different ALS5/SPG11/KIAA1840 muta-

tions in 29 affected individuals from 12 of 28 unrelated

families with ARCMT2 (Table 1). Nine of these nucleotide

changes were homozygous and six others, detected in the af-

fected subjects of Families RM-801, RM-888 and CAM-006,

were heterozygous compounds. All variants but one were

truncating, including eight frameshift mutations, and six non-

sense mutations. One nucleotide change (p.Arg945Gly) was a

missense mutation. Variants segregated with the disease in all

pedigrees and were absent in the panel of control chromo-

somes. Thirteen mutations had already been reported, while

two (p.Gln198* and p.Pro2212Serfs*5) were novel and seg-

regated with the disease (Table 1 and Fig. 2). Their pathogenic

effect was predicted by bioinformatics analysis. In these

families, the ALS5/SPG11/KIAA1840 gene had no large

deletions/duplications.

Genetic analysis of the other candidate genes (CMT2A2/

HMSN2A2/MFN2, CMT2B1/LMNA, CMT2B2/MED25,

CMT2B5/NEFL, ARCMT2F/dHMN2B/HSPB1, CMT2K/

GDAP1, CMT2P/LRSAM1, CMT2R/TRIM2, CMT2S/

IGHMBP2, CMT2T/HSJ1, CMTRID/COX6A1,

ARAN-NM/HINT, GAN/GAN, SPG7/PGN, SPG15/

ZFYVE26, SPG21/ACP33, SPG35/FA2H, SPG46/GBA2,
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SPG56/CYP2U1, and SLC12A6) did not reveal any coding

mutations in the unrelated 28 families with ARCMT2.

Direct sequencing of POLG and TYMP genes excluded

mitochondrial disorders related to CMT2. Linkage analysis

showed no linkage to chromosome 8q13-21.1 in all

families (cumulative logarithm of odds score was �2.11

for marker D15S537 at � = 0.0).

Clinical findings of the ALS5/SPG11/
KIAA1840-related ARCMT2 families

Among the 12 ALS5/SPG11/KIAA1840 mutated pedigrees,

nine showed consanguinity marriage (first-degree cousins)

in their parents. Six families were from Italy, two from

Brazil, one from England, and one from Japan.

Moreover, two families were from Canada, one of which

was an Iranian family who emigrated to Ontario (Fig. 1).

Affected subjects had a mainly distal, slowly progressive

sensory and motor axonal neuropathy. The age at onset of

the first motor symptoms in the 29 mutated ALS5/SPG11/

KIAA1840 patients oscillated from 4 to 35, with a mean of

11.4 � 5.9 years. The mean age at examination was

25.1 � 7.8 years (range 9–52).

A wide variation of phenotypic expression was detected

(Table 2). Asymmetrical onset in lower limbs was present

in 12 patients. Distal lower limb weakness was found in all

affected individuals; 16 patients showed muscular weakness

in upper limbs too. Wasting was frequent in lower limb

muscles distally (69%) and in intrinsic hand muscles

(48%). Lower limb fasciculations were detected in eight

patients. No patient showed pontobulbar signs, such as

Figure 1 Pedigrees and segregation chart of 12 ARCMT2 families linked to the ALS5/SPG11 locus. Black solid symbols indicate

affected individuals carrying ALS5/SPG11/KIAA1840 mutations; white symbols represent unaffected subjects; square symbols are males, circles are

females, and slashed symbols are deceased individuals. Individuals are reported as code numbers below the symbols. Probands are marked by

arrows. Colour barcodes define the haplotypes created with markers D15S146, D15S537, D15S659, and D15S123, from top to bottom.

