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Seismic signature of active intrusions in
mountain chains
Francesca Di Luccio,1* Giovanni Chiodini,2 Stefano Caliro,3 Carlo Cardellini,4

Vincenzo Convertito,3 Nicola Alessandro Pino,3 Cristiano Tolomei,5 Guido Ventura1

Intrusions are a ubiquitous component of mountain chains and testify to the emplacement of magma at depth.
Understanding the emplacement and growth mechanisms of intrusions, such as diapiric or dike-like ascent, is
critical to constrain the evolution and structure of the crust. Petrological and geological data allow us to reconstruct
magma pathways and long-term magma differentiation and assembly processes. However, our ability to detect
and reconstruct the short-term dynamics related to active intrusive episodes in mountain chains is embryonic,
lacking recognized geophysical signals. We analyze an anomalously deep seismic sequence (maximummagnitude
5) characterized by low-frequency bursts of earthquakes that occurred in 2013 in the Apennine chain in Italy. We
provide seismic evidences of fluid involvement in the earthquake nucleation process and identify a thermal anomaly
in aquifers where CO2 of magmatic origin dissolves. We show that the intrusion of dike-like bodies in mountain
chains may trigger earthquakes with magnitudes that may be relevant to seismic hazard assessment. These
findings provide a new perspective on the emplacement mechanisms of intrusive bodies and the interpretation
of the seismicity in mountain chains.
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INTRODUCTION
The intrusion of magma and associated fluids into the continental crust
plays amajor role in controlling the growth, evolution, and composition
of the lithosphere (1–3). The dynamics of the emplacement of intrusive
bodies has been investigated by field studies and numerical simulations,
and two main mechanisms are proposed (4, 5): (i) magma ascent by
fluid-filled cracks (dikes) and (ii) diapiric ascent. It is suggested that,
independently from the proposed mechanism, intrusions grow by suc-
cessive feeding episodes (pulses) (6). However, although processes of
magma transfer to the Earth’s surface during volcanic eruptions are
relatively well known, those related to the emplacement of intrusive
bodies in mountain chains remain enigmatic, because records of geo-
physical and/or geochemical signals are lacking. In addition, the seis-
micity of mountain chains is commonly interpreted to be only due to
tectonic stress and/or fluid pressure changes (7, 8).

The southernApennine (SA) fold-and-thrust belt in Italy is associated
with the southwestern subduction of the Adriatic plate and separates a
western area of diffuse deep CO2 release (2 × 1011 mol year−1) from
an eastern, nondegassing foreland region (9). The Apennine chain is
presently affected by crustal delamination, with melts from the mantle
wedge feeding the Vesuvius, Campi Flegrei, and Ischia active volcanoes,
located to the west of SA (Fig. 1A) (10). Mafic intrusions have been
drilled in some SA wells located over 100 km away from the volcanoes
at depths of 2 to 5 km within the carbonates overlying the crystalline
basement, but their age and volume are unknown (11). Earthquakes
withmagnitude up to 7 affect the first 15 kmof the SA crust. These earth-
quakes and the associated seismogenic normal faults form a northwest-
southeast (NW-SE) striking deformation belt overlapping the chain axis
(12). The coseismic release of CO2 trapped in the crust through the fault
damage zones created by themajor earthquakes in SA is thought to play
a major role in the temporal and spatial evolution of some seismic se-
quences (9, 13, 14).

Here, we provide seismic and geochemical evidence for active
intrusive processes within the crust of SA mountain chain by ana-
lyzing an uncommon seismic sequence (Mmax

