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A great variety of models can describe the nonlinear
response of rubber to uniaxial tension. Yet an in-
depth understanding of the successive stages of
large extension is still lacking. We show that the
response can be broken down in three steps, which
we delineate by relying on a simple formatting of
the data, the so-called Mooney plot transform. First,
the small-to-moderate regime, where the polymeric
chains unfold easily and the Mooney plot is almost
linear. Second, the strain-hardening regime, where
blobs of bundled chains unfold to stiffen the response
in correspondence to the ‘upturn’ of the Mooney
plot. Third, the limiting-chain regime, with a sharp
stiffening occurring as the chains extend towards their
limit. We provide strain-energy functions with terms
accounting for each stage that (i) give an accurate
local and then global fitting of the data; (ii) are
consistent with weak nonlinear elasticity theory and
(iii) can be interpreted in the framework of statistical
mechanics. We apply our method to Treloar’s classical
experimental data and also to some more recent data.
Our method not only provides models that describe
the experimental data with a very low quantitative
relative error, but also shows that the theory of
nonlinear elasticity is much more robust that seemed
at first sight.
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1. Introduction
The mechanics of rubber-like solids has a long and prolific history. Following World War II, a huge
research effort was launched to find an explicit strain-energy function able to describe accurately
the experimental data obtained from the testing of natural and synthetic rubbers. However, in
spite of decades of intensive work in that area, to this day there is still no effective model able to
perform this task in a satisfying and universal way.

This state of affairs is a plain fact, which cannot to be hidden by the countless and seemingly
successful models and simulations to be found in the literature. These simulations may be
concretely descriptive but in the end, they apply only to some special phenomena. From the
point of view of physical sciences, constitutive models must be universal, not in the sense that
a single model should describe the mechanical behaviour of all elastomers, but in the sense
that, for a given soft material (e.g. a given sample of natural rubber), a given model should
describe its mechanical response in a satisfactory manner for all deformation fields and all stretch
ranges physically attainable. Here, a satisfactory model is defined as a model able to describe
the experimental data first of all from a qualitative point of view and then from a quantitative
point with acceptable relative errors of prediction with respect to the data. In the end, it must
be kept in mind that a simulation in computational solid mechanics, irrespective of its degree of
sophistication, is as good, or as bad, as the model it relies upon.

Over the years various mathematical models have been proposed and are now listed in the
literature reviews, e.g. Boyce & Arruda [1], Marckmann & Verron [2], Beda [3]. By scanning all
these constitutive models, we can identify three fundamental breakthroughs. First, the Mooney–
Rivlin strain-energy density [4]: a purely phenomenological theory stemming from the early
tremendous effort devoted to rewrite the theory of Continuum Mechanics using the language
of Tensor Algebra. The Mooney–Rivlin model led to the exploration of the nonlinear theory of
elasticity in deep and unexpected ways, yielded significative classes of non-homogeneous exact
solutions and provided a new perspective to the interpretation of experimental data. The second
breakthrough has been the Ogden strain-energy density function [5]: a rational re-elaboration of
the Valanis–Landel hypothesis. For the first time, it became possible to fit accurately theoretical
stress–strain curves to experimental data for a variety of deformations and a large range of strains.
The third breakthrough is more complex to describe: it consists in the recent re-elaboration of
the ideas underpinning the classical derivation of the neo-Hookean strain energy based on the
basic tools of statistical mechanics. Here there are two possible approaches. One is based on micro-
mechanical considerations, see e.g. [6] for a recent exploration in this direction and the review
by Puglisi & Saccomandi [7]. The other is based on molecular considerations, see the paper
by Rubinstein & Panyukov [8] on the elasticity of polymer networks for a survey. Below we
summarize the micro-mechanical multi-scale approach.

The basic assumption used to derive, from microscopic considerations, the usual models of
the mechanical behaviour of biological and polymeric networks is the entropic nature of their
elasticity [9]. Because the mechanical response of these materials is due to the deformation of
the individual chains or filaments composing the network, there is a strict relationship between
the conformations of these macromolecules and the mechanical response of the full macroscopic
network. This situation allows for a simple and direct method to determine the macroscopic strain
energy starting from simple mesoscopic considerations. Hence the nonlinear force–deformation
relationship of an ideal chain is easily obtained by considering that the chain’s free energy is
purely entropic; then the passage from the single chain model to the full network model is
achieved by means of some phenomenological average procedures [9].

Indeed, when we model real macromolecules we rely on several idealized assumptions. For
example, when we assume that there are no interactions between the monomers composing the
molecule, we are considering in fact the mathematical model of an ideal chain. It is possible in
principle to compute in a careful and detailed way the conformations of such chains in space [10],
but these computations are cumbersome and usually very complex from a mathematical point
of view. For this reason, further ad hoc approximations for describing the end-to-end-distance of
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a chain are introduced [11]. The most common of these approximations is given by the Gaussian
Chain Model [9]. The output of this approximation is a linear relationship between the applied
force magnitude, f , and the average distance between the chain ends, 〈R〉, along the direction of
the applied force. This approximation is clearly valid in the small force limit, but the nonlinear
regime calls for more sophisticated approximations. Among the various possibilities, two such
nonlinear models are very popular: the Freely Jointed Chain model (FJC) for polymers and the
Worm-Like Chain model (WLC) for stiff biological molecules [11]. Both the FJC and the WLC
models introduce the concept of contour length. The contour length of a polymer chain is its
length Rmax at the maximum physically possible extension. Because only one configuration can
be associated to the maximum extension of the chain in the entropic theory of elasticity, we must
have f → ∞ as 〈R〉 → Rmax. This requirement cannot be captured by the Gaussian chain model.
The main difference between the FJC and the WLC models lies in the divergence behaviour of
the force as 〈R〉 → Rmax. For the FJC model, we have a first-order singularity: f ∼ (〈R〉 − Rmax)−1,
whereas for the WLC model, we have a stronger divergence: f ∼ (〈R〉 − Rmax)−2.

