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Abstract

Sensitivity analysis applied to Artificial Neural Networks (ANNs) as well as to other types of

empirical ecological models allows assessing the importance of environmental predictive

variables in affecting species distribution or other target variables. However, approaches

that only consider values of the environmental variables that are likely to be observed in

real-world conditions, given the underlying ecological relationships with other variables,

have not yet been proposed. Here, a constrained sensitivity analysis procedure is pre-

sented, which evaluates the importance of the environmental variables considering only

their plausible changes, thereby exploring only ecological meaningful scenarios. To demon-

strate the procedure, we applied it to an ANN model predicting fish species richness, as

identifying relationships between environmental variables and fish species occurrence in

river ecosystems is a recurring topic in freshwater ecology. Results showed that several

environmental variables played a less relevant role in driving the model output when that

sensitivity analysis allowed them to vary only within an ecologically meaningful range of val-

ues, i.e. avoiding values that the model would never handle in its practical applications. By

comparing percent changes in MSE between constrained and unconstrained sensitivity

analysis, the relative importance of environmental variables was found to be different, with

habitat descriptors and urbanization factors that played a more relevant role according to

the constrained procedure. The ecologically constrained procedure can be applied to any

sensitivity analysis method for ANNs, but obviously it can also be applied to other types of

empirical ecological models.

1. Introduction

Fish assemblage diversity in freshwater ecosystems constitutes a valuable natural resource in

economic, scientific, cultural and educational terms [1]. Its conservation and management

face threats as overexploitation of inland waters, flow modification, water pollution, habitat

degradation and invasion by exotic species [2], [3]. Identifying the relationships between fish
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species richness and habitat complexity at a local scale is one of the primary concerns in under-

standing how environmental descriptors actually affect fish biodiversity [4], [5], [6].

In this respect, the ecological variables that can be taken into account are often character-

ized by complex and non-linear dependencies [7]. Ecological models have been increasingly

applied in the management and conservation of freshwater fish communities, especially to pre-

dict spatial patterns of fish occurrence [8], [9]. In particular, Artificial Neural Networks

(ANNs) modeling has proved to be a valuable method in order to assess whether predictable

relationship between environmental descriptors and fish species richness exist in small stream

environments [10], [11], [12].

While in the past ANNs were defined as “black boxes” since the computational processes

taking place inside them are not easy to untangle, at present several methodologies have been

developed to assess the contribution of each variable to the prediction process. For deeper elu-

cidations, Olden et al. [13] provided a comprehensive review and comparison of these

methodologies.

In particular, sensitivity analysis is the term used to define a collection of methods that

evaluate how sensitive model output is to changes in the values of predictive variables [14]. In

ecology, the main sensitivity analysis methods applied to ANNs can be classified into four cate-

gories: (i) the Lek’s profiles method [15], [16]; (ii) the Perturbation method [17], [18]; (iii) the

Partial Derivatives method [19], [20], [21], [22]; (iv) the Weights method, developed by Gar-

son [23] and then implemented by Olden & Jackson [24]. Lek’s profiles study each input vari-

able by keeping all other parameters at fixed values, while in Perturbation method each input

variable is perturbed according to empirically established ranges while all others are kept

untouched. The Partial Derivatives method involves small changes in each input variable and

the evaluation of their relative contribution by computing the partial derivatives of the ANN

output with respect to changes in the input. In the Weights method the connection weights of

the ANN model are partitioned to evaluate the relative importance of each input variable and

its positive or negative contribution to the model output. In the application of the first three

methods, the values assigned to input variables can be devoid of real ecological meaning, i.e.

they can be out of the range that is likely to be observed in real-world conditions. In these

cases, environmental variables are forced to values that are only aimed at evaluating the model

output, with no attention to the actual probability of recording those values given the (fixed)

values of all the other variables. In fact, while of course the above-mentioned methods may

provide valuable information about the way the “black-box” model works, the role of ecologi-

cal relationships in constraining the multidimensional space where meaningful data patterns

exist is not fully taken into account. With regard to the Weights method instead, the estimation

of the input variables importance based on the connection weights may result unbalanced in

certain cases where constrained training procedure may be applied to the ANN model for opti-

mization purposes [25] (NB: in this sentence the term constrained is referred to the training

procedure developed by Scardi [25] and it has nothing to do with the constrained perturbation

of input variables here illustrated).