w ¼ 5) that occurred on
29 December 2013 in theMatese region (Fig. 1). We analyze the spa-
tiotemporal evolution of the seismic sequence, the attenuation in the
crust hosting the hypocenters, and the geochemical composition of the
springs in the area. We model the fluid pressure at seismogenic depth
and derive the geothermal heat flux. Results identify the geophysical and
geochemical signature ofmagma ascending in the continental crust and
reveal the mechanism of pluton emplacement. Our findings open new
perspectives on the triggering mechanisms of earthquakes in nonvolca-
nic areas and on the seismic hazard assessment of mountain chains.
RESULTS
The 2013–2014 Matese seismic sequence
On 29December 2013 at 17:08UTC, amomentmagnitude (Mw) of 5
earthquake occurred beneath the Matese mountains in SA (Fig. 1A). In
the following 50 days, 350 aftershocks were recorded by the seismic
network of the Istituto Nazionale di Geofisica and Vulcanologia
(http://iside.rm.ingv.it; last accessed, November 2016). Fault plane
solutions of the mainshock and the largest aftershock (20 January 2014;
Mw = 4.2) indicate NW-SE striking normal fault mechanisms with a
compensated linear vector dipole component of 14 and 29%, respectively
(http://cnt.rm.ingv.it/tdmt; last accessed, November 2016; Fig. 1A).

The 2013–2014 Matese sequence was concentrated at depths be-
tween 10 and 25 km in the crystalline basement of the chain just above
the mantle wedge, whereas the previous seismicity in the same area was
generally shallower (Fig. 1, C to E), as is the overall SA seismicity (12).
The evolution of the sequence shows that the aftershocks migrate up-
ward and spread southeastward in a fewminutes (Figs. 1C and 2A). The
hypocenters depict two finger-like clusters, with the two larger shocks
locatedat thebottomof eachcluster (black star andblackdiamond inFig. 1,
B and C). The events that occurred after the largerMw = 4.2 aftershock
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cluster in the southernmost cloud. The two finger-like clusters of the
Matese sequence surround an ~8-km-high × 2.5-km-long × 1.5-km-
wide aseismic zone with a dike-like shape (Fig. 1C). The trend of the
hypocentral depth with time in the first 28 days after the mainshock
(Fig. 2A) indicates a burst-like rupture process similar to that observed
in the fluid injection–induced seismicity (15–17). Consequently, we in-
terpret theMatese sequence to have been influenced by fluids during the
seismogenic process. With the aim of characterizing the dispersive
properties of the rocks, we computed the attenuation 1/Q0 as a func-
tion of azimuth and distance for the mainshock using the data set of
Convertito et al. (18). Results show that 1/Q0 varies with distance and
does not change with azimuth (Fig. 2B). At hypocentral distances
shorter than 30 km, the attenuation values are ≥0.0016 with little
variation. At larger distances, the attenuation values aremostly lower
(<0.0016). This result indicates a higher attenuation zone with a sub-
circular shape around the hypocentral area, possibly reflecting the
presence of fluids and/or hotter material at depth (19). We exclude
the interpretation that the attenuation variation with distance is due
to horizontal layering, because of the heterogeneous shallow crust in
this sector of SA (Fig. 1D) (11). Spectrograms of the mainshock and
the larger aftershock at the available recording stations show an over-
all frequency content well picked below 3 Hz, reaching 6 Hz in a few
cases (Fig. 3 and fig. S1, A and B). The same is observed for the later
event 20160116 (Fig. 1A for location and fig. S1C). These low-frequency
events significantly differ from the slow slip events recorded in other
Di Luccio et al., Sci. Adv. 2018;4 : e1701825 3 January 2018
subduction settings, because the latter are deeper and associated to
tremor and their hypocenters define low-angle to subhorizontal seis-
mogenic layers (20). Instead, the frequency content of theMatese events
is similar to that recorded in volcanic areas, where seismicity is generally
associated with fluid-filled cracks (21). Therefore, our data are consistent
with the involvement of fluids in the 2013Matese sequence and suggest
tensile-shear ruptures at the boundary of an aseismic zone, possibly
representing a magmatic body. Fluids released from this body could
trigger the recorded low-frequency events surrounding this zone. To
test whether these deep fluids ascend to the surface and to establish their
nature, we analyze the composition of the water springs and gas emis-
sions in the Matese area.