In between the Gaussian Chain model (early stretch regime) and the FJC or WLC models
(late stretch regime), we find a stage of strain hardening in tension. For instance Toan &
Thirumalai [12] recently summarized this situation for polymers in a good solvent, where the
polymeric chains decompose into a succession of independent blobs, so named by Pincus [13]
who proposed a scaling law f ∼ 〈R〉3/2. We emphasize that in general the behaviour of the
polymeric chain is different from the specific one considered by Pincus but that still, a strong
strain-hardening effect manifests itself when we go from the small deformation regime to the
moderate deformation regime.

Now consider the most basic, but still open, problem of rubber-like mechanics: a meaningful
fitting of experimental simple tension data. The demand for a model able to describe the entire
range of attainable uniaxial tension data is manifest in technological applications of rubber-like
materials. There, finite-element computations play a fundamental role and almost all commercial
codes rely on the tangent modulus method. To be effective, this method needs a model able
to capture the entire data gleaned from a uniaxial tension test. We propose to rely on the ideas
exposed above for a multiscale approach, by following a rational (and reasonable) procedure in
the framework of the nonlinear theory of elasticity.

In the next section, we recall the tenets of nonlinear elasticity theory, with a focus on
modelling the mechanical response of an isotropic incompressible hyperelastic material such
as rubber. We see that the strain-energy density W is a function of two variables only, the first
two principal invariants of strain and that a reasonable mathematical candidate for W must at
least be consistent with fourth-order weak nonlinear elasticity. For uniaxial data, an historical
formatting—the Mooney transform—reveals three distinct regimes of stretch: small-to-moderate,
strain-hardening, limiting-chain, which we delineate rigorously. We also show that the fitting
procedure should rely on minimizing the relative errors as opposed to the classical (absolute)
residuals, because it provides the most consistent fitting across all regimes and all measures
of stress and strain. In §3, we present two sets of data on the uniaxial extension of rubber:
the canonical 1944 data of Treloar (see [9]) and a more recent set by Dobrynin & Carrillo [14].
Then we proceed to model each regime of stretch in turn. For the small-to-moderate regime,
we show that W must be a function of the two invariants, which rules out the whole class of
generalized neo-Hookean materials, for which W = W(I1) only, including the Yeoh model. We
study three representative models (Mooney–Rivlin, Gent–Thomas, Carroll) giving excellent fits
in that regime. The conclusion here is that the specific choice of a model is not that important
for the small-to-moderate regime, as long as it is not a generalized neo-Hookean material. For
the next regime, which corresponds to an upturn in the Mooney plot, we add a strain-hardening
term to those models and again the fit is excellent, now across the resulting wider range of data.
For the range of extreme stretches, we show how to determine the order of singularity, i.e. how to
find out whether the rubber stiffens according to the WLC or the FJC model. Finally, we provide
models that fit the data over the entire range of experimental data, with errors below 4%. The
conclusion is that the term used to capture the asymptotic limiting-chain behaviour also captures

 on February 8, 2017http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


4

rspa.royalsocietypublishing.org
Proc.R.Soc.A473:20160811

...................................................

2 4 6 80

10

20

30

40

50

60

70

 

 

s
(N

 m
m

–2
)

Treloar

2 4 6 80

10

20

30

40

50

60

70

 

 

 

Treloar

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

 

 

Treloar

l l l

Figure 1. Methodical fitting of the nonlinear response of rubber to uniaxial tension (Treloar data). With the Gent–Gent strain-
energy function, we capture in turn the small-to-moderate strain regime (§3b), the strain-hardening regime (§3c) and the
limiting-chain regime (§3e). (Online version in colour.)

the earlier strain-hardening regime and that the number of fitting parameters can be kept to
three only (figure 1). In §4, we confirm the robustness of our methodical modelling based on
simple tension by looking at its predictions for two other types of deformation: simple shear and
inhomogeneous rectilinear shear. In this paper, we focus on fitting models using uniaxial data
only, because it is the most basic problem faced in the applications of the nonlinear theory of
elasticity to rubber elasticity, and the most available experimental data. Only once this problem
has been tackled and solved can we attack the question of fitting models for rubber using other
types of data, for equi-biaxial or multiaxial tension, simple shear, pure shear, inflation, bending,
torsion, etc. Section 5 is a recapitulation of the results and a reflection on their consequences.

2. Material modelling
Here we present some basic results of the axiomatic theory of continuum mechanics for
hyperelastic materials and determine a consistent measure of the goodness of fit for simple
tension data.

