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Abstract Two-parton correlations in the pion are inves-
tigated in terms of double parton distribution functions. A
Poincaré covariant light-front framework has been adopted.
As non perturbative input, the pion wave function obtained
within the so-called soft-wall AdS/QCD model has been
used. Results show how novel dynamical information on the
structure of the pion, not accessible through one-body quan-
tities, are encoded in double parton distribution functions.

1 Introduction

Double parton scattering (DPS), the simplest form of multi-
ple parton interaction (MPI), has been observed at the LHC
(see, e.g., Ref. [1]). The DPS cross section can be written in
terms of double parton distribution functions (dPDFs) [2–4],
which represent the number density of two partons located
at a given transverse separation in coordinate space and with
given longitudinal momentum fractions. This is an infor-
mation complementary to the tomography accessed through
electromagnetic probes in terms of generalized parton distri-
butions (GPDs) [5,6]. If measured, dPDFs would therefore
represent a novel tool to access the three-dimensional hadron
structure [7]. However, since dPDFs describe soft Physics,
they are non perturbative objects and have not been evaluated
in QCD. It is therefore useful to estimate them at low momen-
tum scales (∼ �QCD), for example using quark models as
it has been proposed in Refs. [8–13]. In order to match the-
oretical predictions with future experimental analyses, the
results of these calculations are then evolved using pertur-
bative QCD to reach the high momentum scale of the data
[14,15].

a e-mail: mrinaldi@ific.uv.es

In a previous work, use has been made of the AdS/QCD
framework to study dPDFs in proton–proton collisions
[13]. The AdS/QCD approach establishes a correspondence
between conformal field theories and gravitation in an anti-
de-Sitter space [16–18]. The so-called bottom-up approach
implements important features of QCD, generating a the-
ory in which conformal symmetry is restored asymptotically
[19–22]. This approach has been successfully applied to the
description of the spectrum of hadrons, of their form fac-
tors (ffs) and parton distributions (PDFs) [23–28]. In par-
ticular the structure of the pion is an interesting subject
which has attracted much attention from the point of view
of AdS/QCD [23,29,30]. In this scenario we proceed here
to generalize the formalism developed for nucleon dPDFs to
mesons and apply it using pion wave functions defined via
the AdS/QCD correspondence. One should notice that, for
nucleons, DPS data should become available and the extrac-
tion of dPDFs, although difficult, could be obtained from
LHC data in the future. Measurements of this kind for mesons
appear much more challenging. Nonetheless, lattice data for
moments of dPDFs of mesons can become available, while
the same appears much more difficult for the nucleon. As
a matter of facts, our analysis has been partially motivated
by a first estimate of moments of quantities related to pion
dPDFs in the lattice, recently reported [31]. The possibility to
access the specific non perturbative information from lattice
is indeed rather interesting.

In Sect. 2 we describe the spin-independent meson dPDF
in terms of the light-front (LF) wave function (w.f.), and
introduce an approximation which relates dPDFs to GPDs
and ffs. Furthermore we introduce a quantity relevant to DPS
phenomenology, the effective cross section σe f f , in terms of
dPDFs and PDFs. In Sect. 3 AdS/QCD model calculations
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of dPDFs are summarized and their properties analyzed. In
Sect. 4 the evolution of the dPDFs to high momentum scale
is calculated and its implications discussed. Conclusions are
collected in Sect. 5.