Water springs and gas emissions
The 2013–2014 epicenters are located within the 812 km2 large Matese
aquifer (Fig. 4A), which discharges 22,900 liters s−1 (22). The ground-
water circulating in the aquifers dissolves most of the gas coming from
depth, because CO2 is relatively soluble in water. Here, we estimate the
fraction of deeply derived CO2 entering the aquifers by defining Cext,
which is the carbon dissolved in the groundwaters derived from carbon
sources external to the aquifers (see Materials andMethods for details).
The origin of the carbon dissolved by the groundwaters is investigated
by comparing the isotopic composition of Cext with the inverse of the
concentration (Fig. 4B). In the diagram, a cluster of points defines a
trend characterized by lower Cext content and more negative d13C
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Fig. 1. Seismotectonics of SAs. (A) The 1990–2016 crustal seismicity with magnitude larger than 2 is shown in yellow (http://iside.rm.ingv.it; last accessed, November
2016). The remaining colored dots indicate the most significant seismic sequences in the study area that occurred in the last 20 years. The years 1997–1998 as black
dots and 2001 as orange dots indicate the seismicity from the study of Castello et al. (47). The 2005 and 2014–2016 seismicity (green and blue, respectively) are from
http://iside.rm.ingv.it. The 2013 Matese sequence in red is from our study. Moment tensor solutions of events with Mw > 4 are from cnt.rm.ingv.it/tdmt (last accessed,
November 2016). Dashed black lines outline the NW-SE and SW-NE (southwest-northeast) profiles shown in (B) to (D). The white line is the orogenic divide Vezzani et al.
(48). Faults are from ITHACA database Comerci et al. (49). Black triangles are the seismic stations. CF, Campi Flegrei; Ve, Vesuvius; Rm, Roccamonfina; Is, Ischia. (B) NW-SE
profile showing the seismicity as described above. (C) NW-SE profile showing the 2013 Matese sequence according to the time of occurrence. The shadow gray area
shows the inferred aseismic zone, whose size is ~8 km high × 2.5 km wide. (D) SW-NE profile [shown in map view in (A)] in which the seismicity is color-coded as in (B).
Crustal section redrawn according to Improta et al. (11): Red lines indicate active normal faults, thrusts are shown as dashed gray lines, and the Tyrrhenian Moho is the dashed
blue line. SA units include carbonates and flysch. (E) Histogram of the number of earthquakes as a function of depth. Red bars refer to the 2013 events, whereas gray bars refer
to the rest of the seismicity.
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values, which represent infiltrating waters (green dots in Fig. 4B). This
trend characterizes the groundwater dissolving the carbon from a bio-
genic source in the soils. When the deep CO2 is added, higher d

13C
values and higher concentrations of the dissolved carbon are observed
(red dots in Fig. 4B). The isotopic signature of the deepCO2 entering the
aquifer, inferred from carbon dissolved in the spring, is very similar to
that of the CO2-rich gas emissions located in the area (yellow squares in
Fig. 4B). Therefore, we estimate d13C values close to 0‰ for the deep
component dissolved in the nearby springs (red dots in Fig. 4B). Nota-
bly, d13C ~ 0‰ characterizes the gas emissions of the Vesuvius and
Roccamonfinamagmatic systems,whichare located60 to70kmaway from
theMatese aquifers (23, 24). The totalmass of deeply derivedCO2 trans-
ported in solutionby the groundwaters,Cdeep, is 380metric tonsday−1 (see
Materials andMethods), whereas an amount of ~570metric tons day−1

is estimated for the entire Matese aquifer, considering that we sampled
66%of the totalwater discharge.Most of thisCO2 (283metric tons day−1)
is discharged by the springswhose recharge area is close to the 2013–2014
earthquakes (samples 1612, 1617, 1618, and 1628 in Fig. 4A). Similar, and
also higher, amount of deeply derived CO2 is dissolved by the nearby
aquifers (Fig. 4A). These results indicate that deep, plausibly magmatic
CO2 reaches the surface in the Matese area.