(a) Choice of material parameters
We consider incompressible isotropic materials which are hyperelastic. For these it is possible
to define a strain-energy density W = W(I1, I2), where I1 = λ2

1 + λ2
2 + λ2

3 and I2 = λ−2
1 + λ−2

2 + λ−2
3

are the principal invariants of the left Cauchy–Green deformation tensor B = FFT, where F is the
gradient of deformation and the λi are the principal stretches of the deformation (the square roots
of the eigenvalues of B.) Another representation of the principal invariants is

I1 = tr(B) and I2 = tr(B−1). (2.1)

In passing we note that other sets of invariants exist, but that they are equivalent to our choice for
all intents and purposes [15,16].

This form of the strain-energy density leads to the usual representation formula for the Cauchy
stress tensor T, due to Rivlin [17]

T = −pI + 2W1B − 2W2B−1, (2.2)

where p is the Lagrange multiplier associated with the incompressibility constraint (det F = 1 at
all times) and Wi = ∂W/∂Ii, (i = 1, 2).
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Materials with strain-energy density functions such that W = W(I1) only are denoted
generalized neo-Hookean materials. A prime member of this class is the so-called neo-Hookean material

WnH(I1) = μ0

2
(I1 − 3), (2.3)

where the constant μ0 > 0 is the infinitesimal shear modulus.
Now, establishing which restrictions should be imposed on the strain-energy function to

guarantee reasonable physical behaviour is known as Truesdell’s Hauptproblem of the elasticity
theory [18]. In this connection, we recall the point of view of Ball & James [19]:

At the end of the day, perhaps it would have been realized that Hadamard notions of well-posedness
are far too restrictive in the nonlinear setting, that non-uniqueness and even non-existence comprise
acceptable behaviour, and that there are probably no fundamental restrictions on the strain-energy
function at all besides those arising from material symmetry and frame-indifference.

So that we may not expect much from mathematical requirements. We must thus resort to
mechanical arguments.

First of all, we point out that we dealt with frame-indifference and material symmetry when
we chose to write W as a function of the principal invariants (2.1) [17]. Next, we require as a
normalization condition that the strain energy be zero in the reference configuration: W(3, 3) = 0.
Also, for incompressible materials, the requirement that the stress is zero in the reference
configuration is always satisfied by a suitable choice of the value of p in that configuration.

The next fundamental requirement is linked to the notion of the generalized shear modulus
function μ, defined as

μ = μ(I1, I2) ≡ 2(W1 + W2). (2.4)

In the reference configuration, it gives the infinitesimal shear modulus μ as

μ0 = μ(3, 3). (2.5)

For isotropic incompressible linear materials this is the only significant Lamé modulus and
compatibility of the nonlinear model with the linear theory requires that μ0 > 0.

A further basic requirement that we may impose on W comes from the weakly nonlinear theory
of elasticity, where the strain energy is expanded in powers of the strain. For instance, by choosing
the Green–Lagrange tensor E = (FTF − I)/2 as a measure of strain, the most general fourth-order
expansion of incompressible elasticity [20–22] can be written in the form

W = μ0 tr(E2) + A
3

tr(E3) + D(tr(E2))2, (2.6)

where μ0 is the infinitesimal shear modulus (the only parameter of the linear theory), A is the
Landau third-order constant and D is the fourth-order elastic constant. It is now known that in
order to capture fully nonlinear effects in solids, the fourth-order theory is the minimal model to
consider. For example, in physical acoustics [23], it is necessary to carry out the expansion of W to
fourth order to ensure that nonlinear effects in shear waves emerge [21,24]; in the elastic bending
of blocks made of incompressible soft solids, the onset of nonlinearity involves third- as well as
fourth-order constants [25]; etc. In conclusion, we will impose a consistent compatibility with the
fourth-order weakly nonlinear theory, instead of compatibility with linear theory only.

(b) Fitting to uniaxial data
From now on we concentrate on the data given by the (idealized) homogeneous deformation of
uniaxial extension resulting from the application of a unidirectional tension. We call λ the stretch
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in that direction. It is a simple matter to compute the first and second invariants of the Cauchy–
Green deformation tensors, as

I1 = λ2 + 2λ−1 and I2 = λ−2 + 2λ, (2.7)

and the tensile Cauchy stress component [5] t = T11, as t = λ∂W/∂λ. In experiments, the current force
applied per unit length f1 is recorded, and by dividing it by the reference cross-sectional area of
the sample, we arrive at the engineering tensile stress σ = λ−1t. It is given by

σ (λ) = ∂W
∂λ

= 2(λ − λ−2)
(

∂W
∂I1

+ λ−1 ∂W
∂I2

)
. (2.8)

Then, by plotting the λ − σ curve for λ ≥ 1, we can perform a curve-fitting exercise for a candidate
strain-energy density W and access the values of its derivatives.

Alternatively, we could plot the t − λ curve to access the derivatives of W.
Historically, Rivlin [17] divided the relationship (2.8) across by 2(λ − λ−2) and plotted the curve

obtained by having the resulting left-hand side as the vertical axis coordinate and λ−1 as the
horizontal coordinate. This modified version of (2.8) is the so-called Mooney plot, given by the
transform

g(z) = ∂W
∂I1

+ z
∂W
∂I2

, where g(z) := σ (λ)
2(λ − λ−2)

, z := λ−1. (2.9)

In this approach, we plot the z − g curve for the range 0 < z ≤ 1 to access the values of the
derivatives of W. The practical effect of the Mooney transform is to map the range 1 ≤ λ ≤ 2 (where
the measurements are the most reliable) over 50% of the z-domain.