2 Double PDF and the meson light-front wave function

Due to the explorative character of this investigation, we dis-
cuss the most natural dPDF, the unpolarized one given in
terms of the Dirac structure γ μ. In this section we describe
how to express it in terms of the light-front (LF) meson
wave function. The formalism we use has been also pre-
sented in Ref. [32], where dPDFs have been studied for a
dressed quark target treated as a two body system. Formally,
the spin-independent dPDF is defined by means of the light-
cone correlator [3],

Fq1q2(x1, x2,k⊥)

= P+

4

∫
d2y⊥e−iy⊥·k⊥

∫
dy−

∫
dz−1 dz

−
2

× e−i x1P+z−1 −i x2P+z−2

(2π)2

× 〈A, 0|Oq1(0, z1)Oq2(y, z2)|A, 0〉
∣∣∣z1⊥=z2⊥=0

y+=z+1 =z+2 =0
, (1)

where for generic 4-vectors y and z, the operator Oq(y, z)
for the quark of flavor q reads:

Oq(y, z) = q̄

(
y − 1

2
z

)
γ +q

(
y + 1

2
z

)
, (2)

and q(z) is the LF quark field operator. In order to find a
suitable expression of the dPDF, we make use of the LF wave
function representation approach [33,34]. In particular, the
pion minimal (qq̄) Fock-state configuration is written as

|A,P⊥〉 =
∑
h,h̄

∫
dx1 dx2√

x1x2

d2k1⊥d2k2⊥
2(2π)3 δ(2)(k1⊥ + k2⊥)

× |x1,k1⊥ + x1P⊥, h〉|x2,k2⊥ + x2P⊥, h̄〉
× δ(1 − x1 − x2)ψ

π

h,h̄
(x1, x2,k1⊥,k2⊥). (3)

Here, h and h̄ represent parton helicities, xi = k+
i /P+ and

ki⊥ the quark longitudinal momentum fraction and its trans-
verse momentum, respectively, Pμ the meson 4-momentum.
The light cone components are defined by l± = l0±l3. In Eq.
(3), ψπ

h,h̄
(x1, x2,k1⊥,k2⊥) is the LF meson wave-function,

whose normalization is chosen as

1 = 1

2

∑
h,h̄

∫
dx1dx2

d2k1⊥d2k2⊥
16π3 δ(1 − x1 − x2) (4)

× δ(2)(k1⊥+k2⊥)|ψπ
h,h̄

(x1, x2, k1⊥, k2⊥)|2.

The w.f. ψπ

h,h̄
(x1, x2,k1⊥,k2⊥) determines the structure of

the state and is not known.
However one can obtain the dPDF by using a standard

procedure (see e.g. Ref. [10] for the proton) which makes use
of the quark-antiquark field operator [23], the definition of
the meson state Eq. (3), of Eq. (1) and the anticommutation
relations between creation-annihilation operators (see Ref.
[23] for details). The result for the pion dPDF is

Fq1q̄2(x1, x2,k⊥)

= 1

2

∑
h,h̄

∫
d2k1⊥
2(2π)3 ψπ

h,h̄
(x1, x2,k1⊥,−k1⊥)

× ψ∗π

h,h̄
(x1, x2,k1⊥ + k⊥,−k1⊥ − k⊥)

× δ(1 − x1 − x2) (5)

= f π
2 (x1,k⊥)δ(1 − x1 − x2). (6)

In the above expression, q1 and q̄2 are the flavors present in
the considered pion type, π . In general, the object of physical
interest here is f π

2 (x1,k⊥), obtained as integral over x2 of
Fq1q̄2(x1, x2,k⊥) and given by

f π
2 (x,k⊥)

= 1

2

∑
h,h̄

∫
d2k1⊥
2(2π)3 ψh,h̄(x,k1⊥)ψ∗

h,h̄
(x,k1⊥ + k⊥). (7)

Notice that for k⊥ = 0, the usual LF PDF expression is
recovered [30]. Here and in the following, we use the sub-
script “2” in order to distinguish the above quantity from
the PDF, denoted f1(x). We will calculate the quantity
f π
2 (x,k⊥) encoding the relevant dynamical information.