Geothermal heat flux
The deep CO2 of the aquifers (Cdeep) in the Matese area could be sup-
plied by an intrusive body releasing gas (Fig. 4A). To test whether a
thermal anomaly related to amagmatic source exists, we refer to sample
Di Luccio et al., Sci. Adv. 2018;4 : e1701825 3 January 2018
1612 (Fig. 4A), which is themain spring (5500 liters s−1) in the area and
contributes about 50% to the deeply derived carbon budget. Stable iso-
topes indicate a meteoric origin for this water (table S1) (23). The 1612
water temperature is not very high (12.4°C), but it is ~2°C higher than
that expected for water infiltrating at 1300 to 1400 m of altitude (see
Materials and Methods), also considering heating due to gravitational
potential energy (GPE) dissipation (25, 26). The geothermal heat flow of
the 1612 spring is estimated to be ~242 mW m−2 (table S2), a value
evidencing the primary role of aquifers in hiding the real heat flux of
mountain and permeable regions, because it is five times higher than
the conductive heat flux of the region (40 to 50mWm−2) (27). This com-
putation indicates that the deeply derived CO2 is associated with ascent
of hot fluids, because in the case of normal springs (with no deeply derived
CO2), the computed geothermal heating is much lower (<80 mWm−2;
see Materials and Methods). Although the heat flow estimation of the
1612 spring is affected by uncertainties that are difficult to quantify be-
cause of the low-temperature anomaly of the waters (see Materials and
Methods for details), the presence of a thermal anomaly linked to the
ascent of CO2-rich fluids is confirmed by the nearby CO2-rich thermal
springs with lower flow rate (for example, samples 1617, 1618, and 1628
with temperatures of 20.7°C, 20.6°C, and 22.3°C, respectively; Fig. 4A
and table S1). To further investigate the origin of the thermal anomaly,
we examine the mixing relations among the waters discharged in this
sector of Matese aquifer by plotting the Na content of the waters, Cext,
and their enthalpy versus the chlorine content (Fig. 5). Figure 5 shows
that sample 1612 (the largest spring with a flow rate of 5500 liters s−1;
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Fig. 4A) is a mixture between a normal groundwater and a thermal
component relatively rich in Cl, Na, and CO2 (that is, Cext). As reported
above, the thermal anomaly of sample 1612 (T spring = 12.4°C) is about
2°C. This implies that, in the mixing model shown in Fig. 5, the normal
groundwater component of the 1612 mixture should be characterized
by a temperature of ~10.4°C, that is, by an enthalpy of 43.7 J g–1.Note that
a fluid with such enthalpy and Cl content similar to the normal ground-
water (cyan square in Fig. 5C) is a very reasonable cold end-member
for the mixture forming the 1612 spring. This computation confirms
the reliability of our heat flux estimates.
DISCUSSION
Our seismological and geochemical analyses and the results of the heat
flow modeling show that the 2013–2014 Matese sequence occurred in
an SA area characterized by a geothermal anomaly. The seismic events
surround a dike-like aseismic zone and show tensile-shear ruptures
triggered by a fluid overpressure episode. The high attenuation zone
centered on the Matese epicentral area, the dike-like aseismic volume de-
picted by the hypocenters, the recorded heat flow anomaly, and the release
of deep CO2 mirror a condition frequently observed in active volcanic
areas (27–30). Therefore, the above reported geophysical and geochemical
data could be the signature of hot magma feeding a preexisting in-
trusion and generating a fluid overpressure in the SA crust. The dike-like
magmatic reservoir and its fluid-rich aureole account for the seismic
attenuation around the subvertical hypocentral cloud. These features can-
not be explained by an input of gas alone because the ascent of gas gen-
erally produces subvertical seismic swarms and not kilometer-scale
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attenuation zones in the crust. The unusual distribution of low-frequency
events (Fig. 1, B to D) and the burst-like time evolution of theMatese
sequence (Fig. 2A) are not unique to SA. These features are also found
in Japan at distances greater than 50 km from volcanoes, where seismic
bursts are activated by fluid pressure redistribution in the crust (31).
This process may explain the Matese seismic sequence, suggesting that
the fluid overpressure may be associated with a seismogenic magma
“pulse” feeding an intrusion. The roughly NW-SE alignment of the
2013–2014Matese epicenters and the focal solutions of the main earth-
quakes indicate NW-SE striking ruptures (Fig. 1A, inset), which occur
in response to a NE-SW regional extension dissecting SA. To open
cracks and allow fluid migration, the fluid pressure Pf has to be larger
than the minimum regional horizontal stress s3. Assuming a tensile-
shear rupture and according to Griffith’s criterion (see Materials and
Methods) (32), the relationPf≥s3+T,whereT [20MPa(33); seeMaterials
and Methods] is the tensile strength of the rocks, must be satisfied. We
assume the pressure source at a depth of 15 km, that is, at the top of the
aseismic dike-like zone. For intact basement rocks (see Materials and
Methods), we obtain Pf = 308 ± 22 MPa and s3 = 290 ± 20 MPa at
a depth of 15 km. These values indicate that, within the uncertainties
related to the values of T and s3, the condition for crack opening is
satisfied (32). The 2013–2014 hypocenters concentrate at depths be-
tween 10 and 25 km,within the SA crystalline basement above theman-
tle wedge and below the Apulian carbonates (Fig. 1D). We suggest that
the SA crystalline basement/carbonate interface is a zone of density and/
or mechanical discontinuity, where the storage and accumulation of
magma are allowed because such an interface may represent the level
of magma neutral buoyancy (34) and/or a rigidity barrier within the
crust (35). This conclusion is supported by independent seismic and
geochemical data (36), showing that, when present in the SA, melts
and fluid overpressure zones concentrate below crustal depths of 10
to 15 km at the interface between the crystalline basement and the
overlying units.