Therefore, although all those methodologies proved to be means of determining the overall

numerical influence of each predictor variable to the model output, approaches that only con-

sider changes consistent with the ecological relationships among environmental variables have

never been proposed. It is well known in ecology that most environmental variables are far

from independent of each other [26], [27]and therefore not all the combinations of their values

are likely to occur (e.g. river slope tends to increase with elevation, as does the water oxygen

concentration, and cannot be very steep in a floodplain). As these relationships constrain each

variable in the complex multidimensional space that represents the abiotic conditions found in

an ecosystem, some combinations of values are more easily found, while others just cannot
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occur. In fact, for instance, it would be highly unlikely for the maximum width of a stream

channel to occur in a headwaters reach.

These issues raise the question: what is the point of perturbing or fixing variables at values

which are ecologically meaningless? Evaluating the model output response in areas of the mul-

tidimensional space where environmental descriptors take far-fetched values may not be useful

from an ecological perspective. Indeed it would make more sense to evaluate how sensitive

model output is to changes in predictive variables values taking into account only plausible

perturbations, i.e. changes which are consistent with the ecological relationships between envi-

ronmental variables.

This study demonstrates an example of a new type of sensitivity analysis, using a case study

about an ANN model aimed at predicting fish species richness in central Italian rivers. The

goal of this work is to evaluate the real contribution of each predictive variable to species rich-

ness estimates by taking into full account the underlying ecological relationships and con-

straints. This way, all the perturbations applied to predictive variables reflect plausible

environmental conditions, thus evaluating shifts in fish species richness only among ecological

meaningful scenarios.

2. Material and methods

2.1. Study area and data collection

Data have been obtained from 368 sites that have been sampled from 2009 to 2014 in central

Italy [28], [29] (Fig 1). Most rivers in this area are characterized by a Mediterranean climate,

hydrological regimes affected by rainfall variability and strong seasonal discharge variation,

with high flows in spring and fall, and droughts in summer [30].

Fish sampling and environmental data acquisition were carried out according to the official

Italian sampling protocol [31]. It generally consists of electrofishing sampling using a standard

electro-fish shoulder-bag (4KW, 0.3–6 Ampere, 150–600 Volt). All available habitats were

sampled along a stream channel 40–70 m long (the transect length was about 20 times the

width of the wetted channel). Field activities were carried out beyond parks or protected areas.

No endangered or protected species were involved and no specimen were harmed during the

study nor collected. The occurrence of 55 fish species and values for 27 environmental vari-

ables (Table 1) were recorded at each site during sampling activities. Most of these variables

had been already considered in previous studies [9], [32], [33].

Channel width was always less than 20 m, since sample sites were primarily located within

foothills and mountain zones. Thus, sampling methods (electrofishing) was standardized

across sites, where wider river widths would have required nets or other gears.

2.2. Data set processing

All quantitative or semi-quantitative environmental data were normalized in the [0, 1], interval

while qualitative data (e.g. wetlands or islands presence) were coded as binary values (0–1).

Data normalization is a common procedure in ANNs model development [16], [17], since it

transposes the predictive input variables into the data range on which sigmoid activation func-

tions are based, thereby helping to approach to global minima at the error surface. As very

steep slopes were only observed at two sites (13.4% and 23.4% respectively), slope data were

normalized, omitting these two values, relative to third steepest slope value (9%). The maxi-

mum normalized value, i.e. 1, was assigned these outliers after normalization. This solution

was adopted to prevent the compression of the normalized slope values into a very narrow

range because of a couple of cases that cannot be regarded as part of a continuum. Species rich-

ness values were also normalized in the [0, 1] interval.
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The whole data set was divided into three subsets (i.e. training, validation and test). The

training set included 50% of records, while validation and test set included both 25% of rec-

ords. Records were assigned to each subset by sorting all data according to ascending values of

fish species richness and by dividing the resulting ordered sequence into groups of four rec-

ords. Then the first and third record in each group of four records were assigned to the train-

ing set, while the second assigned to the validation test and the fourth to the test set. This

procedure allowed to avoid unbalanced levels of species richness in the three data subsets.

