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Abstract: The cross-talk between stem cells and their microenvironment has been shown to have a
direct impact on stem cells’ decisions about proliferation, growth, migration, and differentiation. It is
well known that stem cells, tissues, organs, and whole organisms change their internal architecture
and composition in response to external physical stimuli, thanks to cells’ ability to sense mechanical
signals and elicit selected biological functions. Likewise, stem cells play an active role in governing the
composition and the architecture of their microenvironment. Is now being documented that, thanks
to this dynamic relationship, stemness identity and stem cell functions are maintained. In this work,
we review the current knowledge in mechanobiology on stem cells. We start with the description
of theoretical basis of mechanobiology, continue with the effects of mechanical cues on stem cells,
development, pathology, and regenerative medicine, and emphasize the contribution in the field of
the development of ex-vivo mechanobiology modelling and computational tools, which allow for
evaluating the role of forces on stem cell biology.

Keywords: stem cells; mechanotransduction; mechanosensing; regenerative medicine; ex-vivo stem
cell models; computational tools; stem cell-biomaterial interaction

1. Introduction

The knowledge that mechanical forces regulate tissue development and remodelling dates back
more than a century ago, when Julius Wolff observed that bones trabeculae coordinated with the
principal stress lines that are caused by daily physical loading and hypothesised that bone tissue is
capable of adapting its architecture to the mechanical environment [1]. More recently, many research
groups have demonstrated the role of tissue mechanics and the effects of different type of forces in
development, stem cell differentiation [2,3], and more generally in cells’ physiology and diseases [4–6].
In this review, we discuss the general concepts of mechanobiology and highlight the effects of
mechanical cues on stem cells, development, pathology, and regenerative medicine.

2. Mechanobiology: How Mechanical Forces are Translated in Biochemical Signals

In this section we discuss the molecular basis of mechanobiology.
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2.1. General Concepts

Mechanobiology, at the cellular level, specifies how cells exert, sense, decipher, and respond to
physical forces. At the molecular level, mechanobiology specifies how mechano-molecular players are
recruited and interconnected together to activate a specific biological function [2,3,7].

These phenomena are the consequence of two main events, referred to as (i) mechanosensing, or the
capacity of cells to sense physical cues and mechanical forces from the surrounding microenvironment
and (ii) mechanotransduction, or the capacity of the cells to transduce either external forces into
biochemical signals to elicit selected cell functions [2,3] or to intracellular molecular interaction into
forces that influence the architecture and properties of the microenvironment [8] (see points 2.3 and 2.4,
respectively) (Figure 1).

Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 2 of 33 

 2 

2.1. General Concepts 

Mechanobiology, at the cellular level, specifies how cells exert, sense, decipher, and respond to 
physical forces. At the molecular level, mechanobiology specifies how mechano-molecular players 
are recruited and interconnected together to activate a specific biological function [2,3,7]. 

These phenomena are the consequence of two main events, referred to as (i) mechanosensing, or 
the capacity of cells to sense physical cues and mechanical forces from the surrounding 
microenvironment and (ii) mechanotransduction, or the capacity of the cells to transduce either 
external forces into biochemical signals to elicit selected cell functions [2,3] or to intracellular 
molecular interaction into forces that influence the architecture and properties of the 
microenvironment [8] (see points 2.3 and 2.4, respectively) (Figure 1). 

 
Figure 1. Schematic illustration of molecular basis of mechanobiology. Cartoon shows how 
mechanical cues are transmitted to the nucleus via integrins > focal adhesion complex > cytoskeletal 
components > nucleoskeleton. The yellow shadow indicates mechanotransduction signals. 

2.2. Tensegrity 

Currently, the theoretical explanation of mechanobiology is based on the discovery that, in all 
cells, the cytoskeleton acts as a dynamic machine that collects the external forces applied to the cell 
from the microenvironment and responds by generating traction/compression forces transmitted to 
other molecular components inside or outside the cells. This model is based on the concept of 
“tensegrity” (tensional integrity), by which living cells organize their cytoskeleton as a hard-wired 
that immediately responds to external mechanical stresses stabilizing its form [9,10]. 

Tensegrity is a building principle, being originally described by the architect R.B. Fuller and 
pictured by the sculptor K. Snelson. While Fuller defined a tensegrity system “as structures that 
stabilize their shape by continuous tension or ‘tensional integrity’, rather than by continuous 
compression”, Snelson demonstrated that network structures may mechanically stabilize themselves 
through the use of tensile pre-stress forces [11–13]. In 1993, D. Ingber applied the term “tensegrity” 
to living organisms, suggesting a mechanical model where the cytoskeleton structure acts as a 
dynamic load-bearing pillar. This model, which is capable of recapitulating the events leading to 
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2.2. Tensegrity

Currently, the theoretical explanation of mechanobiology is based on the discovery that, in all cells,
the cytoskeleton acts as a dynamic machine that collects the external forces applied to the cell from
the microenvironment and responds by generating traction/compression forces transmitted to other
molecular components inside or outside the cells. This model is based on the concept of “tensegrity”
(tensional integrity), by which living cells organize their cytoskeleton as a hard-wired that immediately
responds to external mechanical stresses stabilizing its form [9,10].

Tensegrity is a building principle, being originally described by the architect R.B. Fuller and
pictured by the sculptor K. Snelson. While Fuller defined a tensegrity system “as structures that stabilize
their shape by continuous tension or ‘tensional integrity’, rather than by continuous compression”,
Snelson demonstrated that network structures may mechanically stabilize themselves through the use
of tensile pre-stress forces [11–13]. In 1993, D. Ingber applied the term “tensegrity” to living organisms,
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suggesting a mechanical model where the cytoskeleton structure acts as a dynamic load-bearing
pillar. This model, which is capable of recapitulating the events leading to cytoskeletal mechanics,
cell shape, and movement, allowed for explaining how cells sense and respond to mechanical forces
and, above all, how these two events are connected [14]. Hence, tensegrity predicts that cells respond
straightaway to external mechanical stresses applied to the cells’ surface, through proteins that are
physically connected to the cytoskeleton [14,15]. Additionally, in this mechanical model, molecules
that are activated by changes in cytoskeletal architecture function in the “solid-state” and transduce
mechanical stresses into biochemical signals and gene expression program within single living cells [15].
Therefore, all living organisms use “tensegrity” to mechanically stabilize their shape and integrate and
balance their structure and function at all size scales, from the molecular level to organs [15,16]. This is
a consequence of cytoskeleton tension that is transduced into an equilibrium of opposing forces that
are dispersed through the network of cytoskeletal filaments. Generally, tension is generated within the
actomyosin contractile microfilaments and is counteracted by microtubules, which are able to resist the
compression forces [10,16–18]. The Ingberg model has later been confirmed and improved by many
other researcher groups [8,15,19–22]. Among these, Cai and co-authors, starting from the observation
that the cytoskeletal components are nonlinear cell mechanical supports, introduced the concept of
“initial imperfections” in the original tensegrity model. This scheme provided a new intuitive method
for understanding the load-bearing capacity and distribution of force into the cytoskeleton [23].