We propose that the deep magmatic source refilling the Matese
intrusion is the SA mantle wedge, where melts accumulate beneath the
overriding Apenninic lithosphere (Fig. 1D) (10–12, 36). According to
the available geochemical data, these melts also feed the deep plumbing
systems of the Roccamonfina, Campi Flegrei, and Vesuvius volcanoes,
located within 100 km from the Matese area (10).

We show that signals of magmatic intrusions in mountain chains
do not qualitatively differ from those observed on active volcanoes.
However, in the latter case, earthquakes are generally arranged in
swarms or occur uninterruptedly before an eruption at shallow depth,
in the uppermost levels of the crust (21). The seismic activity during the
Matese sequence was not continuous, as expected in a volcanic
environment, but of a “burst” type and deeper than that expected in
volcanic environments (Fig. 2A). These differences in the seismic
signature between active volcanic and intrusive processes allow us to
conclude that 2013–2014 Matese earthquakes are related to a pulse of
magmawithin the SA lower crust and do not record a seismically active
steady magma accumulation process. The time scale to generate
overpressure and trigger seismic events related to the suggested pulse
of magma intrusion is on the order of 50 days, that is, the duration of
the Matese seismic sequence. Assuming that the dike-like aseismic vol-
ume enclosed by the Matese sequence is occupied by a partially melted
intrusive body, we estimate that the volume of this body is about 30 km3.

We remark that Apennine seismicity is generally interpreted as due
to tectonic stress alone or to the interaction of tectonic stress and crustal
overpressurized CO2 reservoirs located in the upper crust (8, 9, 37). Our
Di Luccio et al., Sci. Adv. 2018;4 : e1701825 3 January 2018
data show that a deeper seismicity associated with the fluid release from
the emplacement of intrusive bodies needs to be also taken into ac-
count. As in the case of the Matese sequence, if present, active intru-
sions can trigger earthquakes deeper than the shallow background
seismicity and withmagnitude greater than 5. As a result, earthquakes
associated with active intrusions should be considered in the evaluation
of seismic hazard in mountain chains. This seismicity should also be
analyzed in time with the aim to detect a potential recurrence in
the magma reservoir assembly process. To identify burst-like seismic
sequences characterized by low-frequency content, we suggest search-
ing the seismic record in other mountain belts like the Alpine-
Himalayan, North American Cordillera, Andes, and Zagros chains.
These seismic signals, if found, could provide important information
on the triggering mechanisms of earthquakes related to active intrusion
episodes and on the dynamics of magma ascent in the crust.
MATERIALS AND METHODS
Seismological analysis
We relocated theMatese 2013–2014 seismic sequence using a double
difference technique [HypoDD by Waldhauser and Ellsworth (38)].
We first located the earthquakes running HYPOINVERSE location
code (39) with P and S readings derived from the Istituto Nazionale
di Geofisica e Vulcanologia (INGV) bulletin (http://eida.rm.ingv.it/)
and a one-dimensional P-wave velocity model (11). Second, we ap-
plied theHypoDD code, which is based on computing the travel time
differences for event pairs at common stations. HypoDD groups the
events in clusters of well-linked events (events belong to only one cluster)
to have a stable inversion of the differential travel times, producing a
final relocated data set that could be significantly smaller than the
starting one. In our case, the final double-difference relocated catalog
contains 216 events of the 300 in the initial catalog. We finally applied
the conjugate gradient least square algorithmwith the following param-
eters: minimumnumber of observations per event pair is eight (equal
to the number of degrees of freedom for an event pair, three spatial and
one temporal coordinates for each event pair), and the maximum hy-
pocentral separation allowed between linked events is fixed at 5 km.