Since the LF meson wave function is evaluated under the
conditions x2 = 1− x1 and k2⊥ = −k1⊥, due to momentum
conservation, for simplicity, we use the notation

ψh,h̄(x1,k1⊥) = ψπ

h,h̄
(x1, 1 − x1,k1⊥,−k1⊥). (8)

In the following, in order to distinguish the dPDF Fq1q̄2(x1,

x2,k⊥) from f π
2 (x,k⊥), we will call the latter “integrated

dPDF”. We are mainly interested in non perturbative aspects
of the dPDFs, so that, in order to emphasize the role of corre-
lations between x and k⊥, in the next sections the following
ratio will be calculated:

rk(x, k⊥) = Fq1q̄2(x, x2, k⊥)

Fq1q̄2(0.4, x2, k⊥)
= f π

2 (x, k⊥)

f π
2 (0.4, k⊥)

; (9)

in fact, if a factorized ansatz, e.g. f π
2 (x, k⊥) ∼ f2,x (x) f2,k⊥

(k⊥), is used, rk(x, k⊥)does not depend on k⊥ [9,10,35]. The
factorization ansatz is often used in experimental analyses for
the proton target.
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In closing this section, we note that the dPDFs and the
integrated dPDF depend on two momentum scales, which
we have not shown, corresponding to the mass of the states
produced in the two parton–parton scattering in the DPS pro-
cess. These scales will be the low energy scales in the evolu-
tion process. Model results are adscribed to a low momentum
scale, where the pion is dominated by the q̄q Fock state, the so
called hadronic scale μ2

0. We take both scales at the hadronic
scale.

2.1 An approximation in terms of one body quantities

An ansatz commonly used to describe the unknown dPDFs
makes use of ffs and GPDs (in the case of the proton some
experimental knowledge is available). Following the strat-
egy of Refs. [3,36,37], we consider the correlator (1) and
insert a complete set of states assuming that the pion is dom-
inant. The formal expression for this approximated quantity,
F A
q1q̄2

(x1, x2,k⊥), is:

F A
q1q̄2

(x1, x2,k⊥) = P+

4

∫
d2y⊥e−iy⊥·k⊥

∫
dy−

×
∫

dz−1 dz
−
2

∫
dP ′+d2P′⊥
2(2π)3P ′+

e−i x1P+z−1 −i x2P+z−2

(2π)2

× 〈A, 0|Oq1(0, z1)|A′,P′⊥〉〈A′,P′⊥|Oq̄2(y, z2)|A, 0〉
×

∣∣∣z1⊥=z2⊥=0

y+=z+1 =z+2 =0
. (10)

In this scenario, the approximation relies on the assumption
Fq1q̄2(x1, x2,k⊥) ∼ F A

q1q̄2
(x1, x2,k⊥). At this point, using

again the strategy already discussed in the previous section,
we find:

F A
q1q̄2

(x1, x2,k⊥) = Hq1(x1,k⊥)Hq̄2(1 − x2,−k⊥), (11)

where Hq(x,k⊥) = Hq(x, ξ = 0,k⊥), is the pion GPD at
zero skewness. The integral over x2 of Eqs. (5) and (11) leads
approximately to

f π
2 (x,k⊥) ∼ f π

2,A(x,k⊥) =
∫ 1

0
dx2 F A

q1q̄2
(x, x2,k⊥)

= Hπ (x,k⊥)Fπ (k⊥), (12)

where Fπ (k⊥) is the standard pion e.m. form factor. The
difference between f π

2 (x,k⊥) and f π
2,A(x,k⊥) addresses the

presence of unknown parton correlations that can not be stud-
ied by means of one-body distributions. This fact is evident
in Eq. (11) where one sees directly that the approximation
(10) amounts to neglect possible interesting correlations in
longitudinal variables x1, x2. In order to expose the relevance
of such effects, the relation (12) will be discussed in the next
section.

The GPD for the pion [26] might be written also in terms
of the LF wave function [38,39],

Hπ (x, ξ = 0,	2⊥) = 1

2

∑
h,h̄

∫
d2k1⊥
16π3

× ψh,h̄

(
x,k1⊥

)
ψ∗
h,h̄

(x,k1⊥ + (1 − x)	⊥), (13)

an expression well suited for model calculations which will
be used in the next section in order to test the validity of the
approximation Eq. (12), addressing possible new insights on
the integrated dPDF. One should realize that the violation of
Eq. (12) implies that Fq1q̄2(x1, x2,k⊥) cannot be factorized
in terms of functions which can be interpreted as GPDs.