Reconstructed genotypes are indicated by parentheses and question marks symbolize alleles that could not be reconstructed. The ALS5/SPG11/

KIAA1840 gene is placed between markers D15S537 and D15S659; key recombination events are observed between markers D15S659 and

D15S123 in Patients 6013 (Family RM-626) and 835 (Family TOR-029), as well as between markers D15S146 and D15S537 in Patient 4294

(Family SP-012). * = sample subjects; m = mutation; + = wild-type.
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jaw spasticity, poor palatal elevation, increased facial

reflexes, masseter, pterygoids, sternocleidomastoid, tongue

muscle weakness, or muscle atrophy with fasciculations.

Four patients had proximal lower limb weakness. Loss of

pinprick and light touch sensation was common and

involved lower limbs in most cases (86%).

The most frequent additional signs were foot deformities

(79%), mainly pes cavus and kyphoscoliosis (59%). Hand

deformities were present in seven patients with longer dis-

ease duration. Ankle contracture was present in 14 patients

(48%) and tremor in 10 (34%). Bladder disturbances and

sexual dysfunctions were detected in about one-third of the

affected subjects. Babinski’s sign was present bilaterally in

two unrelated patients. No affected subject showed cerebel-

lar signs or retinal disease.

Brain MRI images were available for all mutated

KIAA1840 patients. Thin corpus callosum was evident in

the three affected siblings of Family RM-801, with severe

thinning of the anterior portion and mild thinning of the

splenium (Fig. 3A). These patients had low scores in the

Wechsler Intelligence Scales for Children IV Intelligence

Quotient (ID 7958: 51, ID 7983: 49, and ID 7995: 62;

at 13, 11, and 9 years, respectively) with poor school per-

formance and deficit in memory and calculation tests.

Normal corpus callosum and no mental retardation or cog-

nitive deficits were observed in the other ARCMT2

KIAA1840-mutated subjects.

Haematological and biochemical profiles, including

serum creatine kinase, were unremarkable in all subjects.

Lysosomal enzyme assay of peripheral blood leucocytes re-

vealed that both b-hexosaminidase A and B isoenzymes

were present at normal levels. Vitamins were within

normal range. The CSF analysis was within normal range

in the five patients analysed.

The disease was slowly progressive and most patients

(86%) expressed mild-to-moderate phenotypes (Charcot–

Marie–Tooth neuropathy score5 20); only two patients,

one of which was wheelchair bound, reached Functional

Disability Scale scores4 5 (Table 2).

Motor and sensory conduction studies showed motor

and sensory axonal neuropathy, more prominent in lower

limbs, with low amplitudes of compound motor and sen-

sory nerve action potentials. Motor and sensory nerve con-

duction velocities were normal or slightly reduced,

according to the secondary demyelinating processes. All

motor nerve conduction velocities of median nerves were

438 m/s, differentiating CMT2 from CMT1. In 29 affected

individuals, EMG of the tibialis anterior muscle detected

predominant findings of chronic denervation/reinnervation

(motor unit action potentials with long duration and large

amplitude, or polyphasic, along with single or mixed inter-

ference patterns), and/or active denervation signs (fibrilla-

tion potentials, positive sharp waves, as well as

fasciculation potentials). In 11 affected subjects, EMG of

the abductor pollicis brevis muscle showed similar neuro-

physiological characteristics (Table 3).

Neuropathological analyses of the sural nerve biopsies

were performed in 17 mutated patients and showed loss

of myelinated fibres (Fig. 4A), mainly in fibres of large

calibre, in line with the diagnosis of CMT2.

See the online Supplementary material for indicative case

reports of patients with novel ALS5/SPG11/KIAA1840

mutations.