2.3. Mechanosensing

As mentioned above, all organisms have evolved structures, enabling them to recognize and
respond to mechanical forces [4,24]. This cross-talk takes place at the macroscale level (e.g., in organs
and tissues), at the microscale level (e.g., in single cells), and also at the nanoscale level (e.g., in molecular
complexes or single proteins) [5]. At present, we know that the different types of forces orchestrate the
control of all biological functions, including stem cells’ commitment, determination, development,
and maintenance of cells and tissues homeostasis [4,24,25]. Table 1 summarizes the different mechanical
properties and the proteins serving as transmitters in mediating these processes.

Table 1. Mechanical properties and biological mediators.

Mechanical Properties Proteins Ref.

Tension

Tensile forces refer to the external
stimuli that tend to stretch cells,

acting in opposite directions, thus
causing their elongation. Cellular

responses to stretching depend
largely on the type and amount of
load as well as on the composition

of the extracellular matrix.

Myosin II, integrins, FAK,
F-actin, Ifs, ZO-1, E-cadherin,

Lmn A/C, Arp2/3, formin,
coronin 1B, a-catenin, vinculin,

collagens, elastin, fibrillin,
fibulin, tenascin-C, pacsin-2,

F-actin, microtubules

[26–30]

Compression

Contrary to tension, compressive
forces applied from the outside

towards the centre of cells result in
cells contraction and shortening.

Collagen, vimentin, F-actin
ROCK, myosin regulatory
light chain, Wnt/β-catenin

[29]

Shear Stress

When two opposite forces are
tangentially applied to cells

surface, they generate shear stress,
which cause changes in

morphology and adhesion
properties.

PECAM1, VEGFR, ERK1/2,
PGTS2, IER3, EGR1, IGF1,
IGFBP1, Integrin, TGF-β,

β-catenin, MAPK, laminin-5,
F-actin, PI3K

[31,32]



Int. J. Mol. Sci. 2019, 20, 5337 4 of 33

Table 1. Cont.

Mechanical Properties Proteins Ref.

Hydrostatic Pressure

Hydrostatic pressure is the force
exercised by the surrounding fluid

to cells membranes. Due to its
nondirectional nature, it is mainly

non-deforming but has an
important thermodynamic effect
on the cytoskeleton influencing

microtubule stability.

Shc1, integrins, collagen,
TGF-β, F-actin [32]

Stiffness

The term stiffness, which generally
is used to describe the ability of an
object to resist deformation after

the application of a force, is also a
measure of the rigidity of the

extracellular matrix or the cells
were those forces are applied.

Integrin (α2), fibronectin,
collagens, α-actinin, Rho
signaling cascade, talin

vinculin, FAK, BMP receptor,
F-Actins, vimentin Ifs,
microtubules, filamin,

lamin-A/C, emerin, Yap1

[28,33,34]

Elasticity

Elasticity is the property of the
object to complement its original
shape and size after removal of

the applied force. In biology is the
resistance of cells to the

extracellular matrix deformation.

Collagen VI, tenascins, titin,
elastin, fibrillins, integrins,

F-Actins, microtubules,
Myosin II

[33]

Viscoelasticity
It indicates the elastic and viscous

properties by which an object
contrasts the deformation.

Collagens, Elastin, ICAM-1,
F-Actins [35,36]

2.4. Mechanotransduction

This section describes how cells sense the mechanical forces exerted by extracellular matrix (ECM)
and neighbouring cells, and discusses how mechanical stimuli are transduced into biochemical signals
to activate specific gene programmes and trigger cellular responses. The ability of cells to exert forces
on the ECM or on other cells is also emphasized.

2.4.1. Extracellular Matrix

The effects of ECM on cell functions have been extensively studied. Nowadays, it is well known
that chemical, mechanical, and topographical cues of ECM control cell adhesion, shape, and migration,
as well as the activation of signal transduction pathways orchestrating gene expression and dictating
proliferation and stem cells’ fate [37,38]. The ECM is a structural macromolecular network that
creates a scaffold for cells interactions and support [37–39]. It is composed of (i) solid components,
consisting of fibrous proteins, (e.g., collagen, elastin, laminin, fibronectin), glycosaminoglycans (GAGs;
e.g., hyaluronic acid), proteoglycans (PGs; e.g., chondroitin sulfate, heparan sulfate, keratan sulfate),
and syndecans (see Table 2); (ii) soluble components, such as cytokines, growth factors, and several
classes of proteases, like a metalloproteinases (see Table 2), all of which serve as mediators between
ECM and cells [37–42]. Based on composition and structural organization, it is possible to distinguish
two extensive ECM structures: the basement membranes, providing a two-dimensional support for
the cells (mainly composed of laminin, collagen IV, nidogen and heparan sulphate) and the connective
tissues that provide a fibrous three-dimensional scaffold to the cells that is mainly composed of fibrillar
collagens, PGs, and GAGs [41–44].
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The overall components confer topography, viscosity, and mechanical properties to ECM.
In particular elastic fibers, fibrillar collagens, GAGs, and the related PGs provide the mechanical
properties of ECM, while fibrous proteins provide tensile strength (collagens, elastin) [37,38]. Therefore,
based on the composition, ECM has the characteristics of a “soft material”, easily deformable at low
stresses, or of an “hard material”, which require greater stresses to generate deformation [2,37–45].
Interestingly, it seems that the resulting architecture provides a sort of ‘mechanical memory’, correlating
with stem cells’ differentiation toward selected lineages [33,38,46,47].

According to its composition, ECM might also acquire a peculiar geometrical conformation
providing topographic and mechanical stimuli, which are critical in modulating stem cells’
phenotype [37,38,44].

Notably, between ECM and stem cells exists a dynamic cross-talk, as stem cells may change
the ECM composition and remodel the architecture either by the secretion of ECM structural
components and matrix metalloproteinases, or by exerting mechanical forces through the cytoskeleton
fibers. The challenge is to create a suitable cell microenvironment that generates mechanosensing/

mechanotransduction signals and guide stem cells’ functions [8].
Based on the previous considerations, it is not surprising that alterations in specific ECM

components or in regulatory players could have an impact on biochemical and physical properties of
ECM, which leads to a disorganized network and, eventually, to organ dysfunctions. In particular,
abnormal ECM composition has consequences on its mechanical properties and on the onset and
progression of numerous diseases, such as cancer and fibrosis [45,48,49]. For instance, mutations in genes
encoding for elastin or elastin-associated glycoproteins cause Williams and Marfan syndromes [50].

2.4.2. Integrins

Among transmembrane proteins, the integrins family is the main class of proteins taking up
ECM signals (see Table 2 for details) [51,52]. Moreover, their position, integrins serve as mediators
of bidirectional signalling inside/outside cells [42]. The bond of integrins with ECM proteins (e.g.,
collagens, fibronectin, elastin, laminins) activate a specific association with intracellular proteins,
such as those of the focal adhesion complex, which transduce mechanical cues from the ECM to the
cell (and vice versa), thus modulating cells’ functions [52,53].