2.3. Artificial neural network modeling

In this study, a three-layered feedforward network with bias has been trained in order to predict

species richness. The optimal number of neurons in the hidden layer was determined by com-

paring the performance of different networks with 1 to 30 hidden neurons. A sigmoid transfer

function was used both for hidden and output layers, thus enabling the network to learn non-

linear relationships between input and output vectors [34]. Mean Square Error (MSE) was com-

puted for the validation set to quantify the goodness of fit of the ANNs during training. The

training procedure was terminated as soon as the MSE stopped decreasing monotonically, thus

preventing the overtraining of the model during the learning process. This approach favors bet-

ter generalization of ANN models while predicting new cases, as previously described in several

ecological papers [25], [26]. Several values of learning rate and momentum (range 0.1–0.5) were

tested to optimize learning performances. ANNs training and testing were performed in R envi-

ronment [35] by using the functions of the package h2o [36].

Fig 1. Sampling sites. Elevation map of the river basins of latium and umbria administrative regions in central Italy.

Black dots mark the position of sampling sites. The image was obtained by using QGIS 2.18 (http://www.qgis.org).

https://doi.org/10.1371/journal.pone.0211445.g001
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2.4. Constrained sensitivity analysis

In order to use a sensitivity analysis aimed at perturbing environmental predictive variables in

an ecologically sound perspective, the dependencies between all environmental variables were

first investigated.

In particular, for each jth environmental variable, the following steps were performed:

■ A Euclidean distance matrix was computed between the test set observations taking into

account all the environmental variables but excluding the jth variable.

■ For the ith observation, neighboring observations were selected by taking those within the

first quartile of the (dmax−dmin) distribution, where dmax and dmin were respectively the

maximum and the minimum distance between the ith observation and all other

observations.

■ The minimum (jmin) and maximum (jmax) values of the jth environmental variable were

selected within the neighboring, i.e. most similar, observations. This defined the range of

values that the jth variable can take for the ith observation.

■ The jth variable was perturbed in the [jmin, jmax] range while all other variables were kept

untouched.

Table 1. Environmental variables used as input to the ANN model. All environmental data have been obtained according to the official Italian sampling protocol [31].

Variable Label Min Max Mean Median

Slope (%) SLP 0 23.4 1.46 0.83

Channel width (m) CHW 0.8 20 6.04 4

Elevation (m) ELV 0 973 236.61 212.5

Depth (m) DET 0.05 20 0.49 0,35

Runs (area %) RUN 0 100 50.78 50

Pools (area %) POL 0 100 23.99 20

Riffles (area %) RIF 0 100 24.32 15

Wetlands (0/1) WEL 0 1 0.07 0

Bars & islands (0/1) BAS 0 1 0.05 0

Boulders (area %) BOL 0 70 9.86 0

Rocks & pebbles (area %) ROK 0 80 30.38 30

Gravel (area %) GRV 0 90 24.47 20

Sand (area %) SAD 0 80 20.20 20

Silt & clay (area %) SIT 0 100 15.17 0

Velocity (0–5) VEO 0 5 1.89 2

Vegetation cover (area %) VEC 0 90 13.84 10

Shade (area %) SHD 0 90 41.2 40

Anthropic disturbance (0–4) AND 0 4 2.36 2

Upstream barrier (Km, 0–100, 100 if no barrier) UPB 0.01 100 62.41 100

Downstream barrier (0/1) DOB 0 1 0.51 1

Upstream lake (Km, 0–50, 50 if no lake) UPL 0.2 50 45.85 50

Temperature (˚C) TEP 2.56 28.3 14.89 14.65

pH PHP 4.88 9.45 8.04 8.09

Conductivity (mS/cm) COD 229.2 1659 639.02 594.5

O2 (%) O2O 7.31 160 88.76 93.08

Source distance (km) SOD 0.01 233 21.49 11.99

Sampled area (m2) SAA 30 3500 530.35 400

https://doi.org/10.1371/journal.pone.0211445.t001
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■ Five perturbed values in the [jmin, jmax] range for each predictive variable were then

passed to the data pattern fed to the ANN model, whose output was compared to the tar-

get (i.e. observed) fish species richness.