Now, let us consider the experimental data of stretches and engineering stresses (λi, σi) for
i = 1, . . . , m in the engineering space E , of stretches and Cauchy stresses (λi, ti) for i = 1, . . . , m
in the Cauchy space C, and the corresponding data in the Mooney space M, obtained by the
Mooney transform: (zi, gi) := (λ−1

i , σi/[2(λi − λ−2
i )]) for i = 1, . . . , m, where m is the number of

measurements in the uniaxial test.
At this juncture, we emphasize that different fitting procedures are possible and that the choice

of a given procedure may have an impact on our modelling considerations.

(c) Goodness of fit
In general, let p = [p1, . . . , pn] be the set of material parameters involved in the definition of the
strain energy W, that have to be identified by matching, as best as we can, the data with the desired
mathematical model for W. For example, for the neo-Hookean solid (2.3) we have p = [μ0] and for
the fourth-order elasticity model (2.6) we have p = [μ0, A, D]. To evaluate the best-fit parameters
p we solve a least squares (LS) problem, which can be linear or nonlinear depending on the
functional dependence of the strain-energy densities W from p.

To quantify the goodness of fit, we define on the one hand the following (absolute) residuals
in the spaces E , C and M,

σ (λi; p) − σi, t(λi; p) − ti and g(zi; p) − gi, (2.10)

(i = 1, . . . , m), respectively, and on the other hand, the following relative residuals,

rR
i (p) = σ (λi; p)

σi
− 1 = t(λi; p)

ti
− 1 = g(zi; p)

gi
− 1 (i = 1, . . . , m). (2.11)

The latter equalities, due to the equations (2.8)–(2.9), show that the relative residuals are the same
in the Engineering, Cauchy and Mooney spaces. Moreover, (2.11) shows that the relative errors are
non-dimensional quantities and can be expressed in percentage, as opposed to the absolute
residuals. Then in the classical LS setting, the strategy is to minimize either of the following
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Euclidean norms p,

m∑
i=1

[σ (λi; p) − σi]
2,

m∑
i=1

[t(λi; p) − ti]
2 and

m∑
i=1

[g(zi; p) − gi]
2. (2.12)

In this paper, we make the choice of minimizing the relative errors in the two norm, that is

‖rR(p)‖2
2 =

m∑
i=1

rR
i (p)2, (2.13)

because it best captures our attempts at optimizing the global curve fitting exercise over a large
range of stretches. It is worth noting that this approach corresponds to a classical weighted LS
procedure in the Engineering, Cauchy and Mooney spaces, where the weights are wi = 1/σ 2

i ,
wi = 1/t2

i , wi = 1/g2
i , respectively.

We shall leave aside minimization of classical absolute residuals from now on because we
found that it gives large relative errors in the small-to-moderate range of extension, which is
not desirable from experimental and modelling points of view. Moreover, the best-fit parameters
obtained by minimizing absolute residuals are not the same when we use the engineering stress
data, the Cauchy stress data, or the Mooney plot data, which is a problem as the parameters in
a strain-energy density should be independent of the choice of stress measure.

To quantify the goodness of our fits, we will record the maximal relative error err∗ = ‖rR(p∗)‖∞
over the range of interest, defined as follows:

err∗ = max
i

∣∣∣∣σ (λi; p∗)
σi

− 1
∣∣∣∣ = max

i

∣∣∣∣ t(λi; p∗)
ti

− 1
∣∣∣∣ = max

i

∣∣∣∣g(zi; p∗)
gi

− 1
∣∣∣∣ . (2.14)

3. Numerical results

(a) Experimental data
To test our models, we will consider two comprehensive sets of data recorded for the uniaxial
extension of rubber samples. The first set is due to Treloar [9], dating back to his canonical 1944
experiments. For that set we use the original tabulated data, with the engineering stress measured
in Newton per square millimetre units, see raw data consisting of 24 points below. The second set
is due to Becker & Kruger [26], as collected by Dobrynin & Carrillo [14]: we will use the data
collected in their set labelled ‘DC9’; it consists of 48 data points.

λ = [1.02, 1.12, 1.24, 1.39, 1.58, 1.90, 2.18, 2.42, 3.02, 3.57, 4.03, 4.76,

5.36, 5.75, 6.15, 6.4, 6.6, 6.85, 7.05, 7.15, 7.25, 7.40, 7.5, 7.6]

and σ = [0.26, 1.37, 2.3, 3.23, 4.16, 5.10, 6.0, 6.9, 8.8, 10.7, 12.5, 16.2, 19.9,

23.6, 27.4, 31, 34.8, 38.5, 42.1, 45.8, 49.6, 53.3, 57, 64.4].

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.1)

Plotting the data in the Mooney space M clearly delineates three regimes of extension for the
elastomers (figure 2). Starting from z = λ−1 at value 1 (no extension) and decreasing (extension),
we see at first a linear decrease of g with z for small-to-moderate deformations. Then, around a value
for z of 0.3 (stretch of 230% or so), an upturn occurs as g goes through a minimum. Finally, we
enter the large deformation regime, where the reduced tensile stress rises sharply and considerably.