2.4.3. Focal Adhesion

Focal adhesion (FA) complexes are composed of a family of proteins with several domains (e.g.,
calponin homology (CH), pleckstrin homology (PH), src homology 2 (SH2), src homology 3 (SH3),
FERM and LIM domains [54–56]), binding directly or indirectly through actin-binding proteins to the
cytoplasmic domains of integrins [57,58]. FA proteins are organized into nanoscale strata constituting
a bridge between integrins and cytoskeleton [57,58].

Vinculin, paxillin, talin and focal adhesion kinase (FAK), are the major components of FAs (Table 2).
The recruitment of FA proteins to the FA complex is tightly dependent on the forces transmitted

by ECM-integrins bonds [53]. For instance, cell stretching generated by the transmission of mechanical
forces in response to ECM rigidity elicits vinculin-talin interaction [42,51,58–61]. Moreover, talin1
with the ROD domain is directly implicated in the initiation and stabilization of the cell-matrix
adhesion process, as well as in the reinforcement of integrin–cytoskeleton connections in response
to forces [57,62,63]. It is also likely that type and power of mechanical forces are able to influence
the correct positioning and conformation of specific FA proteins [64]. Therefore, understanding how
mechanical forces induce compositional changes in FAs might provide information regarding the
molecular signals transduced and thus on the cells’ functions involved [64].

2.4.4. Adherens Junctions

Mechanical forces propagate across tissues’ cells through cell-to-cell interactions that are
orchestrated by specific protein complexes [65,66]. Among these, the complexes of Adherens Junctions
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(AJs) play a key role in several processes, such as tissue remodelling, morphogenetic developments,
wound healing coordination, and tissue elongation [65,66]. The main adhesion proteins forming AJs
belong to the cadherin family. Type I cadherins link intracellular AJs to actin filaments. They are the most
ubiquitously expressed and include: E-cadherin, P-cadherin (epithelial cells), VE-cadherin (endothelial
cells), and N-cadherin (all other non-epithelial cells), originating from the variable sequences in the
extracellular domain of the protein [66] (Table 2). The conserved cadherin repeats domain contains
calcium-binding sequences, essentials for switching “off”/“on” the adhesive function of cadherins.
By this process, between two neighbouring cells, E-cadherin preferentially binds E-cadherin and
N-cadherin to N-cadherin [65,67,68]. Catenins, nectins, and related proteins are other important
players mediating cell-to-cell interactions [66,69,70] (Table 2).

Table 2. Macromolecular complexes for mechanotransduction activity.

Extracellular Matrix Ref.

Solid Components Proteins
Collagens are the main structural glycoproteins of ECM. They interact with other ECM
components and cellular integrins and exist as fibrils of 10-300 nm in diameter (e.g., types I,
II, III) and reticular forms (e.g., type IV). Fibrils transmit tensile strength originated by
mechanical stresses, tension, pressure and shear while type IV collagen is bound to the
other ECM structural components such as laminin and fibronectin (to form the basal
lamina of basement membranes).
Fibronectin is the major dimeric fibrillar glycoprotein of ECM. It interacts with other ECM
proteins, cellular membrane integrins, glycosaminoglycans, and other fibronectin
molecules.
Elastin/Tropelastin is a hydrophobic protein rich in glycine and proline. The soluble
precursor tropoelastin is secreted into the extracellular space where then polymerize into
insoluble elastic fibers or sheets. Elastic fibers guarantee flexibility to the structures, which
can go towards withdrawal after a temporary stretch. Elastin interacts with the cellular
integrins and with several ECM components (e.g., collagens, laminin, fibrillin,
proteoglycans, glycosaminoglycans).
Laminins are high-molecular-weight heterotrimeric glycoproteins formed by α, β andγ
subunits that combine to form 15 different types of heterotrimers. They represent the main
non-collagenous components of the basal membrane.
Other proteins: vitronectin, tenascins, nidogens, fibulins, trombospondins.
Glycosaminoglycans (GAGs)
Hyaluronic acid is a polysaccharide consisting of alternating residues of D-glucuronic acid
and N-acetylglucosamine. It is absent in proteoglycan. It confers the ability to resist
compression through swelling by absorbing water. Hyaluronic acid regulates cell during
embryonic development, inflammation, healing processes and tumor development.
Proteoglycans
Chondroitin sulphate is involved in compression of ECM. It contributes to the tensile
strength of cartilage, tendons, ligaments, and affects neuroplasticity.
Heparin/Heparan sulphate is involved in cell adhesion, migration and proliferation,
developmental processes, angiogenesis, blood coagulation and tumor metastasis. It serves
as a cellular receptor for a number of viruses.
Dermatan sulphate interacts with different cell receptors and with other ECM components
(e.g., collagen, tenascin, fibronectin, GAGs, and other proteoglycans).
Keratan sulphate regulates the diameter of the fibrils in ECM and regulates interfibrillar
spacing. It interacts with many proteins of the neural tissues and with collagen,
glycosaminoglycans, and proteoglycans.
Syndecans
The syndecan protein family has four members that have a single transmembrane domain
that act as coreceptors. These core proteins contain three to five heparan- and
chondroitin-sulfate chains, which allow the interaction with different growth factors,
fibronectin and antithrombin-1.

[43,71–86]
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Table 2. Cont.

Extracellular Matrix Ref.

Soluble components
Cytokines: TNF-a, IL-7, IL-2, CCL5, MIP-1b
Growth factors: VEGF, FGFR1, PDGF, TGF-α, TGF-β, bFGF, IGF-1 ecc.
Matrix metalloproteinases and proteases: adamalysins, serralysins, astacins and
metzincin superfamily.

[87–89]

Integrins

Integrins are the main transmembrane proteins that established cell-ECM interaction.
They are heterodimers of α and β subunits. In mammals there are 18 α and 8 β subunits
that associate to form 24 integrins that have affinity for different ligands. They have a large
extracellular domain that links to ECM proteins and a cytoplasmic tail that bind to the
cytoskeleton proteins.

[90,91]

Focal Adhesion (FA)Proteins

Vinculin is the main protein of the FA complex. It is involved in the connexion of integrins
with F-actin. Vinculin is involved in the association of cell-cell and cell-matrix junctions
and is also critical in controlling the cell spreading, cytoskeletal mechanics, and
lamellipodia formation. Therefore, vinculin has an essential role in controlling focal
adhesions structure and function.
Paxillin binds tubulin and targets focal adhesions through its C-terminal region, which is
composed of double zinc finger LIM domains organized in four tandems.
Talin interact with vinculin and paxillin and exists in two isoforms, talin1, ubiquitously
expressed, and talin2 (striated muscle and brain). The N-terminal FERM domain have
three subdomains: F1, F2, and F3. The latter contains the binding site for integrin β tails
and is enough to activate integrins.
Focal adhesion kinase (FAK). The C-terminal region contains the FAT (focal adhesion
targeting) domain for the binding with proteins of the focal adhesion complex. The
N-terminal domain interacts with the β1 subunit of integrins and is involved in the
transduction of signals from ECM.
Other proteins: p130Cas, zyxin, tensin, tindlins, Ena/VASP family, Arp2/3 complex.