Discussion
The ALS5/SPG11/KIAA1840 gene was analysed in

ARCMT2 patients from 28 unrelated pedigrees and a

high frequency of pathogenic mutations, two of which

were novel, was found in 12 families (43%), appearing to

be a significant cause of ARCMT2. Our study showed

Table 1 Mutations identified in the ALS5/SPG11/KIAA1840 gene

Family Location Mutation (cDNA) Effect on protein RFLP Neuropathya Reference study

RM-501 Exon 2 c.398delG p.Cys133Leufs*22 SfcI (loss) SM Paisan-Ruiz et al., 2008

RM-588 Exon 15 c.2678G4A p.Trp893* – M Bettencourt et al., 2014

RM-603 Exon 4 c.704_705delAT p.His235Argfs*12 BsiI (gain) SM Stevanin et al., 2007b

RM-626 Exon 1 c.118C4T p.Gln40* – SM Stevanin et al., 2007a

RM-801 Exon 3 c.592C4T p.Gln198* BsgI (loss) – This study

Exon 3 c.529_533delATATT p.Ile177Serfs*2 AseIb (loss) SM Stevanin et al., 2007a

RM-888 Exon 36 c.6632dupG p.Pro2212fs*5 Cfr10I (gain) – This study

Exon 32 c.6100C4T p.Arg2034* Cac8Ib (loss) M/SMc Stevanin et al., 2007a

SP-012 Exon 37 c.6832_6833delAG p.Ser2278Leufs*61 – M Stevanin et al., 2007b

SP-026 Exon 38 c.6856C4T p.Arg2286* MaeIII (gain) SM Denora et al., 2009

TOR-018 Exon 15 c.2697G4A p.Trp899* – SM Denora et al., 2009

TOR-029 Exon 15 c.2833A4G p.Arg945Gly MscI (loss) SM Stevanin et al., 2007b

CAM-006 Exon 7 c.1549_1550delCT p.Leu518Leufs*39 AhdI (gain) SM Stevanin et al., 2007b

Exon 36 c.6739_6742delGAGT p.Glu2247Leufs*14 TfiI (gain) SM Stevanin et al., 2007b

TK-031 Exon 1 c.165del19 p.Ser56Alafs*7 Cac8I (loss) SM Pensato et al., 2014

Gene nucleotide numbering was based on the reference sequence NM_025137.3, with the A of the ATG start codon as position 1.

del = deletion; fs = frameshift; ins = insertion; M = motor; SM = sensorimotor; RFLP = restriction fragment length polymorphism.
aAxonal peripheral neuropathy refers to previously reported features; bmismatch primer used; caxonal and demyelinating peripheral neuropathy.
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novel genotype–phenotype correlation, which further broad-

ens the clinical spectrum associated with ALS5/SPG11/

KIAA1840 mutations (Fig. 5). Therefore, genetic screening

of the ALS5/SPG11/KIAA1840 gene should be considered

not only in patients with ARHSP with thin corpus callosum

and in affected individuals with ARJALS, but also in affected

subjects with ARCMT2. Due to the complexity and hetero-

geneity of these neurodegenerative diseases, next-generation

sequencing techniques are the most effective diagnostic tool to

identify the genetic cause in patients with myelopathy or neur-

opathy, either by targeted sequencing panel approach or by

whole-genome sequencing.

This clinical–genetic entity shows a worldwide distribu-

tion, since the pedigrees carrying mutations in ALS5/

SPG11/KIAA1840 were from Italy, Brazil, Canada,

England, Iran, and Japan. The variants are scattered

throughout the entire amino acid sequence, without evi-

dence of ‘hot spots’, and 93% were truncating mutations.

This finding is consistent with previous studies describing

mostly mutations leading to the truncation of the ALS5/

SPG11 protein and consequent loss of function mechanism

(Pensato et al., 2014). Furthermore, a probable mechanism

of nonsense-mediated mRNA decay might also be hypothe-

sized (Paisan-Ruiz et al., 2008).