2.2 The effective cross section

A relevant observable for DPS proton studies is the so called
effective cross section, σe f f , see e.g. Ref. [40]. It is defined
as the ratio of the product of two single parton scattering pro-
cess cross sections to the DPS with the same final states. It
is extracted from data using model assumptions, and it can
be expressed in terms of PDFs and dPDFs [11]. For proton–
proton collisions, this quantity has been also studied within
the AdS/QCD soft-wall model [13]. In Refs. [11,13,41] it has
been shown how a dependence of σe f f on the longitudinal
momentum fractions of the acting partons reflects the pres-
ence of non trivial double parton correlations. In the present
study we calculate σe f f for a meson target in order to make
predictions.

Let us consider for an illustrative purpose only, the effec-
tive cross section for a DPS process involving , for exam-
ple, the collision between two pions of the same charge. In
general, this quantity depends on four variables x1, x2 and
x ′

1, x
′
2, i.e. the longitudinal momentum fractions of the par-

tons involved in the process. Nevertheless, in the zero rapidity
region, i.e. x1 = x ′

1 and x2 = x ′
2, σe f f reads:

σe f f =
∑

q1q2q3q4

Cq1q3Cq2q4 f q1
1 (x1) f

q2
1 (x2) f

q3
1 (x1) f

q4
1 (x2)

∑
q1q2q3q4

Cq1q3Cq2q4

∫ d2k⊥
(2π)2 Fq1q2 (x1, x2, k⊥)Fq3q4 (x1, x2,−k⊥)

,

(14)

where f q1 (x) is the single PDF of the flavor q in the pion π ,
indexes in sums run over all active partons in a given process
and Ci j is a colour factor, i.e. Cgg : Cqg : Cqq = 1 : (4/9) :
(4/9)2, see Ref. [11]. Furthermore, one can define an average
value as follows:

σ e f f = 1∫ d2k⊥
(2π)2 F

π
2 (k⊥)Fπ

2 (−k⊥)
, (15)
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Fig. 1 Left panel: integrated dPDF of the pion within the AdS/QCD
model of Ref. [23] (cfr Eq. (17)) at different values of k⊥. Full line
k⊥ = 0 GeV, dashed line k⊥ = 0.2 GeV, dot-dashed line k⊥ = 0.5

GeV and dotted line k⊥ = 0.6 GeV. Right panel: the ratio defined by
Eq. (9) for the same parameters as in the left panel

where the effective form factor

Fπ
2 (k⊥) =

∫ 1

0
dx1

∫ 1−x1

0
dx2 Fq1q2(x1, x2,k⊥) (16)

has been introduced (see Refs. [7,11]). Eq. (15) assumes
factorization between the x and k⊥ in the dPDF. The latter
quantity, Eq. (15), is the one usually studied in experimental
analyses of DPS. In this factorized scenario, one might notice
that σDPS , i.e. the DPS cross section (see, e.g., Refs. [2,41]),
depends on 1/σ e f f [41]. Thanks to this feature, the value of
1/σ e f f provides a rough estimate of the magnitude of σDPS .
In the next section we will provide model predictions for
hypotetical experiments with mesons.