Before we move on to model each regime in turn, we note that we had to exclude the first 14
points from the original DC9 data (greyed in the Mooney plot of figure 2), because they prevented
the DC9 Mooney plot from having a linear decrease in the small-to-moderate regime. For reasons
explained later, every soft solid must have such a linear decrease. The reason for the experimental
discrepancy presented by the first 14 points is not known, but is probably due to non-optimal
accuracy regime for the load-cell in the low load regime and/or the presence of a slight slack of
the sample in its starting position.
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Figure 2. (a,b) The tensile engineering (Cauchy) stress σ (t) in Newton per square millimetre against the stretch λ. (c) The
corresponding g–z Mooney plots. Three regimes are clearly identified in theM-space as we stretch the samples (decreasing
z = 1/λ). Linear decrease: small-to-moderate regime; upturn: strain-hardening regime; rapid stiffening: limiting-chain effect
regime. The first 14 points of the DC9Mooney plot are greyed out as wemust ignore their contribution (see main text). Squares:
DC9 data and circles: Treloar’s data. (Online version in colour.)

Table 1. Material parameters for the neo-Hookean and the Yeoh models, obtained by linear curve fitting of Treloar’s and
DC9 data over the small-to-moderate range (first N0 = 7 data points for the former and first N0 = 25 points for the latter).
Themaximal relative error err∗ over the first N0 points is also displayed. The corresponding curves and relative errors are shown
in figure 3.

neo-Hookean Yeoh

material μ0 err∗ c1 c2 c3 err∗

Treloar 3.7235 18.50% 2.1317 −0.3624 0.3624 3.98%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DC9 6.6087 16.47% 3.6048 −0.2339 0.0212 6.64%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) From small to moderate strains
In this section, we focus on the term in the strain energy that will model the small-to-moderate
regime of deformation for the samples. We identify this region by the linear part of the Mooney
plot occurring before the upturn (figure 2). Hence we perform the curve-fitting exercise on the
first N0 data points only, where we determine N0 by conducting a model-dependent sensitivity
analysis (to be detailed later).

First, we see that the neo-Hookean model (2.3) is incapable of reproducing the simple extension
data in any meaningful way. That is because, for WnH, the Mooney plot formula (2.9) yields

g(z) = μ0

2
, (3.2)

giving thus an horizontal line in the M-space. The top three panels of figure 3 illustrate well the
resulting unphysical character of the predicted behaviour. The corresponding relative errors are
thus predictably large.

For a polynomial dependence of W on I1, we can consider the Yeoh strain-energy density [27]

WYeoh = c1(I1 − 3) + c2(I1 − 3)2 + c3(I1 − 3)3, (3.3)

where the ci are constitutive parameters (by (2.5), the infinitesimal shear modulus of this material
is μ = 2c1). This model gives of course a better fit in the small-to-moderate region than the neo-
Hookean potential, figure 1, lower panels, and table 1.
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Figure 3. Least-square fitting of the neo-Hookean model (a) and the Yeoh model (b) in the small-to-moderate regime. For
Treloar’s data, the best-fit curve is the red full curve and for the DC9 data, the best-fit curve is the blue dashed curve. (a(i),b(i))
Fitting results in the engineering space on the first N0 data points; (a(ii),b(ii)) the corresponding Mooney plots and (a(iii),b(iii))
corresponding % relative errors. (Online version in colour.)

However, as is evident from the formula (2.9), we must include a dependence on the second
principal invariant I2 in order to make meaningful progress.

Hence we will consider, in turn, the following two classical strain energies: the Mooney–Rivlin
model [4],

WMR = 1
2 C1(I1 − 3) + 1

2 C2(I2 − 3) (3.4)

and the Gent–Thomas model [28],

WGT = 1
2

C1(I1 − 3) + 3
2

C2 ln
(

I2

3

)
(3.5)

and also the more recent Carroll model [16]

WC = 1
2 C1(I1 − 3) +

√
3C2(

√
I2 −

√
3). (3.6)

These are two-parameter models, where C1 and C2 are the material constants to be found from
the best-fit procedure. As noted by Carroll [16], all three belong to the class of strain energies
proposed by Klingbeil & Shield [29]. When these strain energies are expanded up to third order
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in the powers of the Green–Lagrange strain tensor E, we find that they all give

W = (C1 + C2) tr(E2) − 4
3 (C1 + 2C2) tr(E3), (3.7)

giving the following direct correspondence with the weakly nonlinear elasticity expansion (2.6),
when stopped at the same order [20,22,25]

μ0 = C1 + C2 and A = −4(C1 + 2C2). (3.8)

To determine rigorously how many data points we should take for the small-to-moderate
region, we performed a sensitivity analysis for all three models. We found that the maximal
relative error is at its lowest value when N0 = 7 for the Treloar dataset and N0 = 26 for the
DC9 dataset (figure 4). We see from the resulting best-fit curves of figure 5 that, as expected,
the I2-dependence is precisely the missing ingredient to obtain excellent agreement in the
small-to-moderate regime. The figure is eloquent on two features.