The two unrelated ARCMT2 patients with bilateral

Babinski’s sign further enlarge the clinical spectrum of the

disorder, showing that KIAA1840-related diseases might be

clinically suspected if neuropathy is present in addition to

Figure 2 Pedigree charts, electropherograms and PCR-restriction fragment length polymorphism assays of families with novel

ALS5/SPG11/KIAA1840 mutations. (A) Pedigree charts RM-801 (I) and RM-888 (II). (B) Electropherogram of exon 3 of the ALS5/SPG11/

KIAA1840 gene in individuals of Family RM-801 (I), showing compound heterozygous status in the affected subjects (ID 7958, ID 7983, and ID

7995), as well as heterozygous status in the relatives (ID 7940, ID 7945, and ID 7970). (II) Electropherogram of exon 36 and exon 32 of the ALS5/

SPG11/KIAA1840 gene in individuals of Family RM-888 (II), displaying compound heterozygous status in the affected subjects (ID 8753, ID 8762,

and ID 8780), and heterozygous status in the relatives (ID 8740, ID 8745, and ID 8752). (C) PCR-restriction fragment length polymorphism assays.

After BsgI digestion, heterozygous individuals of Family RM-801 show three bands at 540, 351, and 189 base pairs (bp), while wild-type subjects

display two bands at 351 and 189 bp (I). AseI digestion proves one band in wild-type components at 248 bp, as well as two bands at 273 and 248 bp

in mutated individuals (II). Cfr10I digestion (c.6632dupG) leads to three bands at 268, 157, and 111 bp in heterozygous samples and one band at

268 bp (uncleaved) in wild-type components of Family RM-888 (III). Assay with enzyme Cac8I displays one band in wild-type individuals at 228 bp,

as well as two bands at 260 and 228 bp in mutated subjects (IV). Wt = wild-type; Htz = heterozygous; Mut = mutated.
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upper motor neuron signs or symptoms, e.g. deep tendon

reflexes are symmetrically diminished in the lower extremi-

ties with bilateral positive Babinski’s sign. Moreover, the

impairment of higher mental functions impairment and

brain alterations at MRI in three affected siblings of one

ARCMT2 family should be noted. Indeed, the presence of

clinical signs of leukoencephalopathy, as well as white

matter alterations at brain MRI, has been previously re-

ported in demyelinating, axonal, and intermediate forms

of the disorder (Genari et al., 2011; Reyes-Marin et al.,

2011; Sagnelli et al., 2014). Therefore, we believe that

brain MRI and neuropsychological testing are useful tools

in the clinical work-up of patients with Charcot–Marie–

Tooth disease. To our knowledge, this is the first report

of ALS5/SPG11/KIAA1840 mutations in subjects with

ARCMT2 and all of our families can be classified as

CMT2X, according to the classification of the Charcot–

Marie–Tooth disease currently used in OMIM (http://

www.ncbi.nlm.nih.gov/omim).

The disease has a slow progression and affected subjects

with earlier onset show a more severe phenotype compared

to those with late onset. Overall, the age at onset is the

second decade of life, in line with both ARCMT2 and

ARHSP (Tazir et al., 2013; Lo Giudice et al., 2014).

Clinical heterogeneity is well documented in ALS5/SPG11/

KIAA1840 mutations causing ARHSP, ranging from the

most frequent association of thin corpus callosum, white

matter alterations, mental retardation, cerebellar signs,

and axonal peripheral neuropathy, to less common clinical

findings, such as seizures, abnormal eye signs, maculopa-

thy, amyotrophy, and parkinsonism (Tessa et al., 2014). In

addition, ALS5/SPG11/KIAA1840 mutations have been

often found in patients with ARJALS (Orlacchio et al.,

2010). Interestingly, no specific differences in the type of

variants, or position within the primary amino acid se-

quence, were observed. Even identical mutations causing

different phenotypes were found (Fig. 5), confirming that

variants at the same locus can lead to distinct phenotypes

(Hegele, 2005). This aspect is not uncommon in monogenic

diseases and demonstrates how genotype–phenotype asso-

ciations can be often unpredictable.