3 Calculation of the pion dPDF using an AdS/QCD
model

In the present section we introduce and discuss the LF wave
function later used to evaluate the dPDFs. In particular, we
will make use of the AdS/QCD soft-wall model approach.
While in this framework several models exist [23,24,26,42],
we have chosen the first one [23,24], which we consider the
most straightforward and therefore most suitable to show
general properties of pion dPDFs. In this scheme, the pion
w.f. reads:

ψπo(x,k1⊥) = Ao
4π

κo
√
x(1 − x)

e
− k21⊥+m2

o

x(1−x)2κ2
o , (17)

where mo = mu ∼ md̄ , x = x1, x2 = 1 − x and k2⊥ =
−k1⊥. The parameters of the model have been recently fixed
to reproduce the Regge behavior of the mass spectrum of
mesons [29,42]. They are κo = 0.523 GeV and mo ∼ 0.33
GeV. The constant Ao, is fixed by the normalization condition
(4) and it is found to be Ao = 3.0498. Using Eq. (17) in Eq.
(7), the integrated dPDF is analytically expressed by:

f πO
2 (x,k⊥) = A2

oe
− 4m2

o+k⊥2

4κ2
o x(1−x) . (18)

For definiteness, we will consider in the following a π+
system. The distributions for π− and π0 can be obtained by
isospin and charge conjugation. As one can see in the left
panel of Fig. 1, as it happens in the proton case [9,10], the
dPDF decreases as k⊥ increases, and the factorization in k⊥
and x is not supported by the model as can be observed in
the right panel of Fig. 1, where the the ratio (9) shows a clear
k⊥ dependence. We conclude the discussion of these results
by reporting the mean value of σe f f within the model at the
hadronic scale μ0, σπ

e f f (μ0) = 41.69 mb. This value is larger
than that corresponding to the proton case, i.e. σ̄e f f ∼ 15
mb [11,36,37]. As demonstrated in Ref. [7], in general, the
mean value of σe f f is related to the geometrical structure of
the colliding hadron, in particular to the transverse distance
between two active partons in a DPS process. Such a relation
provides a physical interpretation for the different values of
σ̄e f f found for the pion and for the proton. In particular,
assuming σ̄e f f for the pion to be realistic, such a difference
would suggest a different transverse distance between two
partons in the proton and in the pion.

For completeness, we report in Fig. 2 the pion GPD eval-
uated within the model. As one can see, the pion GPD is
very similar to the integrated dPDF. It is apparent that the
expressions for the dPDF and GPD, Eqs. (7, 13), in terms of
the light-front pion wave function, are similar. However, in
the integrated dPDF, k⊥ represents an intrinsic imbalance of
the parton momentum between the initial and the final states
keeping the same pion momentum in both states, while in
the GPDs, 	⊥ = k⊥ represents the difference in momen-
tum between the initial and final state of the pion. There-
fore, the dependence of the GPDs on the partonic momen-
tum, i.e. k1,⊥ ± (1 − x)k⊥ produces an asymmetry in the x
dependence, which is not present in dPDF. Moreover, since in
the GPDs the momentum imbalance in the wave function is
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Fig. 2 The pion GPD defined in Eq. (13) for k⊥ = 0 GeV (full line),
k⊥ = 0.2 GeV (dashed line), k⊥ = 0.5 GeV (dot-dashed) line and
k⊥ = 0.6 GeV (dotted line)

multiplied by the pre-factor 1 − x < 1 (see Eq. (13)), at
variance with the dPDF, the latter goes to zero faster then
the GPD. Let us stress that such a similarity between dPDFs
and GPDs holds only for the valence component and at the
hadronic scale, i.e. where only two valence particles are taken
into account in the model. If higher Fock states were included
in the LF w.f. representation of the pion, other non pertur-
bative x1 − x2 correlations would appear. Moreover if one
considers the pQCD evolution of dPDFs, also perturbative
x1 − x2 correlations show up (see e.g. Refs. [12,43]). Anal-
ogously to the proton case, this non trivial dependence of
dPDFs on x1 and x2 cannot be accessed via GPDs, a confir-
mation of the rich three-dimensional structure accessible via
dPDFs.

