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1 Introduction

Since the start of the LHC operation, multiple parton interactions (MPI) have become

an important topic in nowadays hadronic physics [1]. Due to the high partonic densities

reached, processes where more than two partons from the two colliding protons participate

in the actual scattering process are likely to happen. The simplest form of MPI, double

parton scattering (DPS), involving two simultaneous hard collisions, has been indeed ob-

served at the LHC (see, e.g., ref. [2]). The DPS cross section is written in terms of double

parton distribution functions (dPDFs) [3, 4], related to the number density of two partons,

with given longitudinal momentum fractions, located at a given transverse separation in

coordinate space. These distributions encode information complementary to that obtained

through the tomography, accessed using electromagnetic probes, in terms of generalized

parton distributions (GPDs) [5, 6]. If measured, dPDFs would therefore represent a novel

tool to study the three-dimensional hadron structure [7–11]. Indeed, they are sensitive

to two-parton correlations not accessible via one body distributions, i.e. standard partons

distribution functions (PDFs) and GPDs (see ref. [12] for a recent report). Since dPDFs

describe soft physics, they are non perturbative objects and have not been evaluated in

QCD. It is therefore useful to estimate them at low momentum scales (∼ ΛQCD), using

models of the hadron structure, as it has been proposed, for the proton, in refs. [13–19].

In order to match theoretical predictions with future experimental analyses, the results of

these calculations are then evolved using perturbative QCD to reach the high momentum

scale of the data. Evolution properties of dPDFs have been studied in the past [20, 21]

and have been recently object of deep investigation (for new developments see, e.g., the

report [22]).
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Recently, results have been obtained for two current correlations in the pion on the

lattice [23, 24], quantities related to dPDFs, whereas the corresponding evaluation for

the nucleon appears much more involved. The novel possibility to compare results with

lattice data makes model calculations of pion dPDFs of relevant theoretical interest. A first

estimate of pion dPDFs has been performed in ref. [25], using light cone wave functions

obtained within the AdS/QCD correspondence.

In this paper we analyze pion dPDFs within a Nambu–Jona-Lasinio (NJL) frame-

work [26].

The dependence of the results on the possible choice of regularization of the NJL

model is investigated within two different prescriptions, the standard Pauli-Villars one and

a properly built Light Front regularization. Our aim is the first evaluation of pion dPDFs

in a field theoretical approach which allows to study systematically different contributions.

This procedure is useful, e.g., to check the validity of approximated expressions for dPDFs

in terms of GPDs, and to calculate quantities related to two current correlations in the

pion, towards a direct comparison with lattice data.

The paper is structured as follows. In section 2 we define the pion dPDFs, we describe

the NJL evaluation scheme and show the results of the calculation. In section 3 we test

the validity, within our scheme, of a commonly used approximation of the dPDF in terms

of GPDs. Conclusions are collected in section 4.

2 Double parton distribution functions in the pion

For the definition of the quantities to be evaluated, we follow the conventions introduced

in ref. [4]. In particular, a dPDF for the pion is defined as

Fa1,ā2(x1, x2, ~y⊥) =

∫
d2k1⊥d

2k2⊥Fa1,ā2(x1, x2,~k1⊥, ~k2⊥, ~y⊥) , (2.1)

with ~y⊥ the transverse distance between the two partons, starting from the generic light-

cone correlator

Fa1,ā2(x1, x2, ~k1⊥, ~k2⊥, ~y⊥) = −2P+

∫
dz−1 d

2z1⊥
(2π)3

dz−2 d
2z2⊥

(2π)3
eix1z

−
1 P

+−i~z1⊥·~k1⊥

×eix2z−2 P+−i~z2⊥·~k2⊥ Oa1ā2 , (2.2)

where

Oa1,ā2 =

∫
dy−

〈
πi (P )

∣∣ {[q̄(1

2
z2

)
Γ̄ā2q

(
−1

2
z2

)]
×
[
q̄

(
y − 1

2
z1

)
Γ̄a1q

(
y +

1

2
z1

)]}
z+1 =z+2 =y+=0

∣∣πi (P )
〉
, (2.3)

with i the isospin index of the pion. In the equations above, the index a1 (ā2) is a short

notation for the Dirac and isospin indices associated to the matrices involved in the quark

(antiquark) vertex:

Γ̄a1 = Γa1 τ
a1 , (2.4)
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with Γa1 given by

Γq = Γq̄ =
1

2
γ+ , Γ∆q = −Γ∆q̄ =

1

2
γ+γ5 ,

Γiδq = Γiδq̄ =
1

2
iσi+γ5 , (2.5)

in the vector, axial and tensor sectors, related to leading twist distributions, respectively.

We follow ref. [4] to analyze the structure of the dPDFs. The functions Fq,q̄ (x1, x2, y⊥)

and F∆q,∆q̄ (x1, x2, y⊥) are, by construction, scalar quantities and, therefore, functions of

y⊥ = |~y⊥|. The two functions Fq,∆q̄ (x1, x2, y⊥) and F∆q,q̄ (x1, x2, y⊥) vanish identically, for

parity conservation. Four dPDFs turn out to be two-dimensional vectors in the transverse

plane. They can be written in terms of scalar functions, as follows

Fq,δq̄j (x1, x2, ~y⊥)=εj,k ŷk⊥ F
v
q,δq̄ (x1, x2, y⊥) , Fδqj ,q̄ (x1, x2, ~y⊥)=εj,k ŷk⊥ F

v
δq,q̄ (x1, x2, y⊥) ,

F∆q,δq̄j (x1, x2, ~y⊥)= ŷj⊥ F
v
∆q,δq̄ (x1, x2, y⊥) , Fδqj ,∆q̄ (x1, x2, ~y⊥)= ŷj⊥ F

v
δq,∆q̄ (x1, x2, y⊥) .

(2.6)

The last dPDF is a tensor quantity and, in terms of scalar functions, it reads

Fδqj ,δq̄k (x1, x2, ~y⊥) = δj,k F sδq,δq̄ (x1, x2, y⊥) +
(

2ŷj⊥ ŷ
k
⊥ − δj,k

)
F tδq,δq̄ (x1, x2, y⊥) , (2.7)

with ŷ⊥ = ~y⊥/ |~y⊥|.
It is convenient to calculate the dPDFs in momentum space,

Fa1,ā2(x1, x2, ~q⊥) =

∫
d2k1⊥d

2k2⊥d
2y⊥e

i ~y⊥·~q⊥Fa1,ā2(x1, x2,~k1⊥, ~k2⊥, ~y⊥) , (2.8)

a quantity often called “2GPD” [7, 8] which, at variance with the dPDF eq. (2.1), is

not related to a probability density. The natural support in x1,2 of the function Fq1q̄2
is 0 ≤ x1,2 ≤ 1, 0 ≤ x1 + x2 ≤ 1. The quantity ~q⊥ represents the imbalance between

the relative momentum of the two partons in the considered hadronic state and in its

conjugated one.