The complexity of a correct clinical classification of

motor neuron diseases linked to spatacsin is further

increased by the presence of ALS5/SPG11/KIAA1840 mu-

tations in patients with an overlapping phenotype, exhibit-

ing features of amyotrophic lateral sclerosis as well as

spastic paraplegia, as described by Querin et al. (2014).

As previously hypothesized, the ALS5/SPG11/KIAA1840

phenotype results from the combined degeneration of cen-

tral and peripheral axons (Hehr et al., 2007). In particular,

peripheral neuropathy might affect both sensory and motor

fibres and might lead to pure distal amyotrophy, as well as

to CMT2. The roles of spatacsin in the cellular pathway of

axonal maintenance, including cargo trafficking, is becom-

ing clearer: it is located in axons and dendrites, co-localized

with cytoskeletal and synaptic vesicles, and it is present in

synaptosomes (Chiurchiù et al., 2014; Pérez-Brangulı́ et al.,

Table 2 Clinical features of 29 patients with ALS5/

SPG11/KIAA1840 mutations

Onseta in the second decade of life 21 (72)

Disease duration 410 years 18 (62)

Males 15 (52)

Females 14 (48)

Muscle weakness

Distal lower limbs 29 (100)

Proximal lower limbs 4 (14)

Distal upper limbs 16 (55)

Proximal upper limbs 0 (0)

Muscle wasting

Distal lower limbs 20 (69)

Proximal lower limbs 1 (3)

Hands 14 (48)

Loss of pinprick and light touch in lower limbs 25 (86)

Loss of proprioception in lower limbs 15 (52)

Loss of pinprick and light touch in upper limbs 8 (28)

Loss of proprioception in upper limbs 0 (0)

Total absence of deep tendon reflexes

Lower limbs 8 (28)

Upper limbs 2 (7)

Asymmetrical onset 12 (41)

Positive Romberg test 7 (24)

Gait impairment 18 (62)

Babinski sign 2 (7)

Postural tremor 10 (34)

Wrist contracture 3 (10)

Elbow contractures 1 (3)

Ankle contracture 14 (48)

Calf hypertrophy 4 (14)

Foot deformities 23 (79)

Fasciculations

Lower limbs 8 (28)

Upper limbs 1 (3)

Foot drop 11 (38)

Hand deformities 7 (24)

Kyphoscoliosis 17 (59)

Mental retardation 3 (10)

Thin corpus callosum 3 (10)

Cerebellar signs 0 (0)

Retinal disease 0 (0)

Grey matter atrophy on brain MRI 1 (3)

White matter abnormalities on brain MRI 0 (0)

Bladder disturbances 9 (31)

Sexual dysfunctions 7 (24)

Spasticity 0 (0)

FDS 0-2 14 (48)

FDS 3-5 13 (45)

FDS 6-8 2 (7)*

CMTNS mild 9 (31)

CMTNS moderate 16 (55)

CMTNS severe 4 (14)#

Values are n (%).
aAge at onset was calculated as the time when motor symptoms appeared. FDS

(Functional Disability Scale) from 0 to 8 as follows: 0 = normal; 1 = normal, but with

cramps and fatigability; 2 = inability to run; 3 = walking difficult, but still possible un-

aided; 4 = able to walk with a cane; 5 = able to walk with crutches; 6 = able to walk

with a walker; 7 = wheelchair bound; 8 = bedridden. CMTNS = Charcot-Marie-Tooth

Neuropathy Score: mild (410), moderate (11–20), and severe (420). *Ages at onset

were 4 and 9 years; #ages at onset were 4, 8, 9, and 12 years.
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Figure 3 Clinical features of Patients 7958 (Family RM-801) and 8780 (Family RM-888). (A) T1-weighted MRI showing thin corpus

callosum in the proband of Family RM-801. (B) Pes cavovarus of the same patient. (C) Deformities and (D) global atrophy of hands in the proband

of Family RM-888. (E) Atrophied legs with pes cavus of the same patient.