Tobetter understand the recorded signals in terms of their frequency
content, we computed the spectrograms of the ground velocity for
the mainshock (20131229) and the larger aftershock (20140120). We
considered a cutoff distance of 60 kmusing normalized three-component
waveforms. Spectrograms were computed on a 4-s sliding window
with 50% overlap in the frequency range of 0 to 10 Hz and are shown
in Fig. 3 alongwith thewaveforms for the vertical components. Spectro-
grams for the three components relative to the 20131229 and 20140120
events are shown in fig. S1 (A and B).

To estimate the dispersion of the crustal rocks, we computed the
attenuation as the inverse of the quality factor Q0 that does not de-
pend on the frequency.We computed the S-wave displacement spectra,
assuming the source model by Boatwright (40) and applying the
technique used by Convertito et al. (18). We demonstrated that 1/Q0

does not depend on the azimuth of the stations but only on the distance
(Fig. 2B).

Carbon mass balance of the aquifers
The total dissolved inorganic carbon (TDIC) of groundwater from car-
bonate aquifers is the sum of carbon contributions from the dissolution
of carbonate rocks hosting the aquifer (Ccarb) and carbon sources exter-
nal to the aquifer (Cext). The carbon from the dissolution of atmospheric
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and soil biogenic CO2 during the rainwater infiltration process (Cinf)
and the dissolution of CO2 from deep sources (Cdeep; that is, meta-
morphism, mantle, andmagma) contribute to Cext. The carbonmass
balance is described by the equations (41)

TDIC ¼ Cext þ Ccarb ð1Þ

d13CTDIC � TDIC ¼ d13Cext � Cext þ d13Ccarb � Ccarb ð2Þ

where d13CTDIC, d
13Ccarb, and d

13Cext are the isotopic composition of
TDIC, Ccarb, and Cext, respectively. Equation 2 is valid assuming that
isotopic equilibrium exists between all the dissolved carbon species
and that no isotopic fractionation occurs during the addition of any
carbon sources to the solution (42). Equations 1 and 2 can be applied to
the groundwater that has not experienced CO2 degassing and calcite
precipitation before the emergence, a condition verified for the Apen-
nine springs (41, 43).

The TDIC of each sample was computed by the PHREEQC code
(44) using the field determinations of T, pH and alkalinity, and the
major ion concentrations as input data. d13CTDIC was analytically
determined.

The Ccarb was computed from the equation

Ccarb ¼ ½Ca� þ ½Mg� – ½SO4� ð3Þ

where concentrations are expressed in molality. Equation 3 considers
the dissolution of calcite and dolomite and the presence of gypsum
and/or anhydrite in the aquifers. d13Ccarb was assumed to be equal to
the average value of numerous isotopic compositions ofMeso-Cenozoic
carbonate rocks of the Apennines (+2.21‰) (41).

The Cext and d13Cext values were computed from Eqs. 1 and 2,
whereas the different components of Cext were derived considering
the following additional equation

Cext ¼ Cinf þ Cdeep ð4Þ

and by the inspection of the d13Cext versus Cext diagram (fig. S2). The
lowest Cext contents and more negative d13Cext (derived from organic
sources, green dots in fig. S2) characterize the infiltrating water where
Cext ~ Cinf. Other samples (CO2-rich waters, red dots in fig. S2) move
from the infiltrating water trend to higher Cext values and heavier car-
bon isotopic compositions because of the addition to infiltrating waters
of inorganic carbon from a deep source (Cdeep). The Cdeep content of
each CO2-rich water is given by Eq. 4 assuming a Cinf value equal to
the mean of the infiltrating waters (Cinf = 2.05 ± 0.4 mmol kg−1).