First, the relative errors are dramatically reduced over that regime, to less than 1.8% for
Treloar’s data and less than 3.6% for the DC9 data (table 2). This improvement is achieved
with a set of only two material parameters p = [C1, C2] at our disposal, in contrast with
the Yeoh model (3.3) which gave much higher errors with a set of three fitting parameters
p = [c1, c2, c3].

Second (as noted earlier by Carroll [16]), the actual dependence of W on I2 does not matter
much, with all three models (3.4), (3.5), (3.6) performing equally well. This is not altogether
surprising in view of the third-order expansion (3.7) and its universality and relevance to the
small-to-moderate range of extension. In effect, the equivalence of the Mooney–Rivlin strain
energy and the third-order expansion shows that every incompressible isotropic hyperelastic
solid must present a linear decrease at first in the Mooney space.

In the next section, we denote the functional dependence of W on I2 generically by f (I2) to
save space.

 on February 8, 2017http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


11

rspa.royalsocietypublishing.org
Proc.R.Soc.A473:20160811

...................................................

0 2 4 6 8
0

10

20

30

40

50

60

70

 

 
Treloar data

Mooney−Rivlin

Carroll
Gent–Thomas

0 0.5 1.0
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1.0 1.5 2.0 2.5
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
Mooney plots % relative errors

Mooney plots % relative errors

Treloar

Treloar

1 2 3 4 5 6
0

5

10

15

20

25

30

35

40

45

 

 

0 0.5 1.0

2.5

3.0

3.5

4.0

1.0 1.5 2.0 2.5 3.0
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

DC9

DC9

DC9 data

Mooney−Rivlin
Carroll
Gent–Thomas

l 1/l l

l 1/l l

(b)

(a) (i) (ii) (iii)

(i) (ii) (iii)

s
(N

m
m

–2
)

s
(N

m
m

–2
)
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(c) Strain-hardening regime
We now move on to the strain-hardening regime, which is how we called the range of data
corresponding to the upturn in the Mooney plots (figure 2). Thus, we will perform our curve fitting
exercises on the N0 + Np first data points, where Np is the number of points required to capture
that the Mooney plot has gone through a minimum. We take Np = 5.

Keeping in line with our methodical approach to modelling we now add a power-law term to
the strain-energy density of the previous section and consider W in the form

W = 1
2

C1(I1 − 3) + C2 f (I2) + C3
31−n

2n
(In

1 − 3n), (3.9)

where C3 > 0 (N mm−2) and n > 0 (non-dimensional) are constants [30]. As noted by Carroll [16],
as the tensile stretch λ increases, the principal force associated with an energy term In

1 behaves as
λ2n−1 (Note that we could have chosen to add a Im

2 term instead, in which case the force would
behave as λ4m−1.) Hence, for an ideal (no solvent) polymer, n = 1 and we recover the Gaussian
Chain model; for a polymer in a good solvent, n = 5/4 and we recover the Pincus correction of the
force behaving as λ3/2.
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Table 2. Material parameters C1 and C2 (N mm−2) for theMooney–Rivlin, Gent–Thomas and Carroll models, obtained by linear
curve fitting of Treloar’s and DC9 data over the small-to-moderate range (first N0 = 7 data points for the former and first N0 =
26 points for the latter). Themaximal relative error err∗ over the first N0 points is also displayed, as well asμ0 and A (N mm−2),
the corresponding constants of second- and third-order elasticity, respectively. The corresponding curves and relative errors
are shown in figure 5.

C1 C2 err∗ μ0 A

material (Mooney–Rivlin)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Treloar 1.7725 2.7042 1.70% 4.4767 −28.724
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DC9 4.2671 3.4329 3.62% 7.7000 −44.532
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

material (Gent–Thomas)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Treloar 2.3992 2.0348 1.82% 4.4340 −25.875
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DC9 5.0400 2.6016 3.38% 7.6416 −40.973
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

material (Carroll)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Treloar 2.1580 2.2891 1.65% 4.4471 −26.945
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DC9 4.7544 2.9006 3.57% 7.6550 −42.222
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Here we wish to model the strain stiffening as illustrated by the upturn in the Mooney plot.
As λ increases, In

1 behaves as λ2n and σ as λ2(n−1). Hence in the Mooney plot, as z goes towards
zero, g(z) behaves as z−2(n−1), indicating that n > 1 is required for an upturn. We point out that the
optimization of the material parameter set p = [C1, C2, C3, n] is a nonlinear procedure. In general,
nonlinear curve fitting exercises lead to some serious computational problems, the most common
being the emergence of multiple minima for the same level of error, see the discussion by Ogden
et al. [31] for rubber models. Also, the choice of an adequate initial guess is a crucial issue in
order to avoid false minima [32]. To circumvent these problems we propose the following ad
hoc procedure. For definiteness we consider that the optimal value of n should be found in the
range 1.0 < n < 2.5: the lower bound indicates a departure from the linear fit of the small-to-
moderate Mooney plot region and, at twice the Pincus value, the upper bound is a reasonable
ceiling to capture the upturn of the Mooney plot prior to the large strain-stiffening regime.
We limit the range of data to the N0 + Np first points, spanning the small-to-moderate regime
(linear variation in the Mooney plot) and the strain-hardening regime (upturn in the Mooney
plot). Then we fix n at the beginning of the 1 < n < 2.5 range, at n = 1.01 say, and perform the
fit for the reduced set p = [C1, C2, C3]. This fit is linear and thus removes the risk of multiple
minima and the requirement of a good initial guess. Then we increase n to span the range and
record the corresponding maximum relative errors err(n). Finally we keep the optimal value of n,
corresponding to err∗ = min1<n<2.5 err(n).