Table 3 Electroneurography and EMG characteristics in the 29 ALS5/SPG11/KIAA1840–mutated individuals

Mean � SD Range Reference

lower

valuea

UR

(subjects)

Pathological

(subjects)b
Chronic

denervation

Active

denervation

Median nerve

CMAP (mV) 3.6 � 2.4 0.1–9.2 5 5 15 – –

SNAP (mV)c 6.8 � 5.3 0.4–21.7 9 6 16 – –

MNCV (m/s) 48.1 � 7.5 39–67 50 – 12 – –

SNCV (m/s) 51.1 � 8.2 35–64 54 – 13 – –

Peroneal nerve

CMAP (mV) 2.1 � 3.8 0.1–11.8 3 13 26 – –

MNCV (m/s) 38.3 � 5.1 31–44 42 – 20 – –

Tibial nerve

CMAP (mV) 2.4 � 3.9 0.1–16.5 4 14 27 – –

MNCV (m/s) 38.1 � 4.8 32–46 42 – 21 – –

Sural nerve

SNAP (mV) 2.3 � 1.5 0.3–3.8 * 16 29 – –

SNCV (m/s) 37.3 � 5.2 31–47 42 – 22 – –

TA muscle – – – – 29 23 8

APB muscle – – – – 11 9 3

APB = abductor pollicis brevis; CMAP = compound nervous motor action potential (amplitude); MNCV = motor nerve conduction velocity; SD = standard deviation;

SNAP = sensory nerve action potential (amplitude); SNCV = sensory nerve conduction velocity; TA = tibialis anterior; UR = unrecordable (action potentials). aReference lower value

is the lower limit assessed by our laboratories; bThe ‘Pathological’ column includes non–recordable items; cOrthodromic evaluation. *SNAP reference lower value of sural nerve is

calculated as: 11.34� (0.092 � age in years) � 5.04 mV (Bienfait, 2007).
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2014). Other forms of hereditary spastic paraplegia linked

to proteins involved in axon maintenance, such as kinesin

SPG10/KIF5A and SPG17/BSCL2, are known to be allelic

to CMT2 (Goizet et al., 2009; Ito and Suzuki, 2009;

Crimella et al., 2012; Timmerman et al., 2013).

Furthermore, mutations in SPG4/SPAST, SPG3A/ATL1,

SPG17/BSCL2, as well as SPG43/C19orf12 might cause

spastic paraplegia and axonal peripheral neuropathy with

atrophy of small hand muscles (Silver syndrome)

(Windpassinger et al., 2004; Orlacchio et al., 2008; Fusco

et al., 2010; Landouré et al., 2013). Besides, mutations in

ATL1, whose protein is implicated in neurite outgrowth,

intracellular membrane trafficking, and axon elongation

during neuronal development (Byrnes and Sondermann,

2011), might cause hereditary sensory neuropathy type I

(HSN-I) with or without pyramidal tract features (Guelly

et al., 2011; Leonardis et al., 2012).

Remarkably, the previously reported mutations in ALS5/

SPG11/KIAA1840 were often associated with ARHSP com-

plicated by axonal peripheral neuropathy, mainly motor,

but also sensory (Table 1). In KIAA1840 mutations, a pref-

erential involvement of the CNS or the peripheral nervous

system may be due to different causes. First of all, the

blood–nerve barrier might influence protein expression in

peripheral axons, as well as the blood–brain barrier in cen-

tral axons. Moreover, ALS5/SPG11/KIAA1840 knockdown

in Zebrafish (Danio rerio) reveals a compromised out-

growth of spinal motor axons, thus indicating that

Figure 4 Sural nerve biopsy of Patient 7958 (Family RM-801). (A) Transverse cryostat section showing a nerve fascicle with medium

grade myelinated fibre loss. Modified Gomori Trichrome Stain, �80. (B–D) Transmission electron micrographs showing: (B) an unmyelinated

fibre displaying intra-axonal aggregates, seemingly composed by neurotubules and neurofilaments, �85 000; (C) flattened Schwann cell processes

indicating unmyelinated axon loss, �30 000; (D) a rudimentary onion bulb surrounding an apparently intact myelinated fibre, possibly indicating

secondary Schwann cell pathology, �7000.