[62,92–94]

Adherens Junctions (AJs)

Cadherins (N-cadherin, E-cadherin, P-cadherin, T-cadherin, V-cadherin). Cadherins or
“calcium-dependent adhesion” proteins belong to the cell adhesion molecule (CAM) family
and are involved in the formation of AJs and mediate cell-to-cell contact. During
development, they are essential for the proper positioning of the cells. This includes the
separation of the different tissue layers and cell migration. The transmembrane domain
contains five repetitions in tandem that allow the binding of Ca2+ ions while the
extracellular domain mediates the connexion between adjacent cells. In fact, a cadherin
interacts with another cadherin of the same type on the adjacent cell in an anti-parallel
conformation, creating a linear adhesive “zipper” between cells. The C-terminal
cytoplasmic ends, mediate the binding to catenins, which in turn interact with the actin
cytoskeleton.
β-catenin (Catenin beta-1) is a multifunctional protein involved in the transduction of Wnt
signals and in the intercellular processes of adhesion by linking the cytoplasmic domain of
cadherin.
α-catenin binds cadherins and F-actin. Moreover, α-catenin recruit vinculin.
Other proteins: l-afadin, p120, EPLIN (also known as Lima-1), ZO-1, nectins.

[95–100]

Cytoskeleton
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Table 2. Cont.

Extracellular Matrix Ref.

Microtubules are polymers of α-tubulin and β-tubulin dimers that form protofilaments,
which are then associated laterally (13 protofilaments) to form a hollow tube diameter of
about 25 nm. Microtubules are essential for determining cell shape and movement,
intracellular transport of organelles and the formation of mitotic spindle. The dynamic
activity of microtubules is under the control of microtubule-associate proteins, which
increase their stability or disassembling, separation and increasing the rate of tubulin
depolymerization.
F-Actin microfilaments are polymers of G-actin monomers. F-actin fibers (diameter of
about 7 nm) generate networks that regulate cellular shape and are directly involved in the
generation of forces, cell migration and division. Actin filaments end at the plasma
membrane, where they form a network of philopodia and lamellipodia that provide
mechanical support to cells. Moreover, the activity of F-actin is strictly assisted by many
actin-binding proteins.
Intermediate filaments have a diameter of about 10 nm, have a structural role and provide
mechanical strength to cells. They organize and participate to the three-dimensional
structure of the cell and nucleus, and serves as anchor to organelles. Moreover, they
contribute to some cell-to-cell and cell-to-matrix junctions. Intermediate filaments belong
to vimentins, keratin, neurofilaments, lamins and desmin families.
Actin-Linking- Proteins
Myosin II is a motor protein that associate with F-actin generating both extensile and
compressive forces that push and pull actin filaments by hydrolysis of ATP.
α-actinin is a member of the spectrin superfamily. It forms an anti-parallel rod-shaped
dimer by which binds both actin- domain at each end and bundles actin filaments at
rod-end.
Filamins family serve as scaffolds for more than 90 partners (e.g., channels, receptors,
transcription factors) through its immunoglobulin-like domains. Filamin binds all actin
isoforms (e.g., F-actin, G-actin). It forms a flexible bridge between two actin filaments
generating an actin network with movable or gel-like qualities with increased elastic
stiffness depending of the critical concentration of filamin.
Cofilin protein has emerged as a key regulator of actin dynamics. In particular, it regulates
the actin filament assembly/disassembly by binding to actin monomers and filaments.
Other proteins: Arp2/3, fascin, spectrin, profilin, fimbrin (also known as is plastin 1),
formins, villin

[101–110]

Nucleoskeleton

LINC complex.
SUN1 and SUN2 are transmembrane proteins of the inner nuclear membrane with a
conserved C-terminal SUN domain that localize to the perinuclear space.
Nesprins contain the conserved KASH domain at transmembrane C-terminal tail by which
bind SUN proteins. KASH–SUN bridges interact with the cytoskeleton and therefore
respond to the forces generated by the cytoskeleton.
Lamins
Lamin A/C are intermediate filaments that ensure the nuclear architecture. They have a
role in nuclear assembly, genome organization and telomere dynamics. Lamin A responds
to the cytoskeletal tension and interacts with numerous proteins involved in transduction
pathways. Lamin A/C expression is lower in stem cells and increases in differentiated stem
cells.
Lamin B1/B2 are components of the nuclear lamina, form an outer rim and interact with
chromatin. Lamin B is expressed in all cells.
Other proteins LAP2, BAF.

[111–116]

2.4.5. Cytoskeleton

The regulation of cytoskeletontension guarantees forces propagation within cells [16,117,118].
This is a dynamic structure composed of F-actin microfilaments (polymer of G-actin), microtubules
(polymer of αβ−tubulin dimers; MTs), intermediate filaments (polymers of small cell type-specific
peptides; IFs), and cross-linking proteins, providing a three-dimensional support for the cells and having
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a direct impact on all basic and specialized cells’ functions (Table 2 for details) [117]. The mechanical
properties of the cytoskeleton are strictly related to the dynamic, geometry, and polarity of its
components [117,119]. In particular, F-actin has a flexible structure, resists intracellular stresses, and,
upon stretch, activates local tension and cell rigidity. On the other hand, MTs are rigid and, in general,
highly susceptible to longitudinal-torsional vibration modes [117]. When microtubules are elongated,
vibration modes increase the rotation, the translation, and the velocities of intracellular vesicles along
the filaments [16]. Lastly, intermediate filaments are highly flexible and deformable [118].

Noteworthy, the cytoskeleton contractility is mainly guaranteed by a network of actomyosin
fibers that originates from the interaction of F-actin and non-muscle myosin-II [119,120]. F-actin and
myosin II form stress fibers of 10–30 nm, together with other actin-linking proteins (e.g., α-actinin,
fascin, filamin, spectrin, dystrophin, Arp2/3, profilin, ADF/cofilin, fimbrin, profilin, villin, formin
family, and tropomyosins) [119,120]. These stress fibers may associate the cell–ECM interface directly
through FAs complex or indirectly through a network between stress fibers [119,120]. Tension and
mechanical forces transmission to the nucleus is typically due to actomyosin fibers and it is regulated
by the levels of phosphorylation of the myosin light chain [120,121].

2.4.6. Nucleoskeleton

Mechanical cues arising either from the ECM and collected by integrins and FAs or from cell-to-cell
contact and perceived by the AJs are both transmitted from the cytoskeleton fibers to the nucleus.
They influence cytoplasmatic proteins causing their structural modification and shuttling them to the
nucleus where they have a key role in orchestrating gene expression [122,123]. Among these proteins,
there is a class of transcriptional factors that activate or repress mechanosensitive genes [124,125], as the
case of YAP and TAZ [126,127] of Hippo pathway, which translocate to the nucleus in cells that are
subjected to stiff stimuli [126,127]. The canonical function of YAP and TAZ is to transduce signals critical
for driving stem cells’ fate and regeneration, whereas their altered activity is involved in aberrant cell
mechanics transduction and in several diseases (e.g., atherosclerosis, fibrosis, pulmonary hypertension,
inflammation, muscular dystrophy, and cancer) [128]. Other transcription factors, such as NKX-2.5,
are activated in response to low tension and, once in the nucleus, they act as “mechanorepressor” of
genes deputed to the maintenance of cells high-tension state [123].