Finally, some samples depart from the infiltrating water–deep CO2

mixing trend toward heavier carbon isotopic composition because they
are affected by carbon fractionation during water degassing and calcite
precipitation (degassed waters, purple dots in fig. S2). The carbon mass
balance approach is not applicable in these springs characterized by low
flow rates.

Groundwater temperatures and geothermal warming
The geothermal heat flux (Qb) affecting the hydrogeological basin of
the springs was computed from the difference between the emergence
Di Luccio et al., Sci. Adv. 2018;4 : e1701825 3 January 2018
temperature Ts and the temperature of the recharge water Tr (DT). DT
(in kelvin) is linked to Qb (in watts per square meter) by the following
relation (25)

DT ¼ Qb

rw � Cw
� A

q
þ Dz � g

Cw
ð5Þ

where rw (in kilograms per cubic meter) andCw (in joules per kilogram
per kelvin) are the water density and heat capacity, respectively; A (in
square meters) is the extension of the hydrogeological basin; q (in cubic
meters per second) is the spring flow rate; Dz (in meters) is the
difference between the recharge depth zr and the spring elevation zs;
and g (in meters per second squared) is the gravity. In Eq. 5, the term
Qb

rw�Cw
� A

q is the fraction of DT related to geothermal heating (Gwarm in
table S2), whereasDz � g

Cw
is the heating caused by the dissipation of

GPE (table S2). Equation 5 was solved assuming constant rw, Cw, and g
(1000 kgm−3, 4186 J kg−1 K−1, and 9.81 m s−2, respectively), whereas Ts
and elevations zs are from field measurements. Values of A and q were
taken from literature (22). Thewater recharge elevation zr and tempera-
ture Tr were estimated on the basis of the d18O isotopic composition of
the springs. Elevations were inferred in the diagram z versus d18O from
the best fitting of 11 meteorological isotopic stations (fig. S3) located in
southern Italy (45).Tr values (table S2) were computed by Tr =T0 + zr ×
∇Tair considering an average temperature at sea level T0 of 16°C (http://
www.sinanet.isprambiente.it/it), the above described estimation of zr,
and an air temperature lapse ∇Tair = − 6.5 × 10− 3°C m–1 (www.iso.
org/standard/7472.html). Computations are done for the three springs
(table S1) for which oxygen isotopes are available (23, 46). Results indi-
cate high heat fluxes (242 mW m−2) for the CO2-rich sample 1612,
whereas much lower values are found for the normal groundwater
discharged by springs 1610 and 1615. We emphasized that, due to
the high infiltration of recharge waters (28 liters s−1 km−2), the tempera-
ture anomalies of the springs are relatively low and this implies some
uncertainties in the estimation of Qb.

Computation of the fluid pressure
We assumed an extensional shear rupture mechanism following the
Griffith’s criterion and determined the fluid pressure Pf required to ac-
tivate shear failure and crack opening at a depth of 15 km in theMatese
crust. The condition for an extensional-shear failure mode is given by
Sibson (32)

4T < s1 � s3 < 5:66T ð6Þ

where s1 = rgh,T is the tensile strength of the rocks inmegapascal, s1 is
the maximum vertical stress, and s3 is the least compressive stress in a
normal stress field like that acting in the Matese area; r is the rock den-
sity (here assumed to be 2650 kg m−3 from gravity data), h is the depth
(in meters), and g is the gravity (9.81 m s−2).

In crustal rocks, T is highly variable ranging between 1 and 20MPa;
however, for crystalline rocks, a reasonable value is 20 MPa (33).
Using the selected parameters, s1 is 390 MPa at a depth of 15 km.
Therefore, s1 − s3 ~ 100 ± 20MPa and s3 = 290 ± 20MPa. At a depth
of 15 km, s3/s1 = 0.7 ÷ 0.8, a value that is consistent with the one re-
cognized in extensional tectonic regimes like that acting in the Apen-
nines (13).
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According to the Griffith’s criterion, the fluid pressure for an
extensional shear failure mode is (32)

Pf ¼ s3 þ 8Tðs1 � s3Þ � ðs1 � s3Þ2
16T

ð7Þ

Assuming the above selected values of T, s1, and s3, we obtained
Pf = 308 ± 22 MPa at a depth of 15 km.
D
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