Finally we compare the complete f π
2 (x,k⊥) with its

approximation Eq. (12), i.e. f π
2,A(x,k⊥). If only the valence

contribution were considered, the approximation to the inte-
grated dPDF would become a product of a GPD and a form
factor, as seen in Eq. (12), at variance with the proton case,
where the dPDF is written as a product of two GPDs. In
Fig. 3, we compare the integrated dPDF (7) and its approx-
imation (12) as a function of x for three different values
of k⊥. Similarly to what happens with the proton case [7–
10,12,35,41,44], the approximation of one-body quantities
gets worse and worse with increasing k⊥. This fact points to
non trivial information, contained in the pion dPDF at the
hadronic scale, different from that encoded in the GPDs and
ffs.

4 Evolution

The next step in our scheme is to calculate the perturbative
evolution of the dPDFs from the low momentum scale of
the model, the hadronic scale μ2

0, to the high scale of the
data Q2. As stated in the Sect. 1, dPDFs depend on two
momentum scales. For simplicity, as it has been in done in

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

Fig. 3 The pion integrated dPDF, evaluated by means of its definition
of Eq. (7), is shown in full lines, and its approximation, defined by Eq.
(12), is plotted in dotted lines, for three values of k⊥: k⊥ = 0 GeV,
k⊥ = 0.2 GeV and k⊥ = 0.5 GeV. The quality of the approxima-
tion decreases as k⊥ increases as shown by the bands emphasizing the
difference between the exact calculation and the approximation

previous works, see e.g. Ref. [45], we assume here that the
two scales coincide. We follow here the same strategy devel-
oped in Refs. [10,12] adapted to the use of quark models
to calculate the proton’s dPDFs. Historically, the evolution
equations for dPDFs can be seen as a generalization of the
usual DGLAP equations (see the original papers [14,15] and
recent contributions in Refs. [3,36,43,45–54]). This feature
sets up the strategy which we are going to discuss next. Pos-
sible effects of the QCD evolution on the k⊥ dependence,
presently under investigation and have not been considered
here.

We start with the decomposition of the dPDF at a generic
scale Q2:

Fud̄ = F(uV +usea)(d̄V +d̄sea) = F(uV +ū)(d̄V +d̄)

= FuV d̄V + FuV d̄ + Fūd̄V + Fūd̄ (19)

where, at the hadronic scale [55],

uπ+
V = d̄π+

V = dπ−
V = ūπ−

V = vπ ≡ uV ; (20)

while at any scale qsea = q̄sea = q̄, with q = u, d, s for
N f = 3 three active flavors. It is convenient to use the
symmetrized form of dPDFs, F̄ab = (Fab + Fba)/2 where
F̄ab ≡ F̄ab(x1, x2,k⊥, Q2) is symmetric in x1, x2.

4.1 Flavor decomposition

In order to proceed with the evolution equations one has to
construct from the F̄ud̄ the Singlet and Non-Singlet compo-
nents
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� =
∑
q

q+ = uV + 2ū + dV + 2d̄ + s + s̄

T3 = u+ − d+ = uV + 2ū − dV − 2d̄

T8 = uV + 2ū + dV + 2d̄ − 2(s + s̄)

Vi = q−
i , (21)

where q±
i = qi ± q̄i .

The evolution equations involve different equations for the
Singlet–Singlet component (��), NonSinglet–Singlet
components (T8� + �T8, dV� + �dV , uV� + �uV ), and
NonSinglet−NonSinglet contributions (constructed from
Vi , T3, T8).

4.2 Mellin-moments and inversion

The procedure follows by constructing the Mellin-moments
which allow to solve the evolution equations easily. These
quantities are

1

2
Mn1n2

(qaqb+qbqa)
(Q2) = Mn1n2

qbqa (Q2) + Mn1n2
qaqb (Q2)

2
(22)

=
∫ 1

0
dx1

∫ 1−x1

0
dx2 x

n1−1
1 xn2−1

2 F̄ab(x1, x2; Q2).

At the hadronic scale μ2
0, all the combinations of dPDFs

with �, T8, T3 and Vi will contain valence partons only.
As a result the remaining term will be FuV d̄V , and the non
vanishing moments at the hadronic scale will assume the
form