Expressions equivalent to eqs. (2.6) and (2.7), yielding vector and tensor quantities in

terms of scalar functions, can be given in momentum space as follows

Fq,δq̄j (x1, x2, ~q⊥)= iεj,k q̂k⊥F
v
q,δq̄ (x1, x2, q⊥) , Fδqj ,q̄ (x1, x2, ~q⊥)= iεj,kq̂k⊥ F

v
δq,q̄ (x1, x2, q⊥) ,

F∆q,δq̄j (x1, x2, ~q⊥)= i q̂j⊥ F
v
∆q,δq̄ (x1, x2, q⊥) , Fδqj ,∆q̄ (x1, x2, ~q⊥)= i q̂j⊥ F

v
δq,∆q̄ (x1, x2, q⊥) ,

Fδqj ,δq̄k(x1, x2, ~q⊥)=δj,k F sδq,δq̄ (x1, x2, q⊥) +
(

2q̂j⊥ q̂
k
⊥ − δj,k

)
F tδq,δq̄ (x1, x2, q⊥) . (2.9)

By evaluating the Fourier transformations, eq. (2.8) for the scalar, vector and tensor

quantities, the scalar functions Fa1,ā2 (x1, x2, y⊥) in coordinate space are found to be related

to the scalar functions Fa1,ā2 (x1, x2, q⊥) in momentum space according to expressions given

here below. In the case of the scalar quantities Fq,q̄ (x1, x2, q⊥), F∆q,∆q̄ (x1, x2, q⊥) and

F sδq,δq̄ (x1, x2, q⊥) , one gets

Fa1,ā2 (x1, x2, y⊥) =

∫
dq⊥ q⊥

2π
J0 (q⊥y⊥) Fa1,ā2 (x1, x2, q⊥) . (2.10)
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For the scalar functions defining the vector quantities, F vq,δq̄ (x1, x2, q⊥), F vδq,q̄ (x1, x2, q⊥)

F v∆q,δq̄ (x1, x2, q⊥) and F vδq,∆q̄ (x1, x2, q⊥), one has

F va1,ā2 (x1, x2, y⊥) =

∫
dq⊥ q⊥

2π
J1 (q⊥y⊥)F va1,ā2 (x1, x2, q⊥) , (2.11)

and, for the scalar function present in the tensor structure, F tδq,δq̄ (x1, x2, q⊥), the relation is

F tδq,δq̄ (x1, x2, y⊥) = −
∫

dq⊥ q⊥
2π

J2 (q⊥y⊥)F tδq,δq̄ (x1, x2, q⊥) . (2.12)

The calculation framework is the NJL model, the most realistic model for the pseu-

doscalar mesons based on a local quantum field theory built with quarks [26]. It respects

the realization of chiral symmetry and gives a good description of low energy properties.

Mesons are described as bound states, in a fully covariant fashion, using the Bethe-Salpeter

amplitude, in a field theoretical framework. In this way, Lorentz covariance is preserved.

The NJL model is a non-renormalizable field theory and therefore a regularization proce-

dure has to be implemented. We have performed initially our calculations in the Pauli-

Villars (PV ) regularization scheme, which is a well established method. The NJL model,

together with its regularization procedure, can be regarded as an effective theory of QCD.

Some basic features of the NJL model and details on the regularization schemes are re-

ported in appendix A.

Model calculations of meson partonic structure within this approach have a long story

of successful predictions [27–37].

One should remember that collinear parton distributions obtained within a model have

to be associated to a low momentum scale Q2
0, at which one has only valence quarks, and,

in order to be used to predict measured quantities, have to be evolved to higher momentum

scales according to perturbative QCD (pQCD).

Let us describe the main steps of the calculation of eq. (2.8) in the NJL model. For

the pion i we use the state

∣∣πi (P )
〉

=

∫
d4y1 d

4y2
d4k

(2π)4 e
−i 1

2
P ·(y1+y2) e−ik·(y1−y2)q̄ (y1)φπi (k, P ) q (y2) |0〉 , (2.13)

with φπi the quark-pion vertex function for a πi. In the NJL model the amplitude φπi (k, P )

is independent on the relative and total quark-antiquark momenta, k and P, respectively,

and we have

φπi (k, P ) = igπqqiγ5τ
i (2.14)

where gπqq is the quark-pion coupling constant and τ i is the isospin matrix associated to

the corresponding pion πi.

Let us consider the case of a π+, and therefore the operators Γ̄a = Γa
1
2(1 + τ3) and

Γ̄ā = Γā
1
2(1 − τ3). At leading order, we have the contribution depicted in figure 1. Using

eqs. (2.13) and (2.14) in eq. (2.3), after a tedious but straightforward calculation we get,

– 4 –
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2
+

𝑃𝑃
2

𝑘𝑘 − 𝑞𝑞
2

− 𝑃𝑃
2

Figure 1. Diagram of the Double Parton Distribution Function associated to eq. (2.15). Open

vertices represent nonlocal current insertions.

𝑝𝑝
2𝑎𝑎1𝑝𝑝

1

𝑝𝑝 �𝑎𝑎2 𝑝𝑝

⇒ Γ̄a1 δ
(
P+x1 − 1

2 (p1 + p2)+)

𝑝𝑝𝑎𝑎1𝑝𝑝

𝑝𝑝
1

�𝑎𝑎2 𝑝𝑝
2 ⇒ Γ̄ā2 δ

(
P+x2 + 1

2 (p1 + p2)+)
Table 1. Bare vertices associated to the bilocal currents.

for the momentum space dPDF eq. (2.8),

Fa1,ā2(x1, x2, ~q⊥)= −2P+

∫
d4k

(2π)4

dq−

2π
δ

(
P+x1 −

1

2
(P + 2k)+

)
δ

(
P+x2 +

1

2
(−P + 2k)+

)
(−) Tr

[
iSF

(
P

2
+ k − q

2

)
φπ+ iSF

(
−P

2
+ k − q

2

)
Γ̄ā2 iSF

(
−P

2
+ k +

q

2

)
× φ̄π+ iSF

(
P

2
+ k +

q

2

)
Γ̄a1

]
, (2.15)

where

φ̄π+ (k, P ) = −γ0 φ
†
π+ (k, P ) γ0 , (2.16)

and the quark propagator is given by SF (k) = (�k −m+ iε)−1 and the trace is intended in

color, isospin and quadri-spinor indices.

We observe that this contribution can be obtained defining

Fa1,ā2 (x1, x2, ~q⊥) = −2P+

∫
dq−

2π
T , (2.17)

where T is the Feynman amplitude corresponding to the diagram of figure 1, qµ=(0, ~q⊥, q
−)

and the bilocal current vertex shown in table 1 has to be used.

The integration over the k+ variable in eq. (2.15) using the Dirac delta, and the

integration over k− and q− using the Cauchy theorem of residues, give

Fa1,ā2 (x1, x2, ~q⊥) = δ (x1 + x2 − 1) θ (x1) θ (1− x1)

(
−
Nc g

2
πqq

2πP+2

)
(2.18)

∫
d2k⊥

(2π)2

tra1,ā2

(
~k⊥, ~q⊥

)
[(
~k⊥− q⊥

2

)2
+m2 − x1 (1−x1)m2

π − iε
][(

~k⊥+ q⊥
2

)2
+m2 − x1 (1−x1)m2

π − iε
] ,
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with

tra1,ā2

(
~k⊥, ~q⊥

)
= tr

[(
��P

2
+�k − �q

2
+m

)
γ5

(
−��P

2
+�k − �q

2
+m

)
Γā2

×
(
−��P

2
+�k + �q

2
+m

)
γ5

(
��P

2
+�k + �q

2
+m

)
Γa1

]
, (2.19)

where tr implies trace over quadri-spinors indices. Besides, we have

kµ =

((
x1 −

1

2

)
P+, ~k⊥,

P−

2
− m2 + ~k 2

⊥
2P+ (1− x1)

)
, (2.20)

qµ =

(
0, ~q⊥,

−~k⊥ · ~q⊥
P+ (1− x1)

)
, (2.21)

and P 2 = 2P+P− = m2
π.