For Treloar’s data we fix N0 + Np = 7 + 5, and for the DC9 data we take N0 + Np = 24 + 5. For
the fitting of the former set, the Gent–Thomas model with a strain-hardening correction gives
the lowest error, while for the later set it is the Mooney–Rivlin model with a strain-hardening
correction which performs best. However, similarly to the previous section, the differences in
performance between the three models are negligible, see table 3 for a summary. Overall the
fit is excellent over the small-to-moderate and strain-hardening regimes, as attested by the low
values of the relative errors, around or less than 2%. In table 3 we also report the corresponding
constants of weakly nonlinear elasticity μ0, A, and D. They are obtained by expanding W in (3.9)
up to fourth order in the Green–Lagrange strain tensor. We find that now

μ0 = C1 + C2 + C3, A = −4(C1 + 2C2 + C3), (3.10)

while for the fourth-order elastic constant D in (2.6) we have

D = C1 + 3C2 + 1
3 C3(n + 2), C1 + 8

3 C2 + 1
3 C3(n + 2), C1 + 17

6 C2 + 1
3 C3(n + 2), (3.11)
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Table 3. Material parameters C1, C2, C3 (N mm−2) and n for the Mooney–Rivlin, Gent–Thomas and Carroll models augmented
with a power-law term, obtained by curve fitting of Treloar’s and DC9 data over the small-to-moderate range and the strain-
hardening regime (first N0 + Np = 7 + 5 data points for the former and first N0 + Np = 24 + 5 points for the latter). The
smallest relative error err∗ over the firstN0 + Np points is also displayed, as well as the elastic constants of fourth-order weakly
nonlinear elasticityμ0, A and D. The corresponding curves and relative errors are shown in figure 6.

C1 C2 C3 n err∗ μ0 A D

material Mooney–Rivlin+ strain hardening
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Treloar 1.7716 2.6135 0.02725 1.6652 2.05% 4.412 −28.10 10.83
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DC9 3.6974 3.9934 0.0542 1.0939 1.21% 7.746 −46.96 16.71
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

material Gent–Thomas+ strain hardening
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Treloar 2.0489 1.8781 0.8911 1.6798 1.78% 4.818 −26.78 8.284
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DC9 4.6837 2.9426 0.0434 1.0500 1.63% 7.670 −42.45 13.55
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

material Carroll+ strain hardening
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Treloar 2.1541 2.2080 0.02495 1.6066 1.88% 4.387 −26.38 9.612
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DC9 4.3052 3.3351 0.0495 1.0500 1.48% 7.6898 −44.10 14.77
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

for the Mooney–Rivlin, Gent–Thomas and Carroll models with a strain-hardening term,
respectively. We notice that there is no strong continuity for the C1 and C2 parameters from
tables 2–3, reflecting that these parameters are simply the result of a curve-fitting exercise.
The weakly nonlinear elasticity constants μ0 and A however carry consistently from one model
to the other.

In this section we showed that a strain energy with three terms and four material parameters
can cover the range of 500% extension for Treloar’s data (1 ≤ λ ≤ 6) and 300% extension for the
DC9 data (1 ≤ λ ≤ 4). It is worth noting that for each model the solution for the optimal set of
parameters is unique and the problems are not ill-conditioned.

If we wish to go further and also capture the behaviour of soft matter in a regime of extreme
extension (6 ≤ λ ≤ 8 and 4 ≤ λ ≤ 6, respectively), we have to recognize that the corresponding
stiffening of the curve is associated with a singularity of the fitting function. In other words,
limiting-chain effects come to dominate in the latter regime and impose an asymptotic barrier. In the
next section we present a method to determine the order of the singularity by examination of the
experimental data.

(d) Estimate of the order of singularity: Freely Jointed Chain versusWorm-Like Chainmodel
In this section and the next, we focus on the extreme stretch range, where the material stiffens
rapidly with strain. First we consider only the last Nf points of the force–extension data, and
estimate how fast the data curve ‘blows up’.

Assume that in the large stretch range, the tensile force behaves as

f = σA0 ∼ c
(1 − λ/λm)k

, (3.12)

where A0 is the cross-section area of the sample in the undeformed state, c is a constant, λ = λm

indicates the location of the unknown vertical asymptote, and k is the order of singularity: k = 1 for
the FJC model and k = 2 for the WLC model. In logarithmic coordinates we have

log(σ ) = log
(

c
A0

)
− k log

(
1 − λ

λm

)
, (3.13)

suggesting a linear regression procedure to identify k, as follows. For the last Nf data points, we
can calculate log(σ ). We also know that λm is greater than λf , the largest stretch reported in the
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Figure 6. Least-square fitting in the small-to-moderate and the strain-hardening regimes: Mooney–Rivlin, Carroll and Gent–
Thomas models with power-law correction when the first N0 + N1 data points are considered. (a) Fitting to Treloar’s data (first
7 + 5 data points); (b) fitting to DC9 data (first 26 + 5 points). The ‘best’ fitting results are obtained by the Gent–Thomas
model and by theMooney–Rivlinmodel, respectively, although the differences with the other models areminute and the plots
are undistinguishable. (Online version in colour.)