Mn1n2

uV d̄V
(μ2

0,k⊥)

=
∫ 1

0
dx1

∫ 1−x1

0
dx2 δ(1 − x1 − x2)

× xn1−1
1 xn2−1

2 f πO
2 (x1, x2,k⊥, μ2

0)

=
∫ 1

0
dxxn1−1(1 − x)n2−1 f πO

2 (x,k⊥, μ2
0). (23)

They enter the moments of the combinations directly depend-
ing on �, T3, T8 and Vi , but each moment Mn1n2

ab (μ2
0),

defined at the hadronic scale, will evolve according to its
specific flavor symmetry [12]. The moments are independent
functions of the complex indices n1, n2 and the inversion of
Eq. (23) will produce dPDFs defined in the whole (x1, x2)

domain with x1 + x2 ≤ 1.

4.3 Evolution of the dPDFs: results

In Fig. 4, we plot the second moment of the double distribu-
tion F̄ud̄(x1, x2, y, Q2) defined by

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5 10-3

Fig. 4 The second moment of dPDFs, Eq. (24) as a function of the dis-
tance y and at different scales: the hadronic scale μ2

0 = (0.523 GeV)2,
Q2 = 4 GeV2 and 100 GeV2

M22
ud̄

(y, Q2)

=
∫ 1

0
dx1

∫ 1−x1

0
dx2 x1x2 F̄ud̄(x1, x2, y, Q

2), (24)

where y is the distance between the two correlated partons,
obtained Fourier transforming the k⊥ dependent distribution
f πO
2 (x,k⊥) given in Eq. (18). This quantity incorporates the

evolution to large Q2 of the distribution F̄ud̄(x1, x2, y, Q2)

starting from the initial scale μ2
0 = (0.523)2 GeV2, already

used in calculation of pion PDF and unpolarized transverse
momentum dependent PDF in Ref. [30].

At the hadronic scale since only two valence particles are
present, the support condition, preserved within the light-
front approach, forces the dPDF to exist only when x1 +
x2 = 1 . This is at variance with the proton case where the
existence of a third particle allows complete freedom for x1

and x2 as long as momentum is conserved x1 + x2 < 1.
The evolution procedure, described by Eq. (22), where n1

and n2 are independent complex parameters allows to obtain
Fud̄(x1, x2, y, Q2) for all values of x1 and x2 and x1 + x2 <

1. The creation, in the evolution process, of sea and glue
partons allows x1 and x2 to free themselves from the valence
condition.

As we mentioned in the Sect. 1, preliminary results for
quantities related to moments of the pion dPDFs have been
recently reported within a lattice QCD approach [31]. A com-
parison of results obtained in model calculations with lattice
data would open interesting new perspectives.

A first important effect of the evolution procedure can be
seen in Fig. 5, where the double distribution x1x2 F̄ud̄(x1, x2,

y, Q2 = 100 GeV2) is shown in the domain (x1, x2 = 1−x1)
as a function of x1 and for different values of y. The compar-
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0 0.2 0.4 0.6 0.8 1
0

0.002

0.004

0.006

0.008

0.01

0.012

Fig. 5 The quantity x1(1 − x1)Fud̄ (x1, 1 − x1, y, Q2 = 100 GeV2) is
plotted as a function of x1 at different y-values. The input distribution
at μ2

0 and y = 0 fm is also shown

ison with the same distribution at the hadronic scale μ2
0 and

y = 0 clearly emphasizes the effects of the evolution. The
evolution from μ2

0 to Q2 = 100 GeV2 produces a reduction
of the distribution, a behavior physically interpretable as the
creation of new partonic species carrying momentum, in par-
ticular gluon distributions. Recall that the latter are zero at
the hadronic scale for the models considered. In Fig. 6 the
double distribution x1x2 F̄uV g(x1, x2, y, Q2) is plotted. The
upper panel shows the dependence of the distribution on the
scale Q2, while the lower panel illustrates its dependence on
the parton distance y.