KIAA1840 mutations cause ARCMT2 BRAIN 2016: 139; 73–85 | 81

 by guest on February 17, 2016
http://brain.oxfordjournals.org/

D
ow

nloaded from
 

http://brain.oxfordjournals.org/


spatacsin is involved in the formation of neuromuscular

junctions during development (Martin et al., 2012). The

association in synaptosomes of spatacsin with spastizin

(SPG15/ZFYVE26) and with the adaptor protein complex

5 (SPG48/KIAA0415) (Hirst et al., 2013) suggests that the

loss of function of spatacsin could not be the only mech-

anism for axonal dysfunction in ALS5/SPG11/KIAA1840-

mutated patients. Indeed, it may be hypothesized that a

variable phenotypic expression of KIAA1840 mutations re-

sults from the interaction of gene modifier factors. Further

studies are necessary to clarify whether allelic heterogeneity

depends on environmental or other genetic/epigenetic fac-

tors. In conclusion, the presence of common molecular,

pathological, and genetic features in KIAA1840-related

Figure 5 Schematic representation of the ALS5/SPG11 protein and position of previously reported (black) and novel (red)

mutations, stratified by distinctive phenotypes. Specific mutations for clinical heterogeneity are represented. Putative functional domains

are depicted as rectangles, and their positions within the amino acid sequence are indicated: the transmembrane domain (blue box; positions,

163–194, 200–240, 1239–1267, and 1471–1493), glycosyl hydroxylase F1 signature (pink box; position, 482–490), leucine zipper (green box;

position, 611–632), coil-coil domain (grey box; position, 1556–1590), and Myb domain (red box; position 1766–1774). Arrows indicate truncating

mutations; dotted arrows indicate missense mutations. Aa = amino acids. aThis study; bOrlacchio et al., 2010; cDaoud et al., 2012; dHehr et al.,

2007; ePensato et al., 2014; fPaisan-Ruiz et al., 2008; gStevanin et al., 2007a; hStevanin et al., 2007b; iPippucci et al., 2009; jBettencourt et al., 2014;
kDenora et al., 2009; lLee et al., 2008; mDel Bo et al., 2007; nQuerin et al., 2014.
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diseases, suggests that the different phenotypes of axonal

degeneration induced by ALS5/SPG11/KIAA1840 muta-

tions may be targeted by common therapeutic strategies.
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Targeted high-throughput sequencing identifies mutations in atlas-

tin-1 as a cause of hereditary sensory neuropathy type I. Am J Hum

Genet 2011; 88: 99–105.

Guernsey DL, Jiang H, Bedard K, Evans SC, Ferguson M, Matsuoka

M, et al. Mutation in the gene encoding ubiquitin ligase LRSAM1 in

patients with Charcot-Marie-Tooth disease. PLoS Genet 2010; 6:

e1001081.
Hammer MB, Eleuch-Fayache G, Schottlaender LV, Nehdi H, Gibbs

JR, Arepalli SK, et al. Mutations in GBA2 cause autosomal-recessive

cerebellar ataxia with spasticity. Am J Hum Genet 2013; 92:

245–51.

Hanein S, Martin E, Boukhris A, Byrne P, Goizet C, Hamri A, et al.

Identification of the SPG15 gene, encoding spastizin, as a frequent

cause of complicated autosomal-recessive spastic paraplegia, includ-

ing Kjellin syndrome. Am J Hum Genet 2008; 82: 992–1002.

Hegele R. LMNA mutation position predicts organ system involve-

ment in laminopathies. Clin Genet 2005; 68: 31–4.
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