Indeed, a direct nuclear-cytoskeletal link is critical in transmitting forces to the nucleus and
eliciting biological responses to them. Many studies have pointed at the nucleoskeleton structure
as the principal regulator of biochemical and physical connections between the nucleus and the
cytoskeleton [125,129,130]. Within the nucleoskeleton, intermediate filament lamins A, B, and C, are the
mechanical components of the inner nuclear membrane, which are directly associated with chromatin
domains, thus regulating genome conformation and gene expression [131–133] (Table 2). The other
component is the LINC complex [129]. This is a conserved molecular bridge that consists of different
proteins spanning the nuclear membrane and connecting the lamins to the cytoskeleton [129,134].
In mammalian, the LINC complex is composed of proteins containing SUN domains (e.g., SUN1
and SUN2) and KASH domains (nesprin-1 and nesprin-2) [135,136] (Table 2). Mechanical signals
propagating through the LINC complex induce conformational changes in nuclear proteins and they
have a direct impact on chromatin structure and gene expression reprogramming [129,134].

3. Mechanobiology in Development and Pathology

The mechanosensing/mechanotransduction signalling cross-talk between stem cells and ECM
is highlighted in development processes and in several diseases. Some examples are reported in
the following.

3.1. Development

The developing of embryos consists in stem cells aggregation and organization into increasingly
more complex structures and internal and external mechanical forces determine these events [137,138].
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Furthermore, the correct positioning of stem cells during morphogenesis is guaranteed by the
appropriate establishment of mechanical interactions among them and with their microenvironment
ECM [137,138].

The first evidences of the role that mechanics play in developmental processes came from
non-mammalians, such as Drosophila [5,139], avians [140], amphibians [141], and fish [142], in which
became clear how eggs fertilization and maturation strongly depend on osmotic pressure gradients
that influence cells shape [143,144]. On the other hand, significantly less is known about the influence
of mechanical forces in the development of human embryos inside uterus because of the limited
amount of material available for experimentations on animal models used for recapitulating human
physiology [145] and because of ethical restrictions regarding human embryos manipulation [143].
Therefore, much of our knowledge on this topic relies on observations on close primate species [146–149]
or on archival material [150]. Hence, taking advantage of some evolutionarily conserved mechanisms,
human embryonic mechano-signalling have been recently characterized. These include i) key regulator
genes [151]; ii) body axes establishment and local strains [152]; iii) geometrical influence on cell
populations sorting [153,154]; and, iv) embryonic architecture and early signalling gradients [155].
Hydrostatic pressure (HP) is one of the mechanical forces involved in embryogenesis (both in early
and late phases of development). At the blastocyst stage, the internal HP dictates the right definition
of cell fate and embryonic size [156], while in later stages the pressure applied by the amniotic fluid
appears to guide notochord extension by stimulating the underlying mesoderm [143,157].

At present, in-vitro models of embryogenesis seem to be the only tool for effectively understanding
the processes regulating patterning, morphogenesis, and mechanobiology in the peri-implantation
human embryo, as far as progresses in the possibility of working with human embryos are
made [158–161]. Nevertheless, it will be necessary to wait more precise characterization of the
embryos that they are expected to model, especially given that benchmarks based on mouse biology
may not hold true in human, in order to understand if these models accurately recapitulate the
molecular events happening in-vivo [143,162].

3.2. Pathology

Advances in mechanobiology suggest that alterations in cell mechanics, ECM structure,
or mechanotransduction signals may contribute to the development of many diseases. As a matter of
fact, aberrant mechanical signals, which are caused by changes in the physical and structural features of
the cell microenvironment or by defects in how cells perceive mechanical inputs, have been associated
with the pathogenesis of many diseases [128,163].

For example, clinical evidences show that alterations in cell−ECM interactions can cause
cancer [164,165]. In many tumors, ECM production and stiffness are significantly increased when
compared to healthy tissue [166–169]. It has been suggested that cancer stem cells increase ECM stiffness,
encouraging metastatic activity, and that tumor stiffness hinders the activity of immune cells. Therefore,
some clinical treatments use TGF-β inhibitors to reduce ECM proteins secretion and prevent further
ECM changes [166]. In human cancers cells, YAP and TAZ have a supra-normal expression level as a
cell response to mechanical inputs from the tumor microenvironment [127,128,170]. Likewise, the role
of endogenous forces in regulating different neuronal functions is also well established [171–173].
Disruptions or alterations of cellular-mechanical properties are associated with neurological diseases,
such as Alzheimer’s disease [174], spread axonal injury, spinal cord injury, concussion, and traumatic
brain injuries [175]. It has been shown that the up-regulation of FA proteins, such as vinculin, talin,
paxillin, and actin-crosslinking α-actinin, causes astrocytes activation and increases the expression of
intermediates filaments, including Glial Fibrillary Acidic Protein, vimentin, and nestin [176]. Astrocytes’
hypertrophy and hyperplasia intensifies the stress on surrounding cells and the secretion of ECM
proteins, such as collagen IV and laminin, which form a collagenous basement membrane scar, one of
the major obstacles to axonal regeneration [177–179].
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Alterations in mechanical signals are also key factors in the pathophysiology of cardiovascular
diseases [180]. In particular, arterial stiffening is recognized as one of the key events in the progression
of several cardiovascular diseases, including coronary heart disease, hypertension, atherosclerosis,
and stroke [181,182]. Moreover, the high susceptibility of skin to mechanical forces, being exposed to
different environmental insults as the most external body layer [183,184], has been correlated to many
pathologies, including keloids, scleroderma, and psoriasis [184–187].

The role of mechanical forces is also well known in bone tissue as well as the effects of biophysical
cues in osteoblast differentiation [188,189], mineralisation process, inhibition of osteoclast differentiation,
and protection against osteolysis [190,191]. Actually, the malfunctioning of some of these processes
appears to be implicated in osteoarthritis and osteoporosis [192]. Moreover, during osteoporosis,
mechanotransduction appears to be compromised, as there is an altered distribution of integrin-based
mechanosensory complexes regulating Cox-2 expression and PGE2 release in osteocytes [193].

Finally, the recent characterization of eyes mechanobiology has been fundamental in understanding
their functioning, angiogenesis, pathologies progression, and therapeutic approaches efficacy [194–196].
For instance, ECM proteins that are secreted by the eye stroma in response to chronic inflammation
might alter the mechanical integrity of the ECM, which leads to the activation of YAP/TAZ and
β-catenin signalling pathways that, in turn, enhance the epidermal differentiation of the epithelium.
This can lead to corneal squamous cell metaplasia, which causes blindness [197].