The integral over k⊥ present in eq. (2.18) is then rendered finite using the adopted

Pauli-Villars regularization method, described in the appendix A.2. Some intermediate

steps are given in appendix A.4. Our final results for the scalar functions appearing in the

dPDFs related to different Dirac structures in the quark vertices are

F
(PV )

u,d̄
(x1, x2, q⊥) = C(x1, x2)

2∑
j=0

cj

{
− ln

κj
κ

+

[
2
m2
π

q2
⊥
x1(1− x1)− 1

]
f

(
κj
q2
⊥

)}
, (2.22)

F
(PV )

∆u,∆d̄
(x1, x2, q⊥) = C(x1, x2)

2∑
j=0

cj

{
− ln

κj
κ
−
[
4
m2

q2
⊥
− 2

m2
π

q2
⊥
x1(1− x1) + 1

]
f

(
κj
q2
⊥

)}
,

(2.23)

F
(PV )

u,∆d̄
(x1, x2, q⊥) = F

(PV )

∆u,d̄
(x1, x2, q⊥) = 0 (2.24)

F
s(PV )

δu,δd̄
(x1, x2, q⊥) = −C(x1, x2)

2∑
j=0

cj 2
m2

q2
⊥
f

(
κj
q2
⊥

)
, (2.25)

F
t(PV )

δu,δd̄
(x1, x2, q⊥) = C(x1, x2)

2∑
j=0

cj 2
κj
q2
⊥
f

(
κj
q2
⊥

)
, (2.26)

F
v(PV )

u,δd̄
(x1, x2, q⊥) = −F v(PV )

δu,d̄
(x1, x2, q⊥) = −C(x1, x2)

2∑
j=0

cj 2
m

q⊥
f

(
κj
q2
⊥

)
. (2.27)

F
v(PV )

∆u,δd̄
(x1, x2, q⊥) = −F v(PV )

δu,∆d̄
(x1, x2, q⊥) = 0 (2.28)

where κ = m2 −m2
πx1(1− x1), κj = M2

j −m2
πx1(1− x1) and

C(x1, x2) =

(
Nc g

2
πqq

4π2

)
δ (x1 + x2 − 1) θ (x1) θ (1− x1) , (2.29)

f(a) =
1√

4a+ 1
log

√
4a+ 1 + 1√
4a+ 1− 1

. (2.30)
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In the case of eqs. (2.24) and (2.28), the traces involved in eq. (2.19) are linear in

the integrated momentum, ~k⊥, and, therefore, the corresponding dPDFs vanish after the

integration present in eq. (2.18). In ref. [4], as reported before in this section, the result of

eqs. (2.24) is predicted according to parity arguments.

One should notice first of all that, as expected by the Gaunt sum rule at q2
⊥ = 0 [38],

the x2 integral yields the expression for the parton distribution function (PDF) reported,

in the same NJL framework with Pauli-Villars regularization, in refs. [28, 32].

We are now in the position to show our results for the pion dPDF for the π+, in the

NJL model. The dashed lines in figure 2 represent the quantities

F
(PV )
a1ā2 (q⊥) =

∫
dx1dx2F

(PV )
a1ā2 (x1, x2, q⊥) , (2.31)

where F
(PV )
a1ā2 (x1, x2, q⊥) is the generic scalar function used to define the momentum space

dPDFs in eqs. (2.9).

We show the results also in coordinate space, obtained by integrating over x1, x2 the

scalar functions defined in eqs. (2.10)–(2.12). These quantities, multiplied by y⊥, are given

by the dashed lines in figure 3.

A few relevant comments are in order.

As stated in the Introduction, the scalar quantity F
(PV )

u,d̄
(y⊥), should represent, in

principle, the probability density to have the two particles at a given transverse distance

y⊥. Indeed, our result for this function is properly normalized, as it can be read from

figure 2 (F
(PV )

ud̄
(q⊥ = 0) = 1). Nonetheless it is found that F

(PV )

ud̄
(y⊥) turns out to be

negative at low values of y⊥.

Another peculiar-looking feature of the results is related to the function F v
u,δd̄

(q⊥).

This quantity presents a slowly decreasing tail at high values of q⊥, which produces in

coordinate space a peculiar behavior at low values of y⊥.

As these features are model dependent, one could wonder to what extent they are

affected by the choice of the regularization scheme, as part of the model. For this reason

we have performed the calculation using another, novel regularization procedure, suitable

for calculation involving light-cone variables. This method, called here after Light Front

(LF) regularization, is carefully described in appendix A.3. Some intermediate results are

included in appendix A.4.

Our final results in the LF scheme are

F
(LF )

u,d̄
(x1, x2, q⊥) = C̃(x1, x2)

[
g2 (q⊥) +

(
m̃2

q2
⊥
− 1

4

)
g0 (q⊥)

]
, (2.32)

F
(LF )

∆u,∆d̄
(x1, x2, q⊥) = C̃(x1, x2)

[
g2 (q⊥)−

(
m̃2

q2
⊥

+
1

4

)
g0 (q⊥)

]
, (2.33)

F
(LF )

u,∆d̄
(x1, x2, q⊥) = F

(LF )

∆u,d̄
(x1, x2, q⊥) = 0 (2.34)

F
s(LF )

δu,δd̄
(x1, x2, q⊥) = −C̃(x1, x2)

m̃2

q2
⊥
g0 (q⊥) , (2.35)
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Figure 2. Double parton distribution functions in the NJL model, in momentum space, inte-

grated over x1, x2. Dashed (full) curves represent results obtained using the Pauli-Villars (Light-

Front) regularization method. Top panel: quantities obtained integrating Fu,d̄ (x1, x2, q⊥), eq. (2.22)

(eq. (2.32)) and F∆u,∆d̄ (x1, x2, q⊥), eq. (2.23) (eq. (2.33)); central panel: quantities obtained in-

tegrating F s
δu,δd̄

(x1, x2, q⊥), eq. (2.25) (eq. (2.35)) and F t
δu,δd̄

(x1, x2, q⊥), eq. (2.26) (eq. (2.36));

bottom panel: the quantity obtained integrating F v
u,δd̄

(x1, x2, q⊥), eq. (2.27) (eq. (2.37)).
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Figure 3. As in figure 2, but in transverse coordinate space.
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F
t(LF )

δu,δd̄
(x1, x2, q⊥) = −C̃(x1, x2)

[
g2 (q⊥)− 2 g̃2 (q⊥) +

1

4
g0 (q⊥)

]
, (2.36)

F
v(LF )

u,δd̄
(x1, x2, q⊥) = −F v(LF )

δu,d̄
(x1, x2, q⊥) = −C̃(x1, x2)

m̃

q⊥
g0 (q⊥) . (2.37)

F
v(LF )

∆u,δd̄
(x1, x2, q⊥) = −F v(LF )

δu,∆d̄
(x1, x2, q⊥) = 0 (2.38)

with κ̃ = m̃2 −m2
πx1(1− x1) and

C̃(x1, x2)=

(
Nc g̃

2
πqq

4π2

)
δ (x1 + x2 − 1) θ (x1) θ (1− x1) , (2.39)

g0 (q⊥)= 2

√
q2
⊥

4κ̃+q2
⊥

log


(√

4κ̃+ q2
⊥ +

√
q2
⊥

) (
4κ̃+ 4Λ2

⊥ + q2
⊥
)

√
q2
⊥
(
4κ̃−4Λ2

⊥+q2
⊥
)
+
√

4κ̃+q2
⊥

√(
4κ̃+4Λ2

⊥−q2
⊥
)2

+16κ̃q2
⊥

,
(2.40)

g2 (q⊥) = −4κ̃+ q2
⊥

4q2
⊥

g0 (q⊥) + log

4κ̃+ 4Λ2
⊥ +

√(
4κ̃+ 4Λ2

⊥ − q2
⊥
)2

+ 16κ̃q2
⊥ − q2

⊥

8κ̃

 ,

(2.41)

g̃2 (q⊥) =
−4κ̃− 4Λ2

⊥ +
√(

4κ̃+ 4Λ2
⊥ − q2

⊥
)2

+ 16κ̃q2
⊥ − q2

⊥

4q2
⊥

+
1

2
log

4κ̃+ 4Λ2
⊥ +

√(
4κ̃+ 4Λ2

⊥ − q2
⊥
)2

+ 16κ̃q2
⊥ − q2

⊥

8κ̃

 . (2.42)

As it happens in the PV regularization scheme, in the case of eqs. (2.34) and (2.38)

the traces involved in eq. (2.19) are linear in the integrated momentum, ~k⊥, and, therefore,

the corresponding dPDF vanish after the integration present in eq. (2.18). In ref. [4], as

reported before in this section, the result of eq. (2.34) is predicted according to parity

conservation.

As in the PV case one should notice first of all that, as expected by the Gaunt sum

rule at q2
⊥ = 0 [38], the x2 integral provides the expression for the parton distribution

function (PDF) obtained using the same regularization.

In figures 2 and 3 the results obtained in the LF regularization scheme, given by full

lines, are compared to those presented in the PV case.

It is found that, for q⊥ < 0.5 GeV, all the distributions have a very similar behavior

using the PV or the LF regularization. At higher values of q⊥ this is still true for the

functions Fu,d̄, F∆u,∆d̄, and F s
δu,δd̄

, while a sizable difference is found for F t
δu,δd̄

and F v
u,δd̄

.

In general, with increasing q⊥, the distributions regularized within the LF method decrease

faster than those regularized using PV . This is evident in particular for F v
u,δd̄

. To have a

quantitative flavor of this trend, the behavior of all the distributions, when q⊥ → 0 and

when q⊥ →∞, are summarized in tables 2 and 3, in the chiral limit, for the two methods

of regularization used. Results with physical masses would differ by a few percent.

– 10 –



J
H
E
P
1
2
(
2
0
1
9
)
0
4
5

PV LF∫
dx1dx2Fu,d̄ (x1, x2, q⊥) 1− 3.98 q2

⊥ 1− 4.05 q2
⊥∫

dx1dx2F∆u,∆d̄ (x1, x2, q⊥) 0.10− 1.04 q2
⊥ 0.09− 1.09 q2

⊥∫
dx1dx2F

s
δu,δd̄

(x1, x2, q⊥) −0.45 + 1.47 q2
⊥ −0.45 + 1.48 q2

⊥∫
dx1dx2F

t
δu,δd̄

(x1, x2, q⊥) −1.33 q2
⊥ + 5.18 q4

⊥ −1.43 q2
⊥ + 4.91 q4

⊥∫
dx1dx2F

v
u,δd̄

(x1, x2, q⊥) −
√
q2
⊥
[
1.89− 6.17 q2

⊥
]
−
√
q2
⊥
[
1.85− 6.01 q2

⊥
]

Table 2. Behavior of the function
∫
dx1dx2Fa1,ā (x1, x2, q⊥), for q⊥ → 0, in the chiral limit.

In coordinate space we have that the choice of regularization does not affect strongly

the distributions Fu,d̄, F∆u,∆d̄, and F s
δu,δd̄

. This is not the case for F t
δu,δd̄

and for F v
u,δd̄

.

Predictions differ in the first case at high values of y⊥, while in the second case they differ

at low y⊥. In the latter situation, the behavior of the result regularized in the LF scheme,

related to a fast decrease of the corresponding distribution in momentum space, appears

more natural than the peculiar one found using PV , previously described.

Let us see if the other peculiar-looking trend observed using PV regularization, i.e. the

presence of a tiny region of negative Fud̄(y⊥), is found also in LF regularization. Actually,

we find that this feature is rather independent on the regularization and arises in both

schemes. The origin of this region of negative Fud̄(y⊥) could be actually more general. The

interpretation of any parton distribution as a probability density is not strictly valid in

QCD, because the distributions are defined with subtractions from the ultraviolet region of

parton momenta, which can invalidate their positivity (see, e.g., the discussion in ref. [41]).

In the present field theoretical approach, the interpretation of the dPDF as a probability

density is certainly questionable and the result we obtain is less surprising than what it

could seem at a first sight.

The negative yield at very low y values is a consequence of the long negative tail found

in q⊥ space (see figure 2) and is actually not relevant phenomenologically, since the dPDF

and the associated DPS cross section at high q⊥ is expected to be very small. As a matter

of facts, in the rest of the paper we will not show results at q⊥ larger than 0.5 GeV.

We note in passing that q⊥ is a momentum unbalance, not related to the internal

pion dynamics but rather to the insertion of an external momentum. Interestingly, we

have found that the introduction of a properly chosen q⊥-dependent cut-off in evaluating

eqs. (2.39)–(2.42) removes all the negative values of Fud̄(y⊥), suggesting that a momentum

dependent procedure might be motivated in the present situation.

2.1 Dressing the bilocal vertex and other contributions in the NJL model

In addition to the contribution eq. (2.15), in the NJL model we must consider also the

dressing of the bilocal vertex due to the chiral interaction. This corresponds to change the

bare vertex given in table 1 by the dressed one depicted in figure 4. Therefore, instead

of using Γ̄a1 δ
(
P+x1 − 1

2 (p1 + p2)+) for the bare vertex in the Feynman amplitude in
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(
2
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PV LF∫
dx1dx2Fu,d̄ (x1, x2, q⊥) −0.87 q−2

⊥ −0.71 q−2
⊥∫

dx1dx2F∆u,∆d̄ (x1, x2, q⊥) −1.09 q−2
⊥ −0.71 q−2

⊥∫
dx1dx2F

s
δu,δd̄

(x1, x2, q⊥) −0.11 q−2
⊥ −0.17 q−4

⊥∫
dx1dx2F

t
δu,δd̄

(x1, x2, q⊥) −0.87 q−2
⊥ −0.71 q−2

⊥∫
dx1dx2F

v
u,δd̄

(x1, x2, q⊥) −0.48 q−1
⊥ −0.69 q−3

⊥

Table 3. Behavior of the function
∫
dx1dx2Fa1,ā (x1, x2, q⊥), for q⊥ →∞, in the chiral limit.
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Figure 4. Dressed vertex associated to the bilocal currents.

eq. (2.17), we must use the replacement

Γ̄a1 δ

(
P+x1 −

1

2
(p1 + p2)+

)
(2.43)

−→ Γ̄a1 δ

(
P+x1 −

1

2
(p1 + p2)+

)
+

2ig

1−2gΠS (q2)
(−)

∫
d4q1

(2π)4 δ
(
x1P

+ − q+
1

)
Tr
[
iSF (q1) iSF (q1 − q) Γ̄a1

]
+

3∑
j=1

iγ5τ
j 2ig

1−2gΠPS (q2)
(−)

∫
d4q1

(2π)4 δ
(
x1P

+− q+
1

)
Tr
[
iSF (q1) iγ5τ

j iSF (q1 − q) Γ̄a1
]
,

where q = p1 − p2. Here, ΠS and ΠPS are the scalar and pseudo-scalar polarizations,

respectively, defined in appendix A.1.

Performing the explicit calculation of the dressing term, we found that it vanishes.

Effectively, due to the fact that q+ = 0, the integrals over q1 present in eq. (2.43) are

∫
d4q1

(2π)4 δ
(
x1P

+ − q+
1

)
Tr
[
iSF (q1) (1, iγ5) iSF (q1 − q) Γ̄a1

]
∝∫

dq−1
2π

f (q1, q)

(2x1P+)2
(
q−1 −

~q21⊥+m2

2x1P+ + i ε
2x1P+

)(
q−1 − q− −

(~q1⊥−~q⊥)2+m2

2x1P+ + i ε
2x1P+

) = 0 ,

(2.44)

being f (q1, q) some function of q−, q⊥, q−1 and ~q1⊥. The last integral vanishes due to the

fact that the poles of both propagators are in the same half complex plane. Therefore, the
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Figure 5. Other possible diagrams in the NJL model. All of them do not contribute to the dPDFs,

as explained in the text.

dressing of the bilocal vertex does not give any additional contribution to all the different

pion dPDFs.

Two other types of possible contributions to the dPDFs, depicted in figure 5, have to

be considered. Despite the fact that, apparently, these two contributions are higher order

contributions, chiral symmetry, present in the NJL model, ensures that they are of the

same order than the one depicted in figure 1.

The type of contribution shown in figure 5a represents the possibility that the two

involved partons are originated by the same vacuum fluctuation, which, in order to make a

connected diagram, has to be connected to the pion line. To analyze this kind of diagrams,

we focus our attention on the upper triangle. In the particular case of the diagram of

figure 5a we have, for this part,∫
d4q1

(2π)4 δ
(
x2P

+ + q+
1

)
δ
(
x1P

+ − q+
1

)
Tr
[
iSF (q1) Γ̄a1iSF (q1 + q) Γ̄ā2iSF (q1)

]
∝∫

dq−1
2π

g (q1, q)

(2x1P+)3
(
q−1 −

~q21⊥+m2

2x1P+ + i ε
2x1P+

)2 (
q−1 + q− − (~q1⊥+~q⊥)2+m2

2x1P+ + i ε
2x1P+

) = 0 ,

(2.45)

being g (q1, q) some function of q−, q⊥, q−1 and ~q1⊥. As in the case of eq. (2.44), the last

integral vanishes because all the poles of the propagators are in the same half complex

plane. Therefore, diagrams of type of figure 5a give no contribution to the dPDFs. With

respect to this, it is more interesting to see what happens with contributions of the type

shown in figure 5b. Despite of their aspect, this kind of contributions are not related to

the approximation to dPDF in terms of GPDs proposed in refs. [7] and [8]. First of all,

the intermediate state represented by the small bubbles has the quantum numbers of a

pion. This part of the diagram gives a contribution which, close to the pion mass, can be

approximated by the point-like pion propagator,

2ig0

1− 2g0ΠPS

(
(P − q)2

) ' −i g2
πqq

(P − q)2 −m2
π

. (2.46)

According to eq. (2.17), all possible diagrams have an overall q−-integral. In the case of the

present diagram, this integral only involves the pion propagator and two quark propagators,
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one from each of the triangles. Extracting these terms we obtain (here h (k, k′, ~q⊥, q
−) is

some function of q−, q⊥, k−, ~k⊥, k
′−, and ~k′⊥)

∫
dq−

2π

h
(
k, k′, ~q⊥, q

−)[
(P − q)2 −m2

π + iε
] [(

k + P
2
− q
)2 −m2 + iε

] [(
k′ − P

2
+ q
)2 −m2

π + iε
]

=
−1

(2P+)3 x1 x2
(2.47)

i θ (−x1) θ (−x2) h
(
k, k′, ~q⊥, −~q2⊥/2P+

)[
− ~q2⊥

2P+ − k− − P−
2

+
(~k⊥−~q⊥)

2
+m2

2P+ x1
− iε (1−x1)

2P+ x1

] [
− ~q2⊥

2P+ + k′− − P−
2

+
(~k′⊥+~q⊥)

2
+m2

2P+ x2
− iε(1−x2)

2P+ x2

]

−
i θ (−x1) θ (x2) h

(
k, k′, ~q⊥, k

− + P−

2
− (~k⊥−~q⊥)

2
+m2

2P+ x1

)
[
k−+ P−

2
− (~k⊥−~q⊥)

2
+m2

2P+ x1

~q2⊥
2P+ + iε (1−x1)

2P+ x1

][
k−+ k′−− (~k⊥−~q⊥)

2
+m2

2P+ x1
+

(~k′⊥+~q⊥)
2
+m2

2P+ x2
+ iε(x2−x1)

2P+ x1 x2

]

−
i θ (x1) θ (−x2) h

(
k, k′, ~q⊥, k

− + P−

2
− (~k⊥−~q⊥)

2
+m2

2P+ x1

)
[
k−+k′−− (~k⊥−~q⊥)

2
+m2

2P+ x1
+

(~k′⊥+~q⊥)
2
+m2

2P+ x2
+ iε(x2−x1)

2P+x1x2

][
k′−− P−

2
+
(~k′⊥+~q⊥)

2
+m2

2P+ x2
− ~q2⊥

2P+ − iε(1−x2)
2P+x2

]
 .

The first line of this expression corresponds to the pion pole contribution and, therefore,

it is the one that could be described by a “two GPD” contribution. Actually, the fact that

both x1,2 are negative prevents us from this simple interpretation. In fact, what happens

is that one of the remaining integrals, the one over k− or that over k′−, vanishes, because

all poles are in the same half complex plane. In the other two contributions present in

eq. (2.47), at least one of the x1,2 is negative. In both cases one of the remaining integrals

over k− or k′− vanishes by the same reasons than in the first case.

We want to emphasize that the vanishing of all diagrams of the type of figure 5 as well

as the diagram related to the dressing of the non local vertex, depicted in figure 4 take

place for all the different dPDFs. From a physical point of view, the position of the pole in

the lower or the upper half complex plane corresponds to the two temporal contributions

or, in other words, the position of the pole tells us if we are dealing with a particle or an

antiparticle. The vanishing of all these integrals is related to the fact that we can not close

a loop with only particles or only antiparticles. In all these diagrams, the fact that q+ = 0,

which prevents the presence of a particle and an antiparticle in the same non local vertex,

guarantees that they do not give any additional contribution.

3 Test of factorization: an approximation to dPDFs in terms of GPDs

Since dPDFs are experimentally basically unknown, their size and properties are often

inferred in terms of one-body quantities. In refs. [7] and [8] it has been shown that, in a

mean field approach, neglecting correlations between the involved partons, the dPDF Fqq̄
in momentum space factorizes in the product of two GPDs at zero skewness. The validity

of this factorization has been analyzed in a number of model calculations where it has

been found to fail in general, in particular in the valence region at the momentum scale
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Figure 6. Comparison between eq. (3.2) (full) and its approximation eq. (3.3) (dashed). Left

panel: results at the hadronic scale, µo = 0.29 GeV, for q⊥ = 0, 0.2, 0.5 GeV. Right panel: the same

as in the previous panel, but after LO QCD evolution to the momentum scale Q2= 4 GeV2 and

multiplied, for an easy presentation, by the longitudinal momentum variable x. The quality of the

approximation decreases as q⊥ increases as emphasized by the shaded areas, showing the difference

between the exact calculation and the approximation.

associated to the model [13–19, 25]. Let us now check whether or not the factorization in

two GPDs, in the vector sector where it makes sense for a pion,

F
(2GPD)

ud̄
(x1, x2, ~q⊥) = Hu

π+ (x1, 0, t) H
d
π+ (−x2, 0, t) , (3.1)

with t = −~q 2
⊥, is a good approximation to the full result of the present NJL approach,

given by eq. (2.22).

To illustrate this property practically, we evaluate integrals over the longitudinal vari-

able x2 for both quantities, the dPDF eq. (2.22)

F̄
(0)

ud̄
(x1, ~q⊥) =

∫
dx2 F

(0)

ud̄
(x1, x2, ~q⊥) (3.2)

and the expression eq. (3.1):

F̄
(2GPD)

ud̄
(x1, ~q⊥) =

∫
dx2 F

(2GPD)

ud̄
(x1, x2, ~q⊥) = Hu

π+ (x1, 0, t)Fπ+(t) , (3.3)

where, in the last line, use has been made of well known sum rules for GPDs, with Fπ+(t)

the pion electromagnetic form factor. The comparison between eqs. (3.2) and (3.3) is shown

in the left panel of figure 6, using results of ref. [28] for the NJL GPD, for three low values

of q⊥, i.e., 0, 0.2 and 0.5 GeV. It is clear that the approximation in terms of two GPDs

holds exactly at q⊥ = 0, while it does not work at higher values of q⊥, in the present NJL

framework, in the valence sector. A similar conclusion was indeed obtained for the nucleon
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in refs. [13–19], using low energy models, and recently, for the pion, using a light-front

approach, in ref. [25].

As already stated in the first section, the parton distribution obtained within a model

should be associated to a low momentum scale, the so-called hadronic scale µ2
0. For the

pion in the NJL model such a value can be fixed in µ0 = 0.29 GeV (see, e.g. ref. [32]).

Since the approximation eq. (3.1) has been proposed for possible experimental observables

measured at colliders, such as the LHC, at high momentum scales and typically at low

values of the longitudinal momentum fractions x1 and x2, it is important to check whether

the approximation works better at high Q2 values. We have therefore performed the

leading order QCD evolution of our results, from the scale µ2
0 to Q2 = 4 GeV2, following

the evolution procedure described in ref. [25]. The result is shown in the right panel of

figure 6. It is clear that the difference between eqs. (3.2) and (3.3) persists in the present

NJL scenario, at least in the valence sector, even at high momentum scales, as found in

ref. [25] with a different dynamical input. Our model calculation shows that relevant novel

information on two-body parton correlations, that are not included in one body quantities

nor described in a mean field approach, would be accessible through experimental or lattice

measurements of dPDFs.

4 Conclusions

A consistent field-theoretical approach, based on the Nambu–Jona-Lasinio model, with

two different regulariztion schemes, the standard Pauli-Villars method and a properly in-

troduced Light-Front one, is used for a systematic analysis of double parton distribution

functions in the pion. Results are presented for several double parton distributions corre-

sponding to different Dirac operators in their definitions. In particular, in the vector sector,

it is found that these functions encode novel non-perturbative information, not present in

one-body quantities, such as PDFs and GPDs, as it happens in model calculations of pro-

ton dPDFs as well as in the only phenomenological evaluation of pion dPDFs available at

present. In particular, we have shown that the approximation of the momentum space

spin-independent dPDF in terms of two GPDs at zero skewness does not hold in our ap-

proach. This fact is true also after QCD evolution of the model results, the latter being

associated to a low hadronic scale, to experimental high momentum scales.

Lattice data have been already obtained for two current correlations in the pion, quan-

tities related to dPDFs. The analysis of two curent correlations in the pion in the NJL

would correspond to a completely different calculation, presently in progress [42], with

respect to the one presented here. The evaluation of pion dPDFs on the lattice has been

planned [43]. It will be interesting to compare our results for the physical dPDFs with the

forth-coming lattice data.
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A The NJL model and regularization scheme

A.1 Basic physical quantities in the NJL model

The Lagrangian density in the two-flavor version of the NJL model is [26]

L = ψ̄ (i 6 ∂ −m0)ψ + g
[(
ψ̄ ψ
)2

+
(
ψ̄ ~τ iγ5 ψ

)2]
, (A.1)

where m0 is the current quark mass. The NJL is a chiral theory that reproduces the

spontaneous symmetry breaking process in which the quark mass moves from the current

value to its constituent value,

m = m0 − 4g 〈ūu〉 , (A.2)

where 〈ūu〉 is the quark condensate.

The main physical quantities associated to pion physics are defined in terms of two

integrals:

I1 (m) = i

∫
d4k

(2π)4

1

k2 −m2 + iε
(A.3)

I2

(
m, q2

)
= i

∫
d4k

(2π)4

1[(
k + q

2

)2 −m2 + iε
] [(

k − q
2

)2 −m2 + iε
] (A.4)

Effectively, in the large Nc approximation, the quark condensate is defined by

〈ūu〉 = −4NcmI1 . (A.5)

Pion and sigma masses are defined by the relations

2gΠPS

(
m2
π

)
= 1 , 2gΠS

(
m2
σ

)
= 1 , (A.6)

with the scalar polarization

ΠS

(
q2
)

= −i
∫

d4k

(2π)4 Tr [iSF (p) iSF (p− q)]

= 8Nc

[
I1 +

1

2

(
4m2 − q2

)
I2 (q)

]
, (A.7)
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and the pseudoscalar polarization

ΠPS

(
q2
)

= −i
∫

d4k

(2π)4 Tr
[
iγ5τ

i iSF (p) iγ5τ
i iSF (p− q)

]
= 8Nc

[
I1 −

1

2
q2I2 (q)

]
. (A.8)

The pion-quark and sigma-quark coupling constant are respectively defined by

g2
πqq =

(
∂ΠPS

(
q2
)

∂q2

)−1

q2=m2
π

=
−1

4Nc

[
I2 (m2

π) +m2
π (∂I2/∂q2)q2=m2

π

] ,
g2
σqq =

(
∂ΠS

(
q2
)

∂q2

)−1

q2=m2
σ

=
−1

4Nc

[
I2 (m2

σ)− (4m2 −m2
σ) (∂I2/∂q2)q2=m2

σ

] . (A.9)

The pion decay constant are

fπ = −4NcgπqqmI2

(
m2
π

)
, (A.10)

The NJL model is a non-renormalizable field theory and a regularization procedure

has to be defined for the calculation of I1 (m) and I2

(
m, q2

)
. We will introduce now the

Pauli-Villars regularization method for the NJL model and, in section A.3, we built a

regularization method adapted for calculations in the Light Front formalism.

A.2 Pauli Villars regularization scheme

In section 2, we have used the Pauli-Villars regularization in order to render the occurring

integrals finite. The way to proceed in this method is: (1) remove from the numerator all

the powers of the integrated momentum, which will be replaced by external momenta, and

the mass of the constituent quark, m; (2) for each resulting integral, which is of the form

Ĩn (µ (m)) =

∫
d4k

(2π)4

1[
k2 − µ (m)2 + iε

]n , (A.11)

make the substitution

Ĩrn (µ (m)) =

2∑
j=0

cj Ĩn (µ (Mj)) , (A.12)

with M2
j = m2 + j Λ2, c0 = c2 = 1 and c1 = −2.

Following this procedure, we obtain for the momentum integral of one propagator

I1 =
1

16π2

2∑
j=0

cjM
2
j ln

M2
j

m2
, (A.13)

and for the one of two propagators

I2

(
m, q2

)
=

1

16π2

2∑
j=0

cj

ln
M2
j

m2
+ 2

√
4M2

j

q2
− 1 arctan

1√
4M2

j

q2
− 1

 . (A.14)
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With the conventional values 〈ūu〉=−(0.250 GeV)3, fπ = 0.0924 GeV and mπ = 0.140 GeV,

we get m = 0.238 GeV, Λ=0.860 GeV and m0 = 5.4 MeV. For the pion-quark coupling

constant we get g2
πqq = 6.279. We can obtain the chiral limit taking m0 = 0, without

changing Λ and m. In that case 〈ūu〉 and fπ do not change but one has mπ = 0 and

g2
πqq = 6.625.

A.3 A regularization of the NJL model in the Light Front

The Pauli-Villars (PV) regularization scheme, which respects the gauge symmetry of the

problem, has been often adopted. Nevertheless, this procedure is based on an equal time

quantization of the field theory, while the dPDF are defined in the light front formal-

ism. In many cases this point has no consequences, but sometimes it does, as we will see

later. Other usual regularization schemes, like the covariant four-momentum cutoff, the

three momentum cutoff or the proper time regularization, are also defined in the equal

time quantization of the field theory and they are manifestly not useful in a light front

calculation.

Our aim, in this section, is to define a regularization procedure for the NJL model

which respects the light front formalism. The ideal scheme will be: (1) to integrate k−

using the poles of the propagators and, as a result of this integration, the range of variation

of k+ will be bounded; (2) introducing a cut-off,
∣∣~k⊥∣∣ < Λ⊥, to perform the integration over

~k⊥ and the integration over the bounded range of variation of k+.

To have a clear notation, we call m̃0 and m̃ the current and constituent quark masses

evaluated in this aproach. The gap equation,

m̃ = m̃0 − 4g 〈ūu〉 , (A.15)

will be always valid.

The defined procedure works for I2

(
m̃, q2

)
. Effectively, after integration over k− and

introducing the change of variable k+ =
(
x− 1

2

)
|q+|, we have from eq. (A.4) (for simplicity

we can choose qµ =
(
q+,~0⊥, q

−
)

and q2 = 2 q+q−),

I2

(
m̃, q2

)
= − 1

16π2

∫ 1

0
dx

∫ Λ2
⊥

0
dk2
⊥

1

k2
⊥ + m̃2 − q2x (1− x))

, (A.16)

and, performing these two integrations we arrive to

I2

(
m̃, q2

)
=

1

16π2

[
ln

m̃2

Λ2
⊥ + m̃2

+ φ

(
q2

m̃2

)
− φ

(
q2

Λ2
⊥ + m̃2

)]
, (A.17)

with

φ (z) =



√
1− 4/z ln

√
1−4/z+1√
1−4/z−1

, z < 0

2
√

4
z − 1 arctan 1√

4
z
−1
, 0 < z < 4

√
1− 4/z

(
ln

1+
√

1−4/z

1−
√

1−4/z
− iπ

)
, 4 < z .

(A.18)
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The procedure that has allowed us to evaluate I2

(
m̃, q2

)
is not sufficient to determine

I1 (m̃) . In fact, this is a well known problem: I1 (m̃) corresponds to a tadpole diagram

associated to the vacuum condensate, which is evaluable in a regularization scheme in an

equal time formulation of the quantum field theory (like PV regulaization), but needs for

additional assumptions in order to be evaluated in a light front formulation [44, 45].

Nevertheless, some information on I1 (m) can be obtained from I2

(
m, q2

)
, using the

fact that
d

dm̃2
I1 (m̃) = lim

qµ→0
I2

(
m̃, q2

)
. (A.19)

From our result eq. (A.17) we have

I1 (m̃) =
1

16π2

[
C (Λ⊥)−

(
Λ2
⊥ + m̃2

)
ln

Λ2
⊥ + m̃2

Λ2
⊥

+ m̃2 ln
m̃2

Λ2
⊥

]
, (A.20)

where C (Λ⊥) is an arbitrary function of Λ⊥. Therefore, eq. (A.19) fixes the dependence of

I1 (m̃) on m̃, but we need some additional input to fix its dependence on Λ⊥.

We can perform explicitly the k− integral present in I1 (m̃) obtaining

I1 (m̃) =

∫
d2k⊥
16π3

∫ ∞
0

dk+

k+
. (A.21)

Now, for the k+ integral we introduce an infrared and an ultraviolet cut-off imposing [46]

k2
⊥ + m̃2

Λ+
< k+ < Λ+ , (A.22)

and we arrive to

I1 (m̃) =

∫ Λ2
⊥

0

dk2
⊥

16π2
ln

2Λ+2

k2
⊥ + m̃2

=
1

16π2

[
Λ2
⊥

(
1 + ln

2 Λ+2

Λ2
⊥

)
−
(
Λ2
⊥ + m̃2

)
ln

Λ2
⊥ + m̃2

Λ2
⊥

+ m̃2 ln
m̃2

Λ2
⊥

]
. (A.23)

This result is consistent with eq. (A.20) and, in agreement with the discussion in

refs. [44, 45], we need an additional information because we have two different cutoffs.

On the mass shell we have that k+ = 1√
2

(
E + k3

)
and, assuming that k3 < Λ⊥, a natural

way to relate both cutoffs is to use Λ+ =
√

2Λ⊥. In this way, we finally obtain

I1 (m̃) =
1

16π2

[
Λ2
⊥ (1 + ln 4)−

(
Λ2
⊥ + m̃2

)
ln

Λ2
⊥ + m̃2

Λ2
⊥

+ m̃2 ln
m̃2

Λ2
⊥

]
. (A.24)

As explained in ref. [46], the choice made in eq. (A.22) for the cutoffs, relating the

ultraviolet and the infrared ones, is natural on the basis of the respect of the dispersion

relation 2k+k− − k2
⊥ = m̃2 and on the restoration of the symmetry between k+ and k−.

Parity transformation implies the exchange of k+ and k−, therefore the minimum value of

k+ must be related to the maximum value of k− through the dispersion relation and the

assumption of the same maximum value for k+ and k−.
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In this scheme, with the conventional values 〈ūu〉 = −(0.250 GeV)3, fπ = 0.0924 GeV

and mπ = 0.140 GeV, we get m̃ = 0.246 GeV, Λ⊥=0.572 GeV and m̃0 = 5.3 MeV. For the

pion-quark coupling constant we get g̃2
πqq = 6.735. We can obtain the chiral limit taking

m̃0 = 0, without changing Λ⊥ and m̃. In that case 〈ūu〉 and fπ do not change but one has

mπ = 0 and g̃2
πqq = 7.085.

A.4 Some intermediate results

The traces involved in eq. (2.19) are:

tru,d̄

(
~k⊥, ~q⊥

)
= −2P+2

[
~k 2
⊥ − 1

4~q
2
⊥ +m2

]
tr∆u,∆d̄

(
~k⊥, ~q⊥

)
= −2P+2

[
~k 2
⊥ − 1

4~q
2
⊥ −m2

]
trδuj ,δd̄k

(
~k⊥, ~q⊥

)
= 2P+2

[
−2 kj⊥ k

k
⊥ + 1

2 q
j
⊥ q

k
⊥ + δj,k

(
~k 2
⊥ − 1

4~q
2
⊥ +m2

)]
trS,S

(
~k⊥, ~q⊥

)
= 1

2m
2
π

(
4m2 + ~q 2

⊥
)

trP,P

(
~k⊥, ~q⊥

)
= 1

2m
2
π ~q

2
⊥

(A.25)

tru,∆d̄

(
~k⊥, ~q⊥

)
= tr∆u,d̄

(
~t⊥, ~q⊥, y

)
= −2 i P+2 εj,k kj⊥ q

k
⊥

tru,δd̄j
(
~k⊥, ~q⊥

)
= −trδuj ,d̄

(
~t⊥, ~q⊥

)
= 2 i P+2mεj,k qk⊥

tr∆u,δd̄j

(
~k⊥, ~q⊥

)
= −trδuj ,∆d̄

(
~t⊥, ~q⊥

)
= 4mP+2 kj⊥

(A.26)

with εj,k = ε0,j,k,3.

Using the relation

∫
d2k⊥

(2π)
2

kj⊥ k
k
⊥[(

~k⊥ + q⊥
2

)2

+m2 − x1 (1− x1)m2
π − iε

] [(
~k⊥ − q⊥

2

)2

+m2 − x1 (1− x1)m2
π − iε

] =

∫
d2k⊥

(2π)
2

[
δjk
(
k2
⊥ − 1

q2⊥

(
~k⊥ · ~q⊥

)2
)

+ q̂j⊥ q̂
k
⊥

(
2
q2⊥

(
~k⊥ · ~q⊥

)2

− k2
⊥

)]
[(
~k⊥ + q⊥

2

)2

+m2 − x1 (1− x1)m2
π − iε

] [(
~k⊥ − q⊥

2

)2

+m2 − x1 (1− x1)m2
π − iε

]
(A.27)

we observe that the tensor trace can be rewritten as

trδuj ,δd̄k
(
~k⊥, ~q⊥

)
= 2P+2

[(
2 q̂j⊥ q̂

k
⊥ − δj,k

)(
k 2
⊥ +

q 2
⊥
4
− 2

q2
⊥

(
~k⊥ · ~q⊥

)2
)

+ δj,km2

]
,

(A.28)

showing in an explicit form the tensor structure defined in eq. (2.9) for Fδqj ,δq̄k
(
x1, x2, ~q

2
⊥
)
.

All these traces are of the generic form

tra1ā2

(
~k⊥, ~q⊥

)
= 2P+2

[
Ak2
⊥ + ~B · ~k⊥ +D +G

(
~q⊥ · ~k⊥

)2
]
, (A.29)

where A, ~B, D and G are functions of ~q⊥ and m but ~k⊥-independent. The linear terms in
~k⊥ in eq. (A.29) will vanish after the ~k⊥ integration present in eq. (2.18). Therefore, the
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final result can be written as (we follow here the notation used in eqs. (2.22)–(2.28)),

Fa1,ā2 (x1, x2, ~q⊥) = −C (x1, x2)

[
AIrA +

D

q2
⊥
IrD +Gq2

⊥ I
r
G

]
. (A.30)

In order to obtain eqs. (2.22)–(2.28) in the Pauli-Villars regularization scheme from

eq. (2.18) we join the two propagators using Feynman parametrization, we make the change

of variable ~k⊥ = ~t⊥ − ~q⊥ (y − 1/2) and we remove the t2⊥ present in the numerator before

integration. For instance, in the case of IrA we have, before the regularization,

IA = 4π

∫
d2k⊥

(2π)2

k2
⊥[(

~k⊥+ q⊥
2

)2
+m2 − x1 (1− x1)m2

π − iε
][(

~k⊥− q⊥
2

)2
+m2 − x1 (1− x1)m2

π − iε
]

= 4π

[∫ 1

0
dy

∫
d2t⊥

(2π)2

1[
t2⊥ + q2

⊥y (1− y) + κ− iε
]

− 2q2
⊥

∫ 1

0
dy

∫
d2t⊥

(2π)2

y (1− y)[
t2⊥ + q2

⊥y (1− y) + κ− iε
]2

−
(
κ− 1

4
q2
⊥

) ∫ 1

0
dy

∫
d2t⊥

(2π)2

1[
t2⊥ + q2

⊥y (1− y) + κ− iε
]2
]
. (A.31)

Now we perform each integral using standard methods and we regularize it, obtaining

I
r(PV )
A =

2∑
i=0

ci

(
− ln

κi
κ
−
(

2
κ

q2
⊥

+
1

2

)
f

(
κi
q2
⊥

))
. (A.32)

Following the same procedure we have

I
r(PV )
D =

2∑
i=0

ci f

(
κi
q2
⊥

)
, (A.33)

I
r(PV )
G =

2∑
i=0

ci

(
−1

2
ln
κi
κ
− m2 −M2

i

q2
⊥

f

(
κi
q2
⊥

))
.

Eqs. (2.32)–(2.38) have been obtained in the LF regularization scheme. In this case

we have, for the IrA contribution,

I
r(LF )
A = 4π

∫ Λ⊥

0

dk⊥

(2π)2 k⊥

∫ 2π

0
dθ

k2
⊥(

k2
⊥ +

q2⊥
4 + κ̃

)2
− k2
⊥ q

2
⊥ cos2 θ

. (A.34)

Here, both integrals, on θ and on k⊥, can be performed obtaining

I
r(LF )
A = g2 (q⊥) , (A.35)

and, in a similar way,

I
r(LF )
D = g0 (q⊥) , (A.36)

I
r(LF )
G = g̃2 (q⊥) ,

are obtained.
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