A large part of the valence parton momentum is transferred
to the gluons which increases dramatically at low-x , while
the relevance of the valence partons decreases. In closing this
section we show, in Fig. 7, how the approximation Eq. (12) is
violated also at the high momentum scale, i.e. Q2 = 4 GeV2.
As one can observe, the amount of the violation of the ansatz
Eq. (12), at both the initial hadronic scale and the final one, is
essentially the same. Such a feature relies on the properties
of the pQCD evolution equation of standard PDFs. In fact,
being f π

2 (x, k⊥) the integral over x2 of the dPDF, it evolves
as an usual PDF [4] and as the GPDs for zero skewness.
Since this kind of procedure preserves the k⊥ dependence of
the distributions, all correlations between x and k⊥ survive
also at high momentum scales. We reiterate that here only
the Q2 evolution of the x dependence is performed.

5 Conclusions

Double parton distribution functions may represent a novel
tool to access the three dimensional structure of hadrons. It
is therefore natural to study the dPDFs of the pions, specially
now that the first estimates of quantities related to the dPDF of

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5 10-3

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5 10-3

Fig. 6 The quantity x1x2FuV g(x1, x2, y, Q2) is plotted as a function of
x1 for x2 = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9. In the upper panel
the full lines represent the results at Q2 = 4 GeV2 and the dashed lines
those ones at Q2 = 100 GeV2 for the same value of the parton distance
y = 0 fm. The lower panel compares the distributions for different
distances: y = 0 fm (full lines) and y = 0.4 fm (dashed lines) and
Q2 = 4 GeV2

pion have been reported by lattice studies [31]. We have used
here a light front formalism, for which the wave function of
the system is required. The AdS/QCD correspondence has
generated our LF wave function. Once the formalism has
been set up we have calculated several quantities Among
them, we have obtained the mean effective cross section for
pion–pion scattering at the hadronic scale, σ̄ π

e f f (μ0) = 41
mb, which turns out to be larger than the same cross section,
evaluated with a similar approach, in the proton case. This
quantity is very much independent on QCD evolution and
provides us with an estimate of the magnitude of DPS [11,
13].

In the adopted AdS/QCD model, dPDFs turn out to
be analytical. It has been found that an approximation in
terms of generalized parton distributions, proposed in several
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Fig. 7 The quantity x f πo
2 (x1, k⊥, Q2 = 4 GeV2), full lines, compared

with its approximation, Eq. (12), dashed lines, for three values of k⊥:
k⊥ = 0 GeV, k⊥ = 0.2 GeV and k⊥ = 0.5 GeV. The bands illustrate
the difference between the exact calculation and the approximation

approaches, is not reliable, as it happens also in the proton
case [12]. Analogously, our calculations show that dPDFs do
not factorize into x1,2- and k⊥-dependent terms. These facts
expose the presence of unknown double parton correlations
in the pion not accessible from one-body distributions.

We have performed the evolution to high Q2 using the
conventional formalism, subject in this case, at the model
momentum scale where only two valence constituents with
momentum fractions x1 and x2 are present, to the x1+x2 = 1
restriction. Expected results are obtained. For example, the
second moment decreases as Q2 increases, signalling the
opening of new dPDFs associated with sea and gluons. A
good example has been shown in Fig. 6, where the dPDF due
to the correlation of valence and gluons is shown for different
values of the parton distance and Q2. At the hadronic scale
such a distribution vanishes because no gluons are included.
At higher scale Q2 the radiative production of gluons from
the valence system makes FuV g > 0. The dPDFs show, both
at the model scale and at a high momentum scale, also a strong
dependence on the partonic distance, decreasing in magni-
tude as the distance increases. While, at present, experiments
designed to measure dPDFs of the pion cannot be imagined,
lattice calculations have started to approach this problem and
will be likely able, in the near future, to distinguish between
predictions of different models of the pion structure, such
as the one presented here, and addressing possible effects of
spin correlations, opening new perspectives.
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