4. Mechanobiology on Stem Cells and Regenerative Medicine

4.1. Mechanosensing/Mechanotransduction Signalling Drive Stem Cell Functions

The study of mechanobiology in stem cells is pivotal in understanding the molecular processes
regulating stem cells’ homeostasis, self-renewal, pluri/multipotency, and also for its prospective
applications in regenerative medicine [198,199]. To facilitate readers, Table 3 summarizes stem cells’
properties and hierarchy.

Table 3. Stem cells types and properties.

Stem Cell Types Properties Ref.

Naïve Stem Cells
Naïve stem cells are present in the pre-implanted blastocyst cell
mass and are able to generate a chimera with all types of cells

present in adult tissues
[200–202]

Primed Stem Cells
Primed stem cells are present in the post-implantation epiblast

and they cannot generate a chimera although they are capable to
give rise to all types of differentiated cells.

[200–202]

Embryonic Stem
Cells (ESCs)

These stem cells are generated from naïve embryonic stem cells in
mice and primed stem cells in humans. ESCs can be differentiated

into cells from all three embryonic germ layers (ectoderm,
mesoderm, endoderm) and could be used as a substitute to

germline stem cells for the generation of animal models.

[201,203–207]

Adult Stem Cells

Adult stem cells exist in pre- and post-natal organs and have
self-renewal and multipotency properties. They persist within the
niche of adult tissues and organs replacing cells within the tissue
under physiological and pathological conditions and can be listed

according to their germ layer origin
Mesoderm: Adipose Mesenchymal Stem Cells, Bone Marrow

Mesenchymal Stem Cells, Endothelial stem cells, Hematopoietic Stem
Cells, Dental Pulp Stem Cell

Endoderm: Endothelial Stem Cells
Ectodermal: Neural Stem Cell, Epidermal Stem Cell

[208–216]
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Table 3. Cont.

Stem Cell Types Properties Ref.

Induced Pluripotent
Stem Cells (iPSCs)

iPSCs have self-renewal capacity and are pluripotent (similarly to
ESCs) and they can be obtained from in-vitro reprogramming of
somatic cells. Despite their therapeutic potential there are still

obstacles for their clinical use such as teratomas formation,
karyotypic abnormalities, genetic and immune rejection and

immature phenotype of iPSCs-derived tissues.

[217–220]

Cancer Stem Cells

Cancer stem cells have been recognized as cells that cause tumor
progression. They have self-renewal and multipotency properties
and other critical features required for the metastatic development.

These cells may be isolated directly from the tumor site.

[221,222]

Stem cell fate and behaviour are profoundly influenced by the microenvironment (also known
as niche), in which they reside [60,223–227]. The niche is a tissue area consisting of ECM molecules,
soluble proteins, such as cytokines and growth factors, and supporting cells [137,224,225,228–231],
which, overall, generate peculiar chemical-physical cues having a critical role in maintaining stem cell
self-renewal and pluri/multipotent properties [137,198,226,232]. Indeed, a mutual dynamic interaction
exists between stem cells and their niche components. As matter of fact, stem cells influence their niche
by secreting the above-mentioned bioactive molecules or by exerting mechanical forces through their
cytoskeletal components (Figure 2a). Examples of this interplay clearly emerge by the plasticity of cancer
stem cells in reorganizing their microenvironment [233,234], or by studies showing that the maintenance
of pluripotency of naïve stem cells might be driven by the niche mechanotransducers signals that
regulate the WNT/β-catenin pathway [235,236] or E-cadherin expression levels in stem cells [237,238].
Moreover, mechanical cues have been illustrated to elicit stem cells’ commitment and specification
toward a selected stem cell differentiation lineage (Figure 2a). For example, it was demonstrated that
ECM stiffness might directly control the lamin-A expression and thereby the specification lineages
toward adipogenesis or osteogenesis of human mesenchymal stem cells (MSCs) [90]. Indeed, MSCs
were the first adult stem cells used to demonstrate in-vitro the influence of matrix stiffness in
adult stem cell differentiation, as they may be easily steered toward osteogenic differentiation or
adipogenic differentiation, depending on the artificial support mimicking the ECM stiffer or softer
characteristics, respectively [137,239,240]. On the other hand, the pioneering work by Engler and
co-authors demonstrated that modulating the matrix elasticity might drive commitment to the lineage
specification of MSCs [33]. The role of stiffness in controlling stem cells’ fate was also investigated
by Aguilar and co-authors, which demonstrated that a 30- to 60-Pa stiffness of bone marrow was
essential in the correct differentiation of megakaryocytes and for the generation of proplatelets [241].
Additionally, the delivery of a 10% static equibiaxial stretch to neural stem/progenitor cells was able
to induce their differentiation toward oligodendrocytes, instead of astrocytes or neurons [242,243].
The mechanical characteristics of ECM and, in particular, the content of tropoelastin, seem to be also
involved in the hematopoietic differentiation of hematopoietic stem cells [244].
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Figure 2. Schematic of the role of mechanosensing/mechanotransduction signalling on stem cell fate. 
(a) Stem cells-extracellular matrix (ECM) cross-talk. (1,2) Cartoon summarizes the different mechanical 
properties of ECM on driving the stem cell differentiation process toward a selected differentiation 
lineage, depending on the tailored composition, microstructure and physical cues of ECM. (3) 
Cartoon also shows the active role of stem cells on remodelling the ECM. The process, described in 
the text, is critical for the maintenance of stemness functions within the niche. (b) Stem 
cells-biomaterials cross-talk. (1,2) Cartoon summarizes some mechanical properties of biomaterials that 
have been directly involved in driving stem cell differentiation toward selected cell lineages. The 
colours correlate the mechanical property with the differentiation lineage [33,245–248]. (3) Schematic 
is also the active role of stem cells on remodelling the biomaterials. Modifications, induced by the cell 
secretion of ECM proteins and biomolecules, or/and by mechanical forces exerted by cells through 
the cytoskeletal fibers, have the challenge to recreate a stem cell microenvironment, suitable for stem 
cell functions. 

4.2. Regenerative Medicine 

From the aforementioned considerations, it is clear that the elucidation of mechanobiology 
processes in stem cells might have a direct impact on the development of innovative therapeutic 
tools for regenerative medicine application. 

Regenerative medicine refers to the most innovative biotechnologies and therapies for the cure 
or replacement of defective/degenerate tissues and organs [211,249]. The paradigm of regenerative 
medicine is based on the potential of stem cells to maintain tissue homeostasis by replacing dead 
cells with newly differentiated progenies and releasing active molecules having a critical role in the 
regenerative processes (autocrine and paracrine actions) [200,211,250,251]. These biological 
properties are well-maintained, even when stem cells are transplanted into a host tissue/organ 
in-vivo (direct transplantation) [211,252,253], or when they are engineered with a therapeutic gene 
(gene-therapy) [254–270], or when they are combined with biomaterials to generate an ex-vivo tissue 
(tissue engineering) [240,271–285]. A further advance is the recent organ-on-a-chip technology [286], 
which recapitulate the human physiology through culturing stem cells in a tailored artificial tissue 
or in a single organ system (e.g., cardiac or lung tissues) [278,287–289]. 

Figure 2. Schematic of the role of mechanosensing/mechanotransduction signalling on stem cell fate.
(a) Stem cells-extracellular matrix (ECM) cross-talk. (1,2) Cartoon summarizes the different mechanical
properties of ECM on driving the stem cell differentiation process toward a selected differentiation
lineage, depending on the tailored composition, microstructure and physical cues of ECM. (3) Cartoon
also shows the active role of stem cells on remodelling the ECM. The process, described in the text,
is critical for the maintenance of stemness functions within the niche. (b) Stem cells-biomaterials cross-talk.
(1,2) Cartoon summarizes some mechanical properties of biomaterials that have been directly involved
in driving stem cell differentiation toward selected cell lineages. The colours correlate the mechanical
property with the differentiation lineage [33,245–248]. (3) Schematic is also the active role of stem cells
on remodelling the biomaterials. Modifications, induced by the cell secretion of ECM proteins and
biomolecules, or/and by mechanical forces exerted by cells through the cytoskeletal fibers, have the
challenge to recreate a stem cell microenvironment, suitable for stem cell functions.

4.2. Regenerative Medicine

From the aforementioned considerations, it is clear that the elucidation of mechanobiology
processes in stem cells might have a direct impact on the development of innovative therapeutic tools
for regenerative medicine application.

Regenerative medicine refers to the most innovative biotechnologies and therapies for the cure
or replacement of defective/degenerate tissues and organs [211,249]. The paradigm of regenerative
medicine is based on the potential of stem cells to maintain tissue homeostasis by replacing dead
cells with newly differentiated progenies and releasing active molecules having a critical role in
the regenerative processes (autocrine and paracrine actions) [200,211,250,251]. These biological
properties are well-maintained, even when stem cells are transplanted into a host tissue/organ
in-vivo (direct transplantation) [211,252,253], or when they are engineered with a therapeutic gene
(gene-therapy) [254–270], or when they are combined with biomaterials to generate an ex-vivo tissue
(tissue engineering) [240,271–285]. A further advance is the recent organ-on-a-chip technology [286],
which recapitulate the human physiology through culturing stem cells in a tailored artificial tissue or
in a single organ system (e.g., cardiac or lung tissues) [278,287–289].
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4.3. Biomaterial System to Study the Effect on Stem Cell Fate by Mechanosensing/
Mechanotransduction Signalling.

The use of biomaterials combined with stem cells for mimicking the ECM characteristics
allow for establishing bio-hybrid substitutes for replacing defective tissue/organs in regenerative
medicine therapeutic approaches [199,227] and allows investigating how mechanosensing and
mechanotransduction signals may regulate stem cells homeostasis, self-renewal, and differentiation
(Figure 2b).

The rationale of the use of biomaterials as stem cells support is based on the cross-talk
taking place between them. Stem cells act on biomaterials releasing ECM proteins and bioactive
molecules and exert forces through the cytoskeletal components to recreate their niche. Conversely,
biomaterials act on stem cells through their intrinsic chemical-physical properties, which activate
mechanosensing/mechanotransduction signalling and thereby modulate the stem cells fate
(Figure 2b) [60,226,227,290–292].

Different types of natural (e.g., collagen, fibrin, silk) and synthetic (e.g., polylactic acid, polyesters,
polyanhydrides, polyurethane) polymers have been manipulated to fabricate biocompatible films
(two-dimensional) or scaffolds (three-dimensional) with tuneable properties to guide stem cells
fate [281,283]. In-vitro synthetic models of stem cells niches have been developed to explore
the effects of mechanical cues mode and magnitude in influencing stem cells’ proliferation and
differentiation (as reviewed by Vining and Mooney) [137]. Modifications of shape and surface
nanotopography of biomaterials have been demonstrated to modulate cell mechanotransduction axis
and dictate selected stem cells’ functions [228,272,273,285,292]. In this regard, we demonstrated that
Poly(L-lactide)acid (PLLA) polymer film and PLLA/Multi-Walled Carbon Nanotubes nanocomposite
film activate two different mechanotransduction axes in human umbilical cord mesenchymal
stem cells (hUCMSCs) [285]. In particular, hUCMSCs on PLLA were steered toward an epiblast
(EPi)-like phenotype through the activation of NANOG and OCT3/4 by the mechanotransduction
axis E-cadherin-F-actin/Myosin-IIA-Sun1. Alternatively, hUCMSCs on nanocomposite film were
steered toward an endoderm (PrE)-like phenotype through the activation of GATA6 and GATA4
via N-cadherin−β-catenin linked to F-actin−Filamin-A−Lamin-A, as a second mechanotransduction
axis [285].

Hydrogels with tailored elasticity and viscoelasticity characteristics have been produced to generate
an ex-vivo model of organ/tissue for regenerative medicine applications [293,294]. Many laboratories
have coated engineered extracellular matrix proteins on polyacrylamide hydrogels in order to modulate
the stiffness characteristics to mimic in-vivo pathophysiological microenvironments for regenerative
medicine [182,295,296].

Finally, advances in this field came from the extrusion-based bioprinting systems. This innovative
technology combines stem cells and biomaterials to create bio-hybrid structures mimicking tissues or
organs’ architecture and, therefore, allows more proficient basic research, development of pharmaceutics
screening, and clinical translation [297].

4.4. Computational Tools to Study Stem Cell Mechanobiology

This review clarifies how mechanical properties of the ECM or of a biomaterial can influence stem
cells fate, which is the final effect of step-by-step sequence having the first sign in the determination of
the cells’ shape. The latter agrees with the biological basic concept that cells’ function and shape are
strictly associated [298]. Therefore, the morphometric characterization of cells might represent a key
analysis of cellular dynamics, as it takes the interactive reaction of cells with their microenvironment into
account [299]. In this paragraph, we describe some current computational morphometric tools allowing
for correlating shape and mechanical cues to cells’ functions. Bioinformatic offers the possibility to
improve canonical cell shape and spread quantification [272,284,285], while taking into account the
high variability that is given by the dynamic structures of the cells [299,300]. For example, due to a
large number of filopodia (a signature of a highly dynamic cytoskeleton) in the cell, borders might
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present different and numerous irregularities. Moreover, contractile cells can withdraw from the focal
adhesions at the margins, creating many membrane protrusions that increase the variability [299,300].
Cell spreading measures include geometric parameters for cells and nuclei, such as: area, perimeter,
major and minor axis of fitted ellipse, and their ratio, convex hull parameters, radius and diameter
of inscribed and circumscribed circles, and others [299,300]. Quantification is achieved by direct
tracing and measuring of cell area and perimeter, shorter and longer cell axis, and other derivations, as
reported in the Table equations (Table 4).

Table 4. Computational Morphometric Descriptors.

Shape Descriptors Formula Description References

Parameters for Elongated Morphology

Aspect Ratio (AR) Major axis lenght
Minor axis lenght

AR is defined as a ratio between the
major and minor axis of the best ellipse
that contains the cell. Value equal to 1 is
a circle. As the ratio decreases from 1,
the object becomes more elongated.

[301,302]

Eccentricity (E)
√

1−
(

Minor axis lenght
Major axis lenght

)2

E is defined as a ratio between the major
and minor axis of the ellipse that

contains the cell. Value equal to 0 is a
perfect circle. As the ratio increases

from 0, the object becomes more
elongated.

[300,303]

Rectangularity Factor
(RF)

Area
(S∗L)

RF is defined as a ratio between area
and the bounding box of the cell, where

S is the smaller side of the minimum
bounding rectangle and L is the large

side of the minimum bounding
rectangle. Lower value implies a less

rectangular morphology.

[303,304]

Elongation Index
(EL) 1− S

L

EL is a ratio between the length and
width of the object, where S is the

smaller side of the minimum bounding
rectangle and L is the large side of the
minimum bounding rectangle. Value
equal to 0 is circularly shaped. As the

ratio increases from 0, the object
becomes more elongated.

[305]

Parameters for Rounded Cell Morphology

Cellular Shape Index
(CSI)

Area∗4π
perimeter2

CSI is defined as a ratio of the object’s
area to the area of a circle with the same

perimeter. Value equal to 1 is a circle.
As the ratio decreases from 1, the object

becomes more elliptical.

[306]

Roundness (RN) perimeter2

Area∗4π

RN is defined as the reciprocal of CSI.
The minimum value is 1 for a perfect

circle. An object with complicated,
irregular boundaries has larger

roundness.

[307]

RN/shape factor
(RNF)

4∗Area
π∗d2

RNF is an improvement of RN. It’s
defined as the ratio between the cell
area and the area of a circle with the

same diameter as the cell. Value is equal
to 1 in a rounded object.

[308]
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Table 4. Cont.

Shape Descriptors Formula Description References

Parameters for Irregular Morphology

Solidity (SD) Cell Area
Convex Hull Area

SD is defined as a ratio between the cell
area and the convex area (smallest

convex polygon that encloses the whole
shape). Value equal to 1 implies a solid
object. As the ratio decreases from 1, the

object becomes having an irregular
boundary or containing holes.

[309]

Dispersion Index
(DP) log2(π ∗ a ∗ b)

DP is defined as the binary logarithm of
π∗a∗b where a is the maximum axes

length and b is the minor axes length of
the fitted ellipse. As the ratio increases

from 0, the object become having an
irregular boundary or containing holes.

[310]

Sphericity (SP) r
R

SP is defined as a ratio between the
radius of the maximum inscribed circle
and the minimum circumscribed circle.
The maximum value equal to 1 implies

a spherical shape.

[311]

Spreading Index (SI) π∗Convex Hull Perimeter2

4∗Convex Hull Area

SI is defined as a ratio between the
convex perimeter and the convex area.
Larger values imply more elongated

structures.

[312]

The table also shows common quantitative parameters that are used in morphometric analysis
of cells cytoskeleton, all of which can be calculated using professional image processing software
such as FIJI (an ImageJ-based package with a rich set of tools and plugin focused on scientific image
analysis) ImageJ and CellProfiler (a Python based system) among free open-source software, IMARIS
and MATLAB among closed source software [313–317].

The first step in the morphometric analysis of images is the identification and the selection of
the object (i.e.,cell(s), nucleus(i)) within the image to calculate specific morphometric characteristics.
In this regard, the segmentation of the studied object(s) and the reliable measurements of shape
descriptors are two of the key processes for accurate image analysis [303]. Segmentation algorithms are
often problematic when it comes to outline complex shapes and when there is overlapping cells [318].
Therefore, there are many different methods of segmentation to detect objects and boundaries:
linear image filters, Laplacian-of-Gaussian or Gaussian filters, and mathematical segmentation
methods [319–321]. Segmentation is required before calculating specific shape descriptors while
using the outlines. After segmentation, biologically useful information must be extracted from
the sample images. The best way to quantify cell morphology is using computer algorithms to
mathematically quantify shape descriptors that represent specific cell morphology characteristics.
ImageJ or FIJI may be used for such analyses [322,323]. For example, we report a simple FIJI (free open
source) workflow for fluorescence image segmentation and morphometric measurement features with
the help of the Shape filter plugin in FIJI (https://imagej.net/Shape_Filter) (Figure 3).

https://imagej.net/Shape_Filter
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[324]. In some cases, it is necessary to watershed overlapping cells and this is achieved by different 
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Figure 3. Schematic of a computational workflow for morphometric measurement of human adult
mesenchymal stem cells. When working with RGB images, the first step is to split the colour channel
into 8-bit grey colour. In most cases, it is necessary to correct the non-uniform illumination and
then to convert the image into a binary image to make easier the identification of foreground objects.
This allows analysis and computing statistics of the objects in the image. The procedure is summarized
in the workflow. First, it is necessary to split the channels and to select the one of interest, then to fit
polynomial plugins (https://imagejdocu.tudor.lu/doku.php?id=plugin:filter:fit_polynomial:start) to
correct the illumination. Second, edges must be found with implemented function in FIJI to trace the
outline of the objects and to enhance the contrast that allows gaining a higher contrast of the areas
with lower local contrast. Before the image binarization, it is important to apply a Kuwahara filter,
which is a noise-reduction filter that preserves edges, followed by auto threshold with Li method [324].
In some cases, it is necessary to watershed overlapping cells and this is achieved by different automated
processes, as aforementioned; nevertheless, manually watershed remain the best and easiest choice
when it is possible to clearly distinguish the contacts between objects. At times, because of the binary
transformation imperfection recognized by the ideal threshold, certain background areas lie entirely in
the foreground and they are referred as “holes” within the foreground objects. So, when the binary
image is created, the area of the objects is filled and the final image inverted into an image with black
objects on a white background. This allows the ‘Shape Filters’ plugin to analyse the objects of interest
(cells or nuclei) and perform measurement, such as finding the area, perimeter, convex hull parameters
etc. The original immunofluorescence image of human adult mesenchymal stem cells was from S.
Martino laboratory.

5. Conclusions

The elucidation of the mechanisms leading to crosstal-king between stem cells with their
microenvironment uncovered networks of signals, which were activated by a single force or a
synergy of forces, resulting in being critical in driving stem cells fate. Even if many studies are still
ongoing, it is already clear that mechanical cues activated by the ECM and translated to the cell through
mechanosensing/mechanotransduction signals represent a general scheme by which cells, tissues,
organs, and whole organisms respond to external mechanical stimuli orchestrating their biological
activity. Advances in the use of biomaterials as support for in vitro stem cells cultures to generate ex-vivo
models of tissues and organs, together with computational systems, have highlighted the potentials of
mechanobiology as a new therapeutic tool to be investigated for regenerative medicine applications.
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