■ The same process was iterated for each observation (i.e. for each sampling site in the test

set).

The results of this constrained sensitivity analysis were then compared to those obtained

from simple input perturbation, i.e. by adding white noise in the [-0.5, 0.5] range to each input

variable while keeping all the others untouched.

The method was entirely implemented in R programming language [35]. An example code

is provided in the S1 File.

3. Results and discussion

3.1. Artificial neural network model

The best ANN architecture for predicting fish species richness on the basis of our environmen-

tal predictive variables had 8 hidden neurons and therefore a 27-8-1 structure. It explained a

fairly large share of variance, ranging from R2 = 0.771 for the training/validation set to R2 =

0.675 for the test set (Fig 2).

The MSE (obtained from normalized data) varied correspondingly: MSE = 0.00756 for the

training/validation set and MSE = 0.01001 for the test set. It seems that very low observed val-

ues of species richness are hardly reproduced by the model, possibly because the absence of

species that could have been found on the basis of their ecological niche might depend on

other factors (e.g. pressures not described by the available environmental variables) in species-

Fig 2. Predicted vs. observed species richness. Values on axes refer to normalized species richness. The determination coefficient for the ANN model was R2 = 0.771

for the training/validation set and R2 = 0.675 for the test set.

https://doi.org/10.1371/journal.pone.0211445.g002
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poor situations. On the contrary, the highest values in the training set are slightly underesti-

mated, while they match the observed values in the test set. However, the overall agreement

between observed and predicted values is quite good with both data sets and is comparable to

the level obtained in similar cases [12], [37], [38].

The average residuals relative to the normalized training data set as well as those relative to

the normalized test set were very small (0.0017 and 0.0016, respectively), thus showing that the

model was not systematically biased. In fact, when compared to the test set data, model predic-

tions about species richness differed in only one species in 46% of the cases.

Although all the levels of species richness were included in both training and test data set,

the model was less accurate when the highest species richness values were involved. This effect

was most likely related to the difficulty of the ANN in identifying less frequent patterns (those

with high species richness in this case), as already evidenced by Ozesmi et al. [39], thereby

more easily leading to incorrect estimations. In fact, species richness values higher than 11

(normalized value = 0.631) were not frequently found, amounting to less than 5% of the whole

data set.

3.2. Sensitivity analysis

3.2.1. Constrained perturbations. All the methods for analyzing the sensitivity of ANNs

relative to predictive variables are based on the assessment of changes in output values

obtained as a consequence of known changes in input values. The procedure we present here

has been implemented by constraining the random permutation method [17], [18], but its

rationale (i.e. the same constraints) can be applied to any other method [21], [24].

In order to outline the differences between the way input data are perturbed by any uncon-

strained procedure and the way they are by our constrained approach, Fig 3 shows observed

(dark circle) and perturbed (light circle) values for three environmental variables (Slope, Riffles

and Conductivity) in scatter plots against elevation. Elevation is obviously not independent of

some environmental variables and constrains their values according to the procedure outlined

in section 2.4. In particular, in this example, constrained ranges are clearly visible on slope

(positively correlated to elevation) and conductivity (negatively correlated to elevation), while

perturbations of riffles values are very close to the maximum potential range in the ether upper

quartiles of the elevation range, as a consequence of a much looser dependence of this variable

from elevation.

Fig 3. Constrained perturbations for slope, riffles and conductivity vs. elevation values. Perturbed values were obtained by applying the procedure outlined in

section 2.4. The effect of the constraint is more evident for Slope and Conductivity, given their stronger dependence from elevation, than for Riffles, where it only limits

the variability at low Elevation. Both observed (dark dots) and perturbed (lighter dots) values are shown.

https://doi.org/10.1371/journal.pone.0211445.g003
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The effect of random perturbations of slope and conductivity (i.e. complete independence

between variables) would have been to fill up all graphs, while points representing perturba-

tions of the two environmental variables occupy only a portion of the two-dimensional space,

thus showing that some combinations of values are very unlikely to be observed. Perturbations

showed in Fig 3 consist only of values that are more likely to be found in real-world conditions,

although their range is large enough to allow assessing their impact on model behavior. Fig 3 is

obviously depicting a very simplified set of relationships (only 3 out of 27 predictive variables).

In practice, however, the same concept was applied to an n-dimensional space, where n is the

number of environmental predictive variables used for the model development, thus defining

an n-dimensional envelope that constrains the random perturbation of each environmental

variable, excluding very unlikely patterns (e.g. very steep slope at very low elevation) from the

sensitivity analysis.

3.2.2. MSE percentages differences. The percent increase in MSE obtained by con-

strained perturbation of each variable for the test set is shown in Fig 4 versus the percent

increase obtained by unconstrained perturbation. Unconstrained perturbations obviously

induce larger increases in MSE, as they modify known data patterns to a larger extent.

Although ANNs may respond to changes in a single input variable in a non-monotonic way,

thus potentially making a large change in an input value less influential than a smaller one, in

practice larger changes in input variables are clearly associated with larger increases in MSE.

However, very large increases in MSE obtained from data patterns that are unlikely to occur in

practical applications of the model are not useful–and possibly misleading–when it comes to

the very purpose of sensitivity analysis, i.e. at inferring the role each input variable plays rela-

tive to the target variable.

While all the input variables are more sensitive to unconstrained perturbations, some show

negligible differences between the two perturbation strategies, while others exhibit sharp dif-

ferences. According to changes in MSE, the input variables that showed largest differences

between the two perturbation methods were Slope (101.1% and 17.1%, for unconstrained and

constrained perturbations, respectively), pH (57.8%; 9.3%), Source distance (52.7%; 14.5%)

and Sampled area (38.5%; 10.1%).

Variables whose perturbations affected the model to a very limited extent (less than 10%

increase in MSE), i.e. those in the lower left corner of Fig 4, do not deserve any further com-

ment, because they certainly play a less important role. Other variables, however, are associ-

ated with changes in MSE between 10% and 30% and their constrained perturbation in some

cases (e.g. Conductivity, Pools and Anthropic disturbance) induces changes in MSE almost as

large as unconstrained and even more than the constrained perturbation of the “most influen-

tial” unconstrained (Slope, pH, Source distance and Sampled area).

In ecology, it is well known that fish species composition in lotic ecosystems tends to follow

a typical longitudinal pattern [4] (i.e. differences in fish guilds occurrences and abundances)

and generally fish species richness generally tends to increase with the distance from the river

source [40]. Of course, there are field conditions that can be regarded as exceptions to this gen-

eral trend. In fact, habitat features [41], [42], hydrological factors [43] or urbanization [44]

may highly affect fish species diversity. It is clear that environmental variables like slope, pH or

distance from source may provide information about the riverine trait where a site to be mod-

eled is located (e.g. mountain or hilly region) [45], thereby providing valuable input informa-

tion to the ANN model about expected species richness and inducing large changes in MSE

when their values are perturbed. However, unconstrained perturbations, especially with those

variables, may result in combinations of values, e.g. a steep slope too far from the source, that

are unlikely or even impossible to occur in real-world situations, but that could trigger large

changes in MSE.
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Sensitivity analysis based on unconstrained perturbations can be deeply affected by this

problem and the reason is that any model (and ANNs are no exception) is fitted to known data

patterns, which obviously include only the combination of input values that actually occur in

real-world situations. Extreme values may occur, but only in combination with a narrow range

of values for other variables. Moreover, environmental variables are often strongly correlated

with each other and their correlations make the range of ecologically meaningful variation in

their values even narrower. For instance, pH usually decreases as the distance from river

source increases, while conductivity increases [46]. These relationships make perturbations

for Slope, pH, Sampled area, Source distance and Elevation strictly related to the ecological

context, thereby defining a narrower, but more realistic range of values that can be safely

used in practical applications of the model. Therefore, the MSE increase associated to large

Fig 4. Percent increase in MSE obtained by constrained vs. unconstrained perturbations. Constrained sensitivity analysis clearly

reduces maximum perturbations for the environmental variables, thus resulting in smaller increases in MSE for all of them (all points

are below the unit slope line). However, the effect of the constraint is larger for some variables (e.g. Slope, SLP; pH, PHP; Source

distance, SOD; Sampled area, SAA). See Table 1 for the names of environmental variables corresponding to other point labels.

https://doi.org/10.1371/journal.pone.0211445.g004
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perturbations of these variables has very little importance relative to real world applications of

the model.

3.2.3. Importance of the environmental variables. Changes in MSE after perturbation of

each environmental variable were sorted in decreasing order after the application of a conven-

tional scheme for sensitivity analysis and after the application of the constrained procedure.

The outcome relative to the unconstrained procedure can be regarded as a different and sim-

plified view relative to Fig 4. In fact, the bar diagram in Fig 5, just shows the increase in MSE

caused by the perturbation of each variable. On the left after unconstrained perturbation and

on the right after constrained perturbation. MSE% scales show the percent increase in MSE

and are different in the two cases, as constrained perturbation cannot induce a level of increase

in MSE as large as that induced by unconstrained perturbations.

In fact, all variables were obviously associated with smaller changes in MSE when the con-

strained procedure for sensitivity analysis was applied and the largest differences in the rank of

variable importance occurred for Slope, Conductivity, pH, Sampled area, Pools and Anthropic

disturbance, while less important environmental variables showed only minor shifts in their

relative importance. pH was one of the most important variables according to the conventional

Fig 5. Unconstrained and constrained sensitivity analysis compared. Bars show the percent increase in MSE caused by

the perturbation of each variable. Black bars (left) are for unconstrained perturbations while blue bars (right) are for

constrained ones. Environmental variables are ordered according to the rank of their importance in the unconstrained

sensitivity analysis. As the increase in percent MSE was smaller in constrained sensitivity analysis, the MSE axis was scaled

accordingly to better show the relative length of the bars.

https://doi.org/10.1371/journal.pone.0211445.g005
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procedure of sensitivity analysis based on unconstrained variable perturbation, but it only

ranked eighth in sensitivity analysis based on constrained perturbations. Similar downgrades

in importance were also observed for Slope and Sampled area. They are not surprising, as they

occurred because of the narrower range of perturbed values these variables can assume under

the constrained procedure for sensitivity analysis. In fact, this procedure takes only into

account an amount of variability that is consistent with the observed relationships between

variables and with the environmental context of each data pattern. As a consequence, environ-

mental variables that had an intermediate relative importance according to the unconstrained

procedure (e.g. Conductivity, Pools and Anthropic disturbance), gained a more relevant role

as potential drivers of the local fish species richness.

While this result cannot be formally validated, as the true relative importance of the envi-

ronmental variables is obviously unknown, it demonstrated an important feature of the con-

strained sensitivity analysis. The unconstrained procedure suggested a ranking of variables

importance that showed what made the ANN model learn to recognize the riverine trait where

sampling sites are located, thus obtaining estimates for fish species richness. However, species

richness was also affected by variables that convey information about some relevant local con-

ditions, like habitat features, hydrologic factors or urbanization. As a matter of fact, several

studies evidenced that, at local scale, urbanization and/or flow regulation may strongly modify

the expected fish species richness [40], [47]. Results obtained from the constrained sensitivity

analysis showed indeed how, at any given site, fish species diversity is highly affected by envi-

ronmental factors as habitat descriptors (e.g. Pools; Bars & islands) and anthropic disturbance

(Conductivity; Anthropic disturbance). As conductivity can be considered as an indirect mea-

sure of water pollution [48], [49] and anthropic disturbance in most cases is related to urbani-

zation, it is reasonable that they had a strong impact on fish assemblage diversity and

composition.

In this work we focused on the estimation of variables importance taking into account first-

order effects, as one input variable at a time was perturbed, while all other variables were kept

untouched. Estimating the model output response to two-way [22] or more complex interac-

tions between variables is certainly feasible in a constrained sensitivity analysis, but the prob-

lems related to the complexity of the procedure remain unsolved, making the analysis of

higher order interactions between predictive variables practical only when their number is

very small.

A very common goal in ANN modeling is the reduction of the number of input variables.

The reason for that reduction is twofold: it might reduce the cost of predictive information

and it might help to fight the curse of dimensionality [50]. The first problem depends on the

way predictive information is collected: if all predictive data are already available, or if they are

collected with no additional costs, e.g. during the same field activities, then the overall cost of

predictive information will not be affected. The second problem is strictly related to the ratio

between the number of available records and the number of input variables. According to

Theodoridis & Koutroumbas [51], acceptable values for that ratio are in the 2 to 10 range, with

smaller values that might result in a reduced prediction ability of the model.

As our data set was already available and all the predictive variables are routinely included

in monitoring activities, no reduction in the cost of information could be achieved. Moreover,

the number of available records (N = 368) is quite large relative to the number of predictive

variables (p = 27) and therefore the ratio between the two (N/p = 13.63) is even larger than the

upper limit of the above-mentioned range. Therefore, reducing the number of input variables

was not needed, while preserving the full set allowed testing the constrained sensitivity analysis

on a wider spectrum of variables. Moreover, preserving the full set of input variables allowed
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to exploit all the potential high-order relationships between variables that a trained ANN is

able to capture and embed in its synaptic weights.

However, selecting the most important variables on the basis of a sensitivity analysis can be

needed in data-limited scenarios and therefore we checked the effects of a reduced set of input

variables, selected through a constrained sensitivity analysis, on the performance of the result-

ing ANN model. A subset of input variables was selected, including only those whose con-

strained perturbation induced increases in MSE larger than 10% (Fig 5), i.e. conductivity,

pools, slope, anthropic disturbance, source distance and sampled area. Then a new ANN

model with a 6-4-1 structure was trained and the determination coefficient for the test set was

R2 = 0.44. Even if model accuracy in predicting fish species richness values considerably

decreased, the variance explained by the model using the selected variables was still acceptable,

especially in the light of the exclusion of 21 variables out of 27.

As far as we know, problems related to the scaling of ANN input variables (e.g. because of

heterogeneity in their units) have been already tackled [52], [53], but methods aimed at defin-

ing to what an extent normalized input variable can be perturbed or changed in a sensitivity

analysis, while preserving reasonable quantitative relationships with each other have never

been implemented. From an ecological point of view, the method we propose showed what

environmental variables, in real-world conditions (i.e. with values that vary within a realistic

range) may actually induce changes in fish species richness. Looking at the results from a con-

servation perspective, assigning the highest degree of importance to variables that are very

unlikely to change at local scale (e.g. slope) would be meaningless, while considering as more

influential variables that may have a real impact on the fish assemblage richness, such as the

level of water pollution or alterations of river traits due to urbanization [54], [55] is certainly

more appropriate.

4. Conclusions

While several methods are available to test the sensitivity of ANNs or of any other type of

model, we based our analysis on the perturbation method, because it is the one that most

closely matches the rationale of the procedure we propose. However, the same rationale may

be adapted to any other method (e.g. Partial Derivatives or Lek’s profiles method), as its only

goal is to avoid data patterns that are not likely to occur in real-world conditions and that

therefore are not really useful to open the ANN “black-box” as well as any other type of empiri-

cal model and to elucidate the way it worked and the ecological relationships it captured.

Of course, it was not possible to validate the approach we proposed by means of statistical

analyses or by any other method. However, it showed that variables that influence fish species

richness according to a procedure that takes into account only combinations of values that are

likely to occur in real-world situations are not the same that would have been selected accord-

ing to a procedure that does not take the ecological relationships between environmental vari-

ables into due account. Thus, our constrained approach to sensitivity analysis can be regarded

as more realistic way to look into the model behavior, focusing on a meaningful subset of the

multidimensional space in which the model can be theoretically applied. In fact, investigating

how a model behaves in a region of its potential input space that will never be used in practical

applications seems definitely pointless.

Needless to say, the procedure we proposed is only aimed at demonstrating a concept and

therefore further developments can be imagined in its future applications, particularly as

regards the selection of the number of neighboring observations or the maximum distance to

them, thus investigating the effect of different levels of constrained perturbations and their

effects in the resulting ranking of environmental variables importance.
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Supporting information

S1 File. Constrained sensitivity analysis algorithm. Here, the R code algorithm of the con-

strained sensitivity analysis is provided.
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S2 File. Data set. Data set used for the Artificial Neural Network modeling. All values were

normalized as described in the Material and Methods section.
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