experiments (hence λf = 7.6 for the Treloar set, see (3.1), and λf = 5.54 for the DC9 set). Then we
start by fixing λm = λf + 0.001, say, and plot log(σ ) against log(1 − λ/λm) to perform a linear fit.
We estimate the corresponding maximal relative error and repeat the procedure for a higher value
of λm, and so on. Here for both datasets, we find that the maximal relative error goes through a
minimum as λm increases. When it is at its minimal value, we can say that we have identified the
actual order of singularity k∗ and the actual limiting stretch λ∗

m.
In figure 7, we report these results for the Treloar’s and DC9 data, in the upper and lower

panels, respectively, where the optimal solutions yielding k∗ and λ∗
m are highlighted in red. For

Treloar’s data, we take Nf = 9, and find λ∗
m = 8.72 and k∗ = 0.962, with a maximal relative error

of 2.1%, indicating a first-order singularity location for large deformations. For the DC9 rubber
dataset, we take Nf = 5 and find λ∗

m = 10.6, k∗ = 2.03 with a maximal relative error of 0.6%, clearly
pointing out to a second-order singularity.

If our goal is to provide a one-dimensional interpretation of the data at extreme stretches, then
our method shows that the rubber studied by Treloar behaves according to the FJC model, while
the DC9 rubber behaves according to the WLC model.

The FJC model is easily extended to a three-dimensional strain-energy function, as is
often captured by the Arruda & Boyce [33] 8-chain model, itself represented well by the
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phenomenological Gent model [34],

W = −1
2

C1Jm ln
(

1 − I1 − 3
Jm

)
. (3.14)

Here C1 > 0 is the initial shear modulus and Jm > 0 is a stiffening (limiting-chain) parameter.
The WLC model is not easily translated into a three-dimensional strain-energy function, see

Ogden et al. [35]. Dobrynin & Carrillo [14] proposed to mimic the WLC behaviour with the
following phenomenological model

W = G

[
I1

6
+ β−1

(
1 − β

I1

3

)−1
]

, (3.15)

where G > 0 and is the ‘network infinitesimal shear modulus’ and β is a stiffening parameter. In
passing, note that by (2.5) the infinitesimal shear modulus is G( 1

2 + 1/β(β − 1)). Note also that this
model (3.15) is a special case of the family of models presented by Horgan & Saccomandi [36].

Guided by these models, the next section will try to capture the nonlinear behaviour of the
Treloar data and its first-order singularity by invoking the first model above, and the behaviour
of the DC9 data and its second-order singularity with the second model above.

(e) Limiting-chain effect
In this section, we bring together all our accumulated knowledge to reproduce the nonlinear
behaviour of the rubber tested by Treloar over the entire range of experimental stretches.
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The natural summation of our analysis so far is that the whole model to be studied should be
given, for the Treloar data, by following form

W = −1
2

C1Jm ln
(

1 − I1 − 3
Jm

)
+ C2 f (I2), (3.16)

and for the DC9 data, by

W = (1 − β2)
2(3 − 2β + β2)

C1

[
I1 − 3 + 6β−1

(
1 − β

I1

3

)−1
− 6β−1(1 − β)−1

]
+ C2 f (I2). (3.17)

(Note that we added constant terms to this latter expression in order to insure that W(3, 3) = 0.)
Here the main difficulty is to identify the optimal value of the limiting-chain parameters

Jm or β, because their presence implies that the fitting procedure is a nonlinear least-square
optimization problem. A possible consequence is that a set p = [C1, C2, Jm] or [C1, C2, β] could
be wrongly identified as the optimal one, while there exist other minima giving a better or similar
error [31,32].

To investigate fully the nature of our optimal set, first we solved the nonlinear least-squares
(NLS) problem by applying the Lsqcurvefit routine in Matlab and the NonlinearFit routine
in Maple, both based on the Levenberg–Marquardt method. Second, since the models contain
only one nonlinear term, we were also able to apply the VARPRO method devised by Golub &
Pereyra [37]. This ‘Variable Projection method’ algorithm is designed for nonlinear LS problems
where some of the parameters to be identified appear in linear terms, as here. We used a recent
Matlab routine [38], updated and improved with respect to the original Fortran routine. Third,
we used a ‘semi-linear’ approach. In that case we identified the values of the constants C1, C2 by
a linear fit on the first N0 + N1 data points. Then we varied the value of the stiffening parameter
Jm or β and recorded the corresponding maximum relative error. Then we kept the value of Jm

or β giving the lowest relative error over the range. In the end, these three strategies yielded
very similar results, with small differences in the values of the constants and with low error,
comparable with the experimental error that can be expected from uniaxial tension experiments.
There is little value in presenting all the results of all three procedures and instead we just present
those of the NLS routines, which are the simplest to implement.

For completeness and comparison, we used both models above on both the Treloar and the
DC9 data. We called them GMR, GG, GC and DCMR, DCG, DCC, corresponding to the Gent (3.16)
or Dobrynin and Carrillo (3.17) models, respectively, with an I2 dependence of the Mooney–
Rivlