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Abstract: Sitophilus zeamais (Motschulsky) is considered as one of the most destructive foodstuff 
pests. Due to their efficiency, low toxicity for mammalians and low environmental impact, plant-
derived essential oils (EOs) are promising tools for pest control. In particular, the OEs extracted 
from Lamiaceae are considered among the most bioactive in terms of repellent and/or insecticidal 
effect. Here, we investigated the repellence of the EOs extracted from two aromatic plant species 
typical of the flora of the Ecuadorian Andes, Clinopodium tomentosum and C. nubigeum, against adults 
of S. zeamais. The behavioral assays carried out at concentrations ranging from 0.7 to 23.9 μL L−1 air 
in a two-way static olfactometer showed a significant repellent effect starting from the concentration 
of 8.4 mL L−1 air both for the EO of C. nubigenum and C. tomentosum. We also carried out a complete 
structural analysis of the antenna of S. zeamais using scanning (SEM) and transmission electron 
microscopy (TEM), in order to characterize the olfactory sensilla equipment. In this species, there is 
no sexual dimorphism also as regards to the antennal morphology and the sensilla type and 
distribution. We identified six type of sensilla, among which at least three types (Sensillum 
Trichoideum 1, Sensillum Trichoideum 2 and Grooved Peg Sensillum) can be considered as 
olfactory. Electroantennography (EAG) recordings carried out on S. zeamais revealed a positive 
dose-response to both EOs, without differences between the two sexes. 

Keywords: maize weevil; essential oils; bioactivity; sensilla; ultrastructure; electroantennography; 
EAG 

 

Highlights 

- Sustainable control of stored product insect pests is receiving increasing attention, essential oils could 
represent an effective, environmentally-safe control method. 

- Aromatic plants from megadiverse countries could be a source of new effective repellents or insecticides 
to be considered in IPM strategies. 

- In this study we investigated the repellent effect of EOs from two Lamiaceae species of Ecuador Andean 
flora belonging to the Clinopdium genus against the maize weevil. 
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- The EOs where chemically characterized, then used for behavioral assays and EAG experiments. We also 
carried out a study on the antennal sensory structures of the maize weevil. 

- EOs revealed to be perceived trough the antennal olfactory sensilla and showed a clear repellent activity 
towards the weevil. 

1. Introduction 

Sitophilus zeamais (Motschulsky) (Coleoptera: Curculionidae), the maize weevil, is one of the 
main pests of stored grain, causing either quantitative (in terms of loss of stored products), and 
qualitative (in terms of reduced quality of stored grains) damages in most part of the world [1,2]. 
Differently, from the closely related species, S. granarius L., but analogously to the rice weevil S. oryzae 
L., the maize weevil is able to fly, and can reach actively the grain storage facilities to initiate the 
infestation [3–5]. For this species, several control methods have been developed, from the use of 
pesticides (according to different formulations, including fumigations) to physical control methods 
(controlled atmosphere, low temperatures) [6–9]. As part of strategies aiming to achieve a sustainable 
control of this pest according to integrated pest management criteria, several organic substances were 
tested, including essential oils [10–12]. 

Essential oils (EOs) are natural extracts composed of a wide variety of volatile compounds, 
occurring as secondary metabolism products in several plant groups. EOs can be produced in 
different amounts by several plant organs, ranging from leaves, stems, seeds and flowers, from which 
they can be extracted using different methods [13]. EOs can be efficiently used to control insect pests 
because of their repellent effect, as well as their toxicity shown against different insect groups [14–
18]. A large variety of EOs extracted from different plants, mainly belonging to the Lamiaceae family 
[19,20], were tested for their efficacy against Sitophilus spp. EOs from Hyptis suaveolens L. (Lamiaceae) 
and Humulus lupulus L. (Cannabaceae) exhibited a repellent activity against S. granarius [21,22], whilst 
EOs from Ocimum tenuiflorum L. (Lamiaceae) also exerted fumigant and toxic effects towards S. oryzae 
[23]. 

In this paper, we investigated the activity of the EOs extracted from two species of Lamiaceae 
belonging to the genus Clinopodium, C. nubigenum (Kunth) Kuntze and C. tomentosum (Kunth) 
Govaerts. The genus Clinopodium includes more than 140 species distributed worldwide. Several 
species of the genus Clinopodium are used as natural remedies in traditional medicine in different 
regions of the world [24]. This applies to C. tomentosum and C. nubigenum as well, which are 
commonly known in Ecuador as “Santa Maria” and “tipo de cerro”, respectively, and used in the 
traditional medicine as remedies against cold, flu, stomach-ache and other disorders [25]. EOs from 
collected plants of C. nubigenum and C. tomentosum were analyzed by gas chromatography (GC) and 
by gas chromatography/electron impact mass spectroscopy (GC/EIMS). To evaluate the effect of 
Clinopodium spp. EOs extracts, dual choice behavioural assays were performed. We also investigated 
the antennal morphology of S. zeamais to describe in detail the antennal sensilla, particularly as 
regards the olfactory sensilla. Sitophilus spp. was already investigated using mainly scanning electron 
microscopy (SEM) techniques [26–28], but a comprehensive study of the antennal structures in terms 
of fine structure and distribution is still lacking. We finally tested the antennal sensitivity to different 
concentrations of C. nubigenum and C. tomentosum EOs on S. zeamais males and females, using the 
EAG (electroantennography) method. 

2. Materials and Methods 

2.1. Essential Oils Chemical Analyses 

Essential oils were extracted by hydrodistillation in a clevenger-type apparatus for two hours 
from the flowering aerial parts of plants collected in March 2017 on the mountains nearby the 
Hacienda Zuleta (Imbabura, Ecuador) collected with the Ecuadorian Environmental authorization 
No. 006-2017-IC-FAU-FLO-DPAI/MAE. The obtained EOs have been diluted to 0.5% in HPLC grade 
n-hexane prior to GC–MS injection. The GC/EI-MS analyses were performed with a Varian CP-3800 
apparatus equipped with a DB-5 capillary column (30 m × 0.25 mm i.d., film thickness 0.25 μm) and 
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a Varian Saturn 2000 ion-trap mass detector. The oven temperature was programmed rising from 60 
°C to 240 °C at 3 °C/min; injector temperature, 220 °C; transfer-line temperature, 240 °C; carrier gas, 
He (1 mL/min); injection volume: 1 μL. The acquisition parameters were as follows: Full scan; scan 
range: 35–300 m/z; scan time: 1.0 Section; threshold: 1 count. The identification of the constituents was 
based on the comparison of their retention times (tR) with those of pure reference samples and their 
linear retention indices (LRIs) determined relatively to the tR of a series of n-alkanes. The mass spectra 
were compared with those listed in the commercial libraries NIST 14 and ADAMS and in a 
homemade mass-spectral library, built up from pure substances and components of known oils, and 
MS literature data [29–34]. 

2.2. Insect Cultures and Rearing Conditions 

S. zeamais population was reared under laboratory conditions (24 °C, 45–65% R.H., and in the 
dark) at the Department of Agriculture, Food and Environment of the University of Pisa. Plastic boxes 
(20 × 27 × 11 cm) containing corn and wheat, covered by a nylon net allowing air exchange, were used 
for the rearing. The bioassays were conducted on insects homogeneous in age, obtained by removing 
the adults present in the rearing boxes by sieving the grain and collecting the newly emerged insects 
(0–3 days old) the following day. 

2.3. Behavioural Assays 

The responses (attractiveness or repellence) of S. zeamais to the C. nubigenum and C. tomentosum 
EOs were evaluated by a still-air arena. The arena (15 × 15 × 1 cm), made of polymethylmethacrylate, 
consisted of three circular chambers (4 cm ∅). Two lateral chambers were connected to a central one 
(release chamber) by linear paths (2 cm in length, 1 cm in width), forming a 90° angle. The top of the 
arena was covered by means of a removable glass panel. In each replicate, a square of filter paper (0.5 
× 0.5 mm) was treated with 3 μL of 0.3, 0.6, 1.25, 2.5, 3.5, 5.0 and 10.0% EO hexane solution 
(corresponding to 0.7, 1.4, 3.0, 6.0, 8.4, 12.0, and 23.9 μL/L air). After hexane evaporation, the treated 
filter paper was placed in one of the lateral chambers (cue chamber). A square of filter paper (0.5 × 
0.5 mm) treated with 3 μL of hexane only was placed after hexane evaporation in the other lateral 
chamber (control chamber). At the beginning of the test, an adult was gently transferred to the floor 
of the release chamber and observed for 6 min. The insect was considered to have made a valid choice 
when it entered in one of the two lateral chambers after at least 20 s and remained in the chamber for 
at least 30 s. Insects that did not make a choice within 6 min after being released were disregarded. 
For each replicate we recorded (a) the latency time (i.e., the time between the insect release and the 
entering in one of the chambers), (b) the choice made and (c) the permanence time (i.e., the time spent 
in the chosen chamber). At each test, the arena was rotated clockwise 90° to avoid positional effects, 
the cue sources were renewed, and a new insect was placed in the arena. After three consecutive tests, 
the arena and the glass lid were washed for about 30 s with hexane, then with warm water at 35–40 
°C and a mild soap for about 5 min, rinsed with hot water for about 30 s and finally, rinsed with 
distilled water at room temperature. For each EO concentration, the test was replicated until 30 
unsexed adults made a valid choice. All behavioral assays were carried out over a period of several 
weeks to account for any daily variability. For each replicate, each insect was replaced by a new one 
of the same age (2–4 days old). All experiments were performed between 8:30 am and 2:30 pm and 
conducted in a room uniformly lit with daylight fluorescent tubes (Philips 30 W/33). Light intensity 
was approximately 1000 lux (estimated over the 300–1100 nm waveband using a LI-1800 
spectroradiometer LI-COR Inc., Lincoln, NE, USA equipped with a remote cosine receptor). Room 
temperature was set at 25 ± 1 °C and the relative humidity at 50 ± 5%. 

2.4. Electron Microscopy Observation 

Scanning electron microscopy (SEM). Ten adult individuals of each sex were used for the 
observations. Insects were anaesthetized by exposure to cold temperatures (−18 °C) for 120 s, then 
they were immediately soaked in 60% alcohol. The antennae of each individual were dissected from 
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the head capsule as a whole; in a few cases, the last antennal segment was isolated from the rest of 
the antenna to achieve better view of the apical part of the antenna. Specimens were dehydrated in a 
series of graded ethanol, from 60% to 99%, 15 min for each step. After dehydration, 99% ethanol was 
substituted with pure HMDS (Hexamethyldisilazane, Merck® KGaA, Darmstadt, Germany) and the 
specimens were allowed to dry under a hood, at room conditions; this step was repeated twice. Up 
to 5 samples were mounted on aluminium stubs, taking care to place them with different orientations 
in order to obtain a clear view of the ventral, dorsal and lateral sides of the antennomeres. Mounted 
specimens were gold-sputtered using a “Balzers Union® SCD 040” unit (Balzers, Vaduz, 
Liechtenstein). The observations were carried out using a Philips® XL 30 (Thermo Fischer Scientific, 
Hillsboro, OR, USA), SE detector, operating at 7–10 KV, WD 9–10 mm. 

Transmission electron microscopy (TEM). Ten individuals of both sexes were anesthetized by 
exposure to cold temperatures (−18 °C) for 60 sec, then immediately immersed in a solution of 
glutaraldehyde and paraformaldehyde 2.5% in 0.1 M cacodylate buffer +5% sucrose, pH 7.2–7.3. Each 
antenna was detached from the head capsule, the last flagellomere was removed to help fixative 
penetration, and left at 4 °C for 24 h. Then, the specimens were washed in 0.1 M cacodylate buffer 
+5% sucrose, pH 7.2–7.3 for ten minutes, repeated twice. Afterwards, the specimens were post fixed 
in 1% OsO4 (osmium tetroxide) for 1 h at 4 °C and rinsed in the same buffer. Dehydration in a graded 
ethanol series from 60% to 99%, was followed by embedding in Epon-Araldite with propylene oxide 
as bridging solvent. Thin sections were taken with a diamond knife on a LKB Bromma 
ultramicrotome (LKB®, Bromma, Sweden), and mounted on formvar coated 50 mesh grids. Then, 
sections on grids were stained with uranyl acetate (20 min, room temperature) and lead citrate (5 
min, room temperature). Finally, the sections were investigated with a Philips® EM 208 (Thermo 
Fischer Scientific, Hillsboro, OR, USA). Digital pictures (1376 × 1032 pixels, 8b, uncompressed 
greyscale TIFF files) were obtained using a high-resolution digital camera MegaViewIII (SIS®, 
Muenster, Germany) connected to the TEM. 

EAG Analysis. Electrophysiological experiments were performed to evaluate the olfactory 
response of S. zeamais antennae to essential oils of C. nubigeum and C. tomentosum. Octanal (99%) 
(Sigma Aldrich, St. Louis, MO, USA) was used as reference standard stimulus to normalize the 
electrophysiological responses. To prevent rapid evaporation of test compounds and for the dose-
dependence experiments, odor stimuli were dissolved in paraffin oil (Fluka, Buchs, Switzerland). S. 
zeamais adults were anaesthetized by refrigerating them at 4 °C for about 120 s. A single insect was 
inserted into the end of a truncated plastic pipette tip allowing the insect head to come out of the tip. 
The insect was immobilized inside the pipette with the help of Patafix (UHU Bostik, Milan, Italy) and 
the tip of the rostrum was carefully excised for about half of its length using micro scissors to allow 
the contact with the reference electrode. The pipette with the insect was placed on a dental wax base 
close to a coverslip portion and the insect head was fastened to the dental wax base by a tungsten 
hook. One antenna was fixed in place by double-sided tape to the coverslip portion to access the 
antennal club tip. Electrical activity was recorded by inserting the reference electrode into the 
rostrum, while the tip of the recording electrode was connected to the edge of the specialized elliptical 
area in the distal part of the apical antennomere. Glass capillary electrodes (1.5 mm outer Ø, 0.9 mm 
inner Ø) filled with Ringer solution [35], containing 5 g/L of polyvinylpyrrolidone (Fluka), in contact 
with a silver wire were used. The capillary tubes were drawn to a fine point using a microelectrode 
puller PC-10 (Narishige, Tokyo, Japan) to get an inner diameter wide enough to enable the contact 
with a small portion of the club. The analog signal was detected through a probe with a high-input 
impedance preamplifier (10×) (EAG Kombi-probe, Syntech, Germany), captured and processed with 
a data acquisition controller (IDAC-4, Syntech, Germany) and analyzed using EAG 2000 software 
(Syntech, Germany). 

For a screening of the EAG responses, test compounds diluted as 10% solution v/v in paraffin oil 
were delivered as 10 μL samples placed on a filter paper (15 mm × 15 mm). The impregnated filter 
paper was placed into a glass Pasteur pipette (150 mm length) constituting an odor cartridge. The 
control stimulus consisted of a similar pipette containing a filter paper impregnated with 10 μL 
aliquot of paraffin oil. Fresh stimulus pipettes were prepared every day. The tip of the glass pipette 
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was placed about 3 mm into a small hole in the wall of a L-shaped glass tube (130 mm long, 12 mm 
diameter) oriented towards the antennal preparation (5 mm away from the preparation). The stimuli 
were provided as 1 s puffs of purified, charcoal-filtered air into a continuous humidified main air 
stream (up to 60% RH obtained by bubbling air through a washing glass bottle) at 2500 mL/min, that 
was flowing over the antennal preparation at a speed of 50 cm/s generated by an air stimulus 
controller (CS-55, Syntech, Germany). At least a 1 min interval was allowed between successive 
stimulations for antenna recovery. The two essential oils of C. nubigeum and C. tomentosum were 
furthermore tested to determine dose-dependent responses at four different concentrations v/v in 
paraffin oil (0.1%, 1%, 10%, 20%), using a 10 μL solution starting with the lowest concentration to 
minimize olfactory adaptation. To evaluate EAG responses, the maximum deflection of the recorded 
EAG signal after stimulation with an odor was used. For dose-dependent response analysis, S. zeamais 
sensitivity to the different chemical compounds was recorded as a percentage of all recorded EAG 
responses to octanal at 10% v/v used as reference standard stimulus. This allows compensation for 
changes of the sensitivity of an antenna during the course of an experiment and the comparison 
between experiments performed with antennae of different sensitivities. After the EAG test, each 
insect was dissected to be sexed. The tests were conducted on 13 females and 17 males. For dose-
dependent response, the dose sequence was repeated 2–4 times for each individual, using the mean 
values of each individual for the analysis. All the experiments were conducted at room temperature 
(23 ± 2 °C). 

2.5. Statistical Analyses 

The proportion of individuals choosing the EOs-treated chamber, in the behavioral assays were 
compared by likelihood chi-square test, with a null hypothesis of a 50:50 chance of insects choosing 
the control versus the EOs-treated chamber (SPSS 22.0, IBM SPSS Statistics, Armonk, North Castle, 
NY, USA). The median repellent concentration (RC50) of the EOs against S. zeamais adults was 
calculated by log-probit regressions. Significant differences between the RC50 values of the two EOs 
were determined by relative median potency (RMP). Differences between the RC50 values were 
considered statistically significant when RMP 95% confidence interval was ≠ 1.0 (SPSS 22.0, IBM SPSS 
Statistics, Armonk, North Castle, NY, USA). Differences in the latency time and the permanence time 
were analyzed by generalized linear models (GLM, Poisson loglinear model) by assessing the main 
effect of EO and concentration as predictors and calculating the estimated marginal means 
(EMMeans) (SPSS 22.0, IBM SPSS Statistics, Armonk, North Castle, NY, USA). EAG absolute 
responses (mv) of the two gender and to C. nubigeum and C. tomentosum essential oils, octanal and 
paraffin oil as control were compared by two-way analysis of variance (ANOVA) considering the 
gender and the odor compound as main factors. F tests were used to assess the significance of the 
effects and their interactions. For significant factors, the Dunnett test was used to compare the 
response to each compound to those of the control (paraffin oil) [36]. Data obtained in the dose-
response experiments and reported as relative responses to octanal (%) were analyzed separately for 
C. nubigeum and C. tomentosum, by two-way analysis of variance (ANOVA) considering the gender 
and the concentrations as main factors. and by the unequal N Tukey honestly significant difference 
HSD test for multiple comparisons between the means [36]. For significant factors, the Dunnett test 
was used to compare the response to each concentration to those of the control (paraffin oil) [36]. 
Before the analysis, Box–Cox transformations were used to reduce data heteroscedasticity [37]. 
Analysis were performed by the SPSS 22.0 software (IBM SPSS Statistics, Armonk, North Castle, NY, 
USA). 

3. Results 

3.1. Essential Oils Compositions 

The complete compositions of the essential oils extracted from flowering aerial parts of 
Clinopodium nubigenum and C. tomentosum are reported in Table 1. Oxygenated monoterpenes 
represent the most abundant chemical class of compounds in both the EOs, accounting for up to 74.0 
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and 96.2% in C. nubigenum and C. tomentosum, respectively. The identified compounds belonging to 
this class, though, are quite different in the two species. Carvacrol is the most abundant oxygenated 
monoterpene (and overall compound) in C. nubigenum EO, whilst it was not detected in the C. 
tomentosum. Conversely, isomenthone accounts for over 45% in C. tomentosum, with the highest 
detected relative abundance in this EO; its presence in C. nubigenum is still relevant (6.4%), but it is 
significantly less represented. Pulegone follows as the second most abundant volatile organic 
compound (VOC) in both EOs. Piperitenone and its epoxidized derivative were only detected in C. 
tomentosum. Monoterpene hydrocarbons showed a far more relevant relative abundance in the 
composition C. nubigenum EO (19.7% vs. 1.9% in C. tomentosum). Among them, p-cymene and γ-
terpinene showed the highest contents (9.1 and 5.3%, respectively), whilst their presence was not 
detected in C. tomentosum EO. Non-terpene derivatives were also more represented in the 
composition of C. nubigenum, with 3-octanol and 1-octen-3-yl acetates as the main ones. 

Table 1. Complete compositions of the essential oils extracted from flowering aerial parts of 
Clinopodium nubigenum (Kunth) Kuntze and C. tomentosum (Kunth) Govaerts. 

Constituents l.r.i. a Relative Abundance (%) 
  Clinopodium nubigenum Clinopodium tomentosum 

α-thujene 931 0.9 - b 

α-pinene 941 0.5 0.2 
camphene 954 tr c - 
sabinene 976 0.4 0.2 

1-octen-3-ol 980 tr - 
β-pinene 982 0.5 0.4 
myrcene 993 0.3 0.3 
3-octanol 993 0.8 - 

α-phellandrene 1005 0.2 - 
δ-3-carene 1011 tr - 
α-terpinene 1018 1.0 - 
p-cymene 1027 9.1 - 
limonene 1032 1.5 0.9 

1,8-cineole 1034 tr 1.1 
(E)-β-ocimene 1052 tr - 
γ-terpinene 1062 5.3 - 

cis-sabinene hydrate 1070 0.6 - 
terpinolene 1088 tr - 

trans-sabinene hydrate 1095 0.1 - 
linalool 1101 0.1 0.4 
nonanal 1102 0.1 - 

1-octen-3-yl acetate 1111 0.9 0.2 
β-thujone 1118 tr - 

3-octanol acetate 1124 1.0 - 
cis-verbenol 1142 - 0.1 
isopulegol 1146 tr - 
menthone 1154 - 1.4 
citronellal 1155 1.8 - 

isomenthone 1164 6.4 48.4 
isopulegone 1177 3.5 0.8 
4-terpineol 1178 tr - 
α-terpineol 1189 0.2 0.2 
myrtenal 1194 - 0.2 
decanal 1204 tr - 

citronellol 1230 1.3 - 
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pulegone 1237 25.4 34.3 
neral 1240 - 0.1 

piperitone 1252 0.9 4.0 
methyl citronellate 1261 - 0.8 

geranial 1271 tr 1.1 
isobornyl acetate 1285 tr 0.1 

trans-sabinyl acetate 1291 - 0.1 
carvacrol 1298 32.9 - 

citronellyl acetate 1350 0.6 - 
piperitenone 1351 - 2.1 

eugenol 1358 0.8 - 
piperitone oxide 1363 0.1 - 

piperitenone oxide 1363 - 1.1 
α-copaene 1376 0.3 - 
β-cubebene 1390 tr - 

β-caryophyllene 1420 - 0.5 
γ-muurolene 1477 - 0.5 
germacrene D 1478 0.2 - 

bicyclogermacrene 1495 0.9 - 
(E,E)-α-farnesene 1507 tr - 
δ-cadinene 1524 0.5 - 
spathulenol 1576 0.5 - 

manoyl oxide 1988 - 0.8 
Monoterpene hydrocarbons  19.7 1.9 
Oxygenated monoterpenes  74.0 96.2 

Sesquiterpene hydrocarbons  1.8 1.0 
Oxygenated sesquiterpenes  0.5 - 

Oxygenated diterpenes  - 0.8 
Phenylpropanoids  0.8 - 

Other non-terpene derivatives  2.8 0.2 
Total identified (%)  99.6 100.0 

a Linear retention index on a DB5 column; b Not detected; c Traces, <0.1%. 

3.2. Behavioural Assays 

S. zeamais adults showed negative chemotaxis to the EOs. We observed a significant repellent 
effect of the EOs starting from the concentration of 8.4 mL L−1 air both for the EO of C. nubigenum (𝜒2 
= 6.533, df = 1, p = 0.011) and for the C. tomentosum one (𝜒2 = 4.800, df = 1, p = 0.028) (Figure 1A,B). The 
RC50 calculated by probit regression indicated a stronger repellent effect of C. tomentosum EO than 
the C. nubigenum one. Actually, the repellent activity by the EO of C. tomentosum (RC50 = 6.579 μL L−1 
air) was about twice stronger than the C. nubigenum one (RC50 = 11.216 μL L−1 air) (Table 2) and, 
according to the RMP analysis, such difference can be considered as statistically significant [C. 
tomentosum vs. C. nubigenum RMP = 0.497 (0.267–0.813)]. The latency time and the time of permanence 
on the stimulus (Table 3) were analyzed using the generalized linear model (GLM). The GLM 
regressions were overall significant (omnibus test, p < 0.001). A significant difference was found for 
the latency time between the EOs (Wald 𝜒2 = 10.137, p = 0.001) with a more ready response to the C. 
tomentosum than the C. nubigenum EO (EMMeans = 117.290 ± 0.747 and 113.951 ± 0.737, for C. 
nubigenum and C. tomentosum, respectively). On the contrary, no difference in the permanence time 
of S. zeamais was observed between the two EOs (Wald 𝜒2 = 0.455, p = 0.500) (EMMeans = 130.481 ± 
0.788 and 129.731 ± 0.786, for C. nubigenum and C. tomentosum, respectively). 



Insects 2019, 10, 171 8 of 24 

 

 

Figure 1. Behavior of adults of Sitophilus zeamais in the presence of Clinopodium nubigenum and C. 
tomentosum essential oils (EOs). Histograms represent the percentage of insects that chose the cue or 
the control chamber. In brackets, the number of insects that made the choice. NT, % of insects that 
chose the control chamber; T, % of insects that chose the EO treated chamber; NC, number of non-
choosing insects. Each EO was tested vs. clean filter paper in two-choice bioassays. Asterisks indicate 
significant differences in the number of the choosing insects (χ2 test; *, p < 0.05; **, p < 0.01; ***, p < 
0.001). (A), C. nubigenum EO; (B), C. tomentosum EO. 
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Table 2. Median repellent concentration (RC50) of Clinopodium nubigenum and C. tomentosum essential 
oils (EOs) against Sitophilus zeamais adults. 

EO RC50 a Slope Intercept χ2 (df) p 
C. nubigenum 11.216 (8.762−15.168) b 3.109 ± 0.643 −3264 ± 0.658 4.51 (5) 0.478 

C. tomentosum 6.579 (4.349−10.833) 1.497 ± 0.306 −1.225 ± 0.259 3.64 (5) 0.603 
a Concentration of the extract that repels 50% of the exposed insect; data are expressed as μL L−1 air; b 
confidence Interval; (df), degrees of freedom; p, Pearson goodness-of-fit test. 

Table 3. Sitophilus zeamais latency time and permanence time on the olfactory stimulus (Clinopodium 
nubigenum and C. tomentosum EOs) in the two-choice bioassays. 

Concentration a 
Latency Time Permanence Time 

C. nubigenum C. tomentosum C. nubigenum C. tomentosum 
0.7 120.00 ± 13.36 b 107.23 ± 16.08 131.10 ± 11.29 107.23 ± 14.77 
1.4 118.17 ± 14.61 100.23 ± 15.17 116.50 ± 11.42 136.70 ± 18.84 
3.0 125.87 ± 13.44 100.27 ± 11.2 123.07 ± 9.25 116.33 ± 14.37 
6.0 111.80 ± 13.39 120.70 ± 11.72 123.07 ± 14.34 121.30 ± 15.45 
8.4 111.80 ± 13.39 132.70 ± 14.70 123.63 ± 14.34 148.57 ± 14.45 

12.0 138.80 ± 15.81 110.80 ± 15.71 143.80 ± 14.66 130.83 ± 15.52 
23.9 95.47 ± 12.33 126.57 ± 15.06 154.93 ± 14.45 150.43 ± 19.24 

a μL L−1 air; b data are expressed as s (means ± SE); n = 30. 

3.3. Antennal Morphology 

General Description. In S. zeamais, the antennae are of the geniculate type, typically inserted 
laterally on the basal part of the head capsule. During normal activity, insect antennae are brought in 
a forward or lateral position. In both male and female, the antenna is about 850 μm long, and is 
composed of a total number of eight antennomeres (Figure 2A). The first one is the scape (connecting 
the antenna with the head capsule), which is the most developed antennal segment in terms of length 
(about 250 μm long). The scape is followed by the pedicel (about 75 μm long) and the flagellum, 
which is composed of six antennomeres. The proximal five flagellomeres are sub-cylindrical in shape, 
and together measure about 300 μm in length. However, the most elongated one is actually the last 
antennal segment, measuring about 200 μm in length. It is characterized by a cylindrical shape, with 
a conical, pointed apical part (Figure 2A,B). 
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Figure 2. Scanning electron microscopy (SEM) micrographs of a female Sitophilus zeamais antenna. 
(A) General view of the whole antenna. The apical club-like antennomere is clearly visible on the right 
side of the picture. (B,C) detail of the apical antennomere in the lateral (B) and apical (C) view, 
respectively. The apical sensory area is clearly visible. F1, first antennomere of the funicle; F6, sixth 
antennomere of the funicle; Pe, pedicel; Sc, scape. Bar scale: (A) 200 μm; (B,C) 50 μm. 

The cuticular surface of the whole antenna appears as finely sculptured, with the presence of a 
single type of structures; these appear as flattened setae, distributed in variable number along the 
antennomeres, including the apical one. The most interesting part of the antennae is, however, the 
distal part of the apical antennomere, which is defined by a specialized area, elliptical in shape (if 
observed from the top) (Figure 2C). This area presents quite a number of sensory structures of various 
type and shape. It is noteworthy that no differences occurred as regards the general structure of the 
antenna and the presence and distribution of the sensory structures. Ultrastructural investigations 
revealed the presence of five different types of antennal sensory structures. In order to map the 
sensilla, at least six SEM photographs were taken at a given magnification (3000×) in order to picture 
the whole apical part of the antenna. These images were composed together into a single, high 
magnification picture (12000 × 5000 dpi, 8 bit greyscale) using the software Photoshop® CC 2018 
(Adobe Systems Incorporated, San Jose, CA, USA). Pictures were analyzed using the software ImageJ 
(NHI, Open Source). The data about the number and size of the different mapped sensory structures, 
described in detail in the section below, is reported in Table 4. 
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Table 4. Morphological features of antennal sensilla in S. zeamais. 

Sensilla 
Type 

N. (mean ± SE) 
Lenght (μm) 
(mean ± SE) 

Diameter (μm) 
(mean ± SE) 

Pores Wall Neurons Tip 

CS1 17 ± 1 27 ± 1.8 1.2 ± 0.04 Uniporous 
Single 
Thick 

6 Round 

CS2 40 ± 3 12 ± 0.5 0.86 ± 0.04 Aporous 
Single 
Thick 

1 
Sharp 

branched 

BS1 208 ± 13 12 ± 0.4 1 ± 0.03 Multiporous 
Single 
Thin 

2–3 Round 

BS2 102 ± 8 22 ± 1.4 0.9 ± 0.02 Multiporous 
Single 
Thick 

2–3 Round 

GPS 40 ± 7 6.8 ± 0.2 0.83 ± 0.01 Multiporous 
Double 
walled 

3–4 
Finger-

like 

Chaetic Sensilla Type 1 (CS1). These sensilla are characterized by a straight cuticular shaft 
inserted on to the antennal wall with a variable angle, but normally exceeding 45° (Figure 3A). CS1 
are characterized by the absence of wall pores, the longitudinally grooved cuticle and by the presence 
of a wide basal socket, through which the sensillum in inserted on the antennal wall. They were found 
to occur in various parts of the sensory area, i.e., at the level of the inferior margin as well as at the 
tip. CS1 represent the less abundant sensilla occurring on the sensory area (see Table 4). Serial TEM 
cross sections of CS1 cuticular shaft revealed the presence of five unbranched sensory neurons 
enclosed in a single dendritic sheath (Figure 3B). This bundle of dendrites runs inside the sensillum 
up to the tip. At its base, CS1 is equipped with an elaborated flexible socket, which suspends the 
sensillum around the antennal wall. A mesh of suspension fibers was observed, as well as the 
presence of a sixth sensory neuron, which ends at the socket level in a typical tubular body (Figure 
3C). 
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Figure 3. Chaetic Sensilla Type 1 (CS1). (A) SEM micrograph showing an CS1 sticking out from the 
rest of the antennal sensilla. Dotted lines represent the section planes showed in Figure 3B,C, 
respectively. (B) Transmission electron microscopy (TEM) cross section of CS1, the cuticle (CU) 
appears thick, the internal lumen is partly occupied by five outer dendritic segments (ODS) enveloped 
by a dendrite sheath (DS). (C) TEM section taken at the socket level, showing the large socket rich in 
suspension fibers (SF) and the outer dendritic segments (ODS) grouped by the dendrite sheath into 
two separated spaces, one occupied by five neurons and the other by a single neuron ending in a 
tubular body (TB). Bar scale: (A) 10 μm; (B) 0.1 μm; (C) 1 μm. 

Chaetic Sensilla Type 2 (CS2). The sensilla belonging to this class are typically characterized by 
a branched structure, i.e., the distal part of the cuticular shaft is divided into 2–4 branches ending 
with a sharp tip (Figure 4A). These sensilla are inserted on the antennal wall through a socket 
according to an angle below 30°, therefore CS2 do not protrude above the antenna profile. The 
cuticular wall appears smooth and poreless. We counted about 40 CS2 per antenna, and, similarly to 
what we observed for CS1, they are comparatively less numerous than the other sensilla type we 
described. CS2 are distributed randomly on the whole apical sensory area, although they are 
preferentially found along the lower margin. TEM sections revealed the presence of a thick cuticle 
without sensory neurons (Figure 4B,C). At their base, CS2 revealed the presence of a single sensory 
neuron ending in a tubular body. 
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Figure 4. Chaetic Sensilla Type 2 (CS2). (A) SEM dorsal view of a CS2 showing the distal part divided 
into two pointed branches. (B,C) TEM micrographs showing cross section of an CS2 taken at the level 
of the dotted lines reported in A. In both cases the sensillum shows a thick and compact cuticle and 
the absence of sensory neurons entering the sensillum. Bar scale: (A) 5 μm; (B,C) 1 μm. 

Basiconic Sensilla Type 1 (BS1). They are typical “peg” sensilla, with an average length of about 
12 μm. The cuticular shaft is slightly curved and finely grooved for all of its length, except for the 
basal part, where the cuticle appears smooth (Figure 5A). BS1 end with a rounded tip and are inserted 
on the antennal wall through a rigid socket. This type of sensilla was often found grouped in some 
regions of the apical sensory area, forming clusters of sensilla. Because of their length and their 
curved shape, BS1 are arranged almost parallel to the antennal profile, often hidden by other type of 
sensilla. BS1 are the most abundant sensilla type. TEM investigations revealed the presence of a 
cuticular wall, with pores (diameter about 30 nm) distributed all over the surface. The sensilla lumen 
is completely filled with the dendritic branches of the associated sensory neurons (Figure 5B). 
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Figure 5. Basiconic Sensilla Type1 (BS1). (A) SEM micrograph showing a bunch of SB1 with the typical 
curved shape. Thin cuticular grooves longitudinally oriented can be observed. The dotted line 
represents the section plane reported in (B). (B) TEM cross section of BS1, with evidence of numerous 
cuticular pores (arrowheads) distributed all over the surface and corresponding to the external 
cuticular grooves. The internal lumen is completely occupied by branched outer dendritic segments 
(ODS). Bar scale: (A) 5 μm; (B) 0.5 μm. 

Basiconic Sensilla Type 2 (BS2). These sensilla show an elongated and strongly curved at the 
distal half level cuticular shaft (Figure 6A). They are inserted on the antennal wall through a socket 
analogous to SB1, with a starting angle of about 35°. The distal half of the sensilla is curved 
downward, therefore following the curvature of the antennal wall. Because of these features, SB2 are 
positioned above the other type of sensilla, except for the SC1. The antennal cuticular wall is smooth, 
and the apical part is pointed. SB2 are distributed quite evenly at the level of the sensory area, with a 
preference for the apical part of the antenna; they represent the second most abundant type of 
sensilla. Ultrastructural details reveal the thick cuticle, where a few pores open (Figure 6B). The 
cuticle is thicker and less porous, quite different from the cuticle we described for SB1. TEM sections 
taken at the medial sensillum region revealed the presence of branched dendritic processes that fill 
the sensillum lumen. 

 
Figure 6. Basiconic Sensilla Type2 (BS2). (A) SEM micrograph showing BS2 sensilla, appearing longer 
than the surrounding sensilla and distinctly curved. Dotted line corresponds to the TEM section 
plane. (B) TEM micrograph showing a cross section of BS2. The cuticle is thick and perforated by few 
pores (arrowheads). The sensillum lumen is filled by branched outer dendritic segments (ODS). Bar 
scale: (A) 5 μm; (B) 0.5 μm. 
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Grooved Peg Sensilla (GPS). GPS are small sensilla evenly distributed all over the antennal 
sensory area. They are inserted on the antennal wall through a rigid socket: Their base is inserted 
almost orthogonally, whilst the whole structure is bent downward and runs almost parallel to the 
antennal wall. Distally, the cuticular shaft appears clearly grooved, giving rise to digitiform cuticular 
elements reaching the rounded tip (Figure 7A). The basal part of the cuticular shaft is smooth. GPS 
sensilla are often found interspersed within BS1 and BS2. TEM cross sections revealed the actual 
structure of the sensillum, with the typical double-walled organization. Apically, 10–12 cuticular 
ridges are present, while the proximal half of the cuticular shaft is smooth externally. Spoke channels 
are found between the ridges (Figure 7B). Cross and longitudinal sections show, distally, 2 sensory 
neurons entering the lumen without branching. Proximally, each sensillum presents 2 cuticular 
chambers: The innermost chamber is occupied by the outer dendritic segments of three sensory 
neurons (Figure 7C). 

 

Figure 7. Grooved Peg Sensilla (GPS). (A) SEM micrograph showing an GPS sensillum characterized 
by the presence of finger-like projections in the apical part. Dotted lines correspond to the TEM section 
planes. (B,C) TEM cross section taken at the apical and proximal region, respectively. In (B) the 
sensillum shows a cuticle organized in thick cuticular elements corresponding to the external finger-
like projections. At the level of the grooves several pores can be observed crossing the whole cuticle. 
The internal lumen is occupied by two outer dendric segments (ODS). In C the section is taken at a 
lower level and shows a typical double-walled organization, with the external cuticular wall (EC) and 
the internal cuticular wall (IC) enclosing three outer dendritic segments. Bar scale: (A) 5 μm; (B,C) 0.5 
μm. 
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Besides the aforementioned sensilla, the analysis of the antennal surface revealed peculiar 
structures concentrated at the very tip area of the antenna. These structures show a wide, ampulla-
like base rising from the antennal wall without an apparent socket. The basal part continues as an 
elongated, thin and pointed structure (Figure 8A). TEM cross sections taken at this level revealed the 
presence of solid cuticle without sensory neurons associated (Figure 8B). We also highlighted the 
presence of series of cuticular pores (about 100), evenly distributed (Figure 8A). Ultrastructural 
observations revealed the absence of “peg in pit” or “coeloconic” sensilla (typically hidden below the 
cuticle and communicating with the surface through a small opening), while the pores could be 
associated with glandular structures. 

 

Figure 8. (A) SEM micrograph showing the apical part of the last antennomere (F6) in S. zeamais 
female. Several cuticular structures (*) are grouped around the tip, together with numerous sensilla. 
Several cuticular pores (white arrowheads) are present. (B) TEM micrograph showing a cross section 
of the antenna tip: The structures are made of solid cuticle without sensory neurons associated. Bar 
scale: 5 μm. 

3.4. EAG Analysis 

Depolarizing EAG responses were recorded in both males and females (Figure 9). The EAG 
responses to 10% concentration of the different compounds tested were not statistically different 
between the two genders, but they were different among the compounds. The interaction between 
the genders and the various compounds was not statistically significant (Figure 10 table inset). In 
particular, the responses to C. nubigeum and C. tomentosum EOs were higher than those to paraffin oil 
(Figure 10). In the experiments to determine dose-dependent responses to both C. nubigeum and C. 
tomentosum EOs, the EAG responses were not statistically different between the insect genders, but 
they were different among the concentrations. The interaction between the sexes and the 
concentration was not statistically significant (Figure 11A,B table inset). In particular, for both the 
EOs, the response to 0.1% concentration was not statistically different from the control, while the 
responses to 1, 10 and 20% concentrations were higher than the control (Figure 11A,B). 
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Figure 9. Examples of electroantennography (EAG) response waveforms of Sitophilus zeamais to 10 μL 
of the different compounds at different concentrations, compared with the response to the controls 
(paraffin oil). Dotted line corresponds to 1 s stimulus. 

 
Figure 10. EAG responses (mV) of male and female antennae of Sitophilus zeamais to compounds 
dissolved in paraffin oil at 10% (v/v) concentration. Bars indicate the mean ± standard error. Table 
inset shows the statistical parameters of two-way ANOVA. The response of the two gender to each 
compound is compared to those of the control (paraffin oil) (*, p < 0.05; ns, not significant; ANOVA, 
Dunnett post hoc test). 
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Figure 11. Dose–response relationships for stimulation of male and female antennae of Sitophilus 
zeamais with Clinopodium nubigenum (A) and C. tomentosum (B) essential oils. Data (mean ± 
standard error) represent the EAG response relative to octanal (%). Table insets show the statistical 
parameters of two-way ANOVA. The response of the two gender to each compound is compared to 
those of the control (paraffin oil) (*, p < 0.05; ns, not significant; ANOVA, Dunnett post hoc test). 

4. Discussion 

To date, the control of foodstuff pests has been mainly based on synthetic insecticides and 
fumigants, however, since their use has raised food and environmental safety concerns, alternative 
treatments are highly demanded. EOs are regarded as very promising substances for the formulation 
of low-toxic, eco-friendly pest control products. In this context, the huge richness of the Andean flora 
may represent an important source of bioactive substances. In this study, we report the behavioral 
effects of C. nubigenum and C. tomentosum EOs on the maize weevil S. zemais. While C. nubigenum EOs 
were already tested for their toxic effect as well as oviposition deterrent effect on L. sericata [17], this 
is the first report showing a repellent effect of C. tomentosum against insects. We also made a chemical 
characterization of both Clinopodium species to highlight differences. We report a complete mapping 
of the antennal structures in S. zeamais with a characterization of the olfactory sensilla, and we also 
tested the antennal activity of different concentration of C. nubigenum and C. tomentosum EOs. 

4.1. Chemical Characterization of EOs 

As reported in the literature, monoterpenes are the most relevant compounds detected in the 
composition of C. nubigenum EO, mainly in their oxygenated form. All the described C. nubigenum 
EOs were extracted from plants gathered on the Andean highlands of Ecuador, and quantitative 
differences emerged from these samples, probably depending on the latitude of collection. The 
specimens studied in the present work were gathered on the mountains of the Imbabura region, 
which is situated in northern Ecuador. Noriega et al. studied the composition of the EO extracted 
from plants collected in the Pichincha province, situated in a slightly more central area of Ecuador. 
Carvacrol and its acetate were the most abundant compounds in the composition, with the latter, 
which was not detected in the sample of the present study, accounting for over 40% of the total 
composition (vs. 21.21% of the former) [38]. Pulegone was far less represented (6.09%) compared to 
our sample, whilst thymol, which accounted for over 5.5% in Noriega et al., was not detected in our 
EO. Ruiz et al. collected their plant samples in Piedra Bola, in the Loja region, situated in the central 
area of Ecuador. Similarly to Noriega et al., carvacrol and its acetate were the most abundant 
compounds evidenced in the EO. Moreover, thymol showed a significant relative abundance, whilst 
pulegone relative content went down to 1.9% [39]. The farthest EO, both in terms of geographical 
provenience of the plant material and composition, is the one reported in Gilardoni et al. [25]. Their 
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C. tomentosum specimens were collected in the Saraguro territory of the Loja province, in southern 
Ecuador. Their EO was dominated by pulegone, which accounted for over 70% of the total 
composition. Carvacrol was not detected, whilst linalool was found with a relative abundance higher 
than 7% [25], whilst it accounted only for 0.1% in our sample. To the best of our knowledge, only one 
study reported C. tomentosum EO composition. Consistently with our findings, Benzo et al. detected 
isomenthone and pulegone as the most abundant compounds in the EO extracted from C. tomentosum 
collected near river Chambo, in central Ecuador; moreover, piperitenone was over 1.8% [40]. 
Conversely, menthone was significantly more represented in their EO (6.6%) compared to our 
sample. 

4.2. Behavioural Assays 

In this study we observed an increasing repellent effect of the EO of C. nubigenum and C. 
tomentosum EOs against S. zeamais adults, in relation to increasing concentration of the EOs. This is in 
agreement with the results of the EAG analysis. This suggests an insect olfactory response to at least 
some of the EOs compounds, which releases a repellence behavior. In line with these results, a clear 
repellence against S. zeamais adults was also observed by Bougherra et al. [11] for the EO extracted 
from Pistacia lentiscus L. (RD50 values ranging from 0.010 L cm−2) who reported that S. zeamais was 
overall more susceptible to the P. lentiscus EO than Rhyzopertha dominica (Coleoptera: Bostrichidae), 
S. zeamais, and Tribolium confusum (Coleoptera: Tenebrionidae). In line with our results, S. zeamais 
exhibited a negative chemotaxis also in the presence of the EO extracted from two chemotypes of 
Foeniculum vulgare Mill., with RD50 of 0.176 and 0.124 mg cm−2, respectively. In our trial we observed 
a higher repellence of the EO of C. tomentosum than the EO of C. nubigenum even if S. zeamais showed 
a more ready reaction (shorter latency time) to the EO of C. nubigenum compared to that of C. 
tomentosum. Such differences in the efficacy and latency time may be due to the different chemical 
composition of the EOs whose bioactivity depend not only but also on to the combined action of their 
single chemical constituents [41] with synergistic and antagonistic effects on the insect behavior [12]. 

4.3. Antennal Sensilla in S. zeamais 

The antennae of S. zeamais are made of a distal club that presents apically a specialized sensory 
area. Indeed, most of the antenna sensilla are located at the level of this area, while the rest of the 
antennal sensilla are sparsely distributed on the other antennomeres. This is particularly true if we 
restrict our observation to the olfactory sensilla. Among weevils, a similar organization of the antenna 
was reported in Rhynchophorous palmarum L., where the sensory area was restricted to the apical, 
remarkably modified apical antennomere [42]. The antennae of Sitophilus spp. were studied and 
analyzed in previous papers, however most of the reported data were obtained only using scanning 
electron microscope. Abd El-Ghany and Abd El-Aziz (2017) [28] reported the occurrence of antennal 
sensilla in S. granarius, but only few SEM pictures are shown, while in a previous paper in the same 
species, Ali et al. [26] analyzed the antennal sensilla using bot SEM and TEM approach. However, 
the information reported in this paper are rather confused and supported by incomplete TEM data. 
To date, this is the first contribution to the study of antennal sensilla in Sitophilus spp. with a 
comprehensive analysis of the different antennal sensilla. In S. zeamais there is no sexual dimorphism 
as regards the general structure of the antennae (shape and size of the antennomeres, number of 
antennal sensilla) and the type and distribution of the different antennal sensilla. Antennal sexual 
dimorphism was reported for species belonging to different insect orders, with different biological 
significance. In Hymenoptera, antennal dimorphism can occur either in terms of antennal shape (i.e., 
filiform in males vs. clubbed in females) or presence of specialized antennomeres housing pheromone 
glands (mostly common in males) ([43] and refences therein). In Lepidoptera relying on long-distance 
communication mediated by female-produced sex pheromone, males often possess modified bi-
pectinate antennae housing large number of specialized olfactory sensilla [44]. The absence of sexual 
dimorphism in S. zeamais could be related with the relatively narrow involvement of the antennae in 
the sexual behavior, possibly due to the absence sex-pheromone based communication. Among the 
five different type of antennal sensilla, Chaetic Sensilla Type 1 (CS1) are numerously less represented 
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than the others but are the most evident because of their length and their wide insertion angle with 
the antennal wall, that makes them easily visible. This feature is consistent with a contact-
chemoreceptive gustatory role for CS1, strongly supported also by the presence of a combination of 
five chemosensory neuron and a single mechanoreceptive neuron ending with a tubular body. This 
neuronal scheme is quite common among different insect orders such as: Hemiptera [45–47], Diptera 
[48–50], and Lepidoptera [51–53]. In regards to Coleoptera, similar sensilla were reported in several 
species [54–57], for which a role in the detection of salt, sugar and Ph variation was demonstrated 
[58,59]. Chaetic Sensilla Type 2 (CS2) are also present in low numbers and are typically characterized 
by a bi- or multi-partite distal region. The absence of cuticular pores, sensory neurons within the 
cuticular shaft, presence of a single sensory neuron with tubular body and positioning along the 
external border of the antenna deals with a possible mechanoreceptive function [60]. Similar sensilla 
were reported to occur on other weevil species, i.e., Rhynchophorous palmarum L. [42] and Hylastinus 
obscurus Marsham [61], for which the same functional hypothesis was made. However, in Pissodes 
nitidus Roel. for the same type of sensilla a functional role as olfactory sensilla was proposed [62], 
based on misleading interpretation of the presented TEM data. 

The main olfactory organs in S. zeamais are Basiconic Sensilla Type 1 (BS1) and Type 2 (BS2), 
which makes also the two most represented classes of antennal sensilla in this species. The proposed 
olfactory function is strongly supported by ultrastructural evidences, i.e., the presence of porous 
cuticular wall and dendritic branches. Given this, their possible involvement in the perception of 
volatile chemicals, including EOs extracts, is highly probable. In R. palmarum, Type IV and V sensilla 
were reported as olfactory sensilla on the basis of their external and internal morphological features 
[42], strongly resembling Basiconic Sensilla 1 and 2. We found that antennal sensilla distribution does 
not follow a particular pattern, with most of the sensilla distributed evenly on the sensory area (with 
the exception of CS2 located along the outer edge). This organization of olfactory sensilla could be 
related with was found in other weevils, where the absence of distinct area bearing specific sensilla 
types is quite a normal feature. As already suggested by Said et al. [42], the hypothesis of a mosaic-
like organization of olfactory sensilla in regards to their functional response to different volatiles 
could apply to S. zeamais as well, with different olfactory receptor neurons from the same sensilla 
type responding to different volatiles. 

Grooved peg sensilla (GPS) are among the less represented sensilla on the antennae of S. zeamais. 
While their presence was completely neglected in the previous studies, here we report for the first 
time their presence. Morphologically speaking, GPS show the same structural features already 
reported for other insect species, for which a role in the detection of volatiles [63–65] as well as a 
function such as thermo/chemosensory receptors or thermo-hygroreceptors [66]. 

Besides sensory structures, we reported also the presence of cuticular pores located at the level 
of the specialized sensory area, mostly located very close to the socket of the sensilla but without a 
specificity for the different sensilla type. Our investigation did not allow us to characterize such 
structures, although they are very similar to openings of epidermal glands belonging to the third 
class, according to Quennedey (1998) [67]. Antennal glands were reported to occur on different 
species and with very different functions, ranging from courtship behavior [43,68] to appeasement of 
ants in myrmecophilous beetles [69]. In S. zeamais we found cuticular pores in both sexes, therefore, 
a possible role such as pheromone-producing glands should not be considered. In this species we 
hypothesize a role for antennal glands in maintaining fully operational the sensilla, releasing a 
protective and/or lubricant secretion helping with removing and preventing dust particles 
accumulating on the sensilla, considering the dusty environment (grain storage facilities) visited by 
this species. However further investigations are needed to unveil the role of these glands in S. zeamais. 

4.4. EAG Analysis 

Stimulation of the antenna with different concentration of EOs from C. nubigenum and C. 
tomentosum elicited a response in both sexes of S. zeamais. EAG tests revealed a difference in the 
antennal response when exposed to 10% concentration of the EOs from both Clinopodium species. In 
the concentration-dependent response test, S. zeamais antennal activity showed an increasing 
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response at the increase in the concentration of the EOs, starting with 0.1% of concentration. Despite 
the differences found in the different components of C. nubigenum and C. tomentosum EOs, we found 
a similar EAG response following the increase in concentration of the EOs, and this response was 
similar in male and females of the weevil. All these data revealed that S. zeamais detects the EOs 
through olfactory sensilla located on the antennae, and that antennal olfactory sensilla are able to 
detect different concentration of EOs. In a previous study carried out on S. granarius and S. oryzae, it 
was demonstrated the ability to discriminate different concentration of propionic acid through 
antennal olfactory sensilla [70], while our data highlighted for the first time in a member of the 
Sitophilus genus the antennal sensitivity to EOs. 

5. Conclusions 

The strong demand for eco-friendly and non-toxic products to manage store weevil infestation 
has been increasing in recent years, leading to a growing interest for the toxic and/or repellent effect 
of natural products, including plant EOs. Exploiting the potential effect of EOs extracted from 
indigenous plants could lead to implementation of such products in the control strategies of grain 
weevil in these areas, avoiding or limiting the use of less sustainable control methods. C. nubigenum 
and C. tomentosum EOs showed a strong repellent effect towards adult S. zemais, with a clear 
involvement of the insect antennal olfactory system. However, more studies are needed in order to 
define the optimal concentration and the best application methods of such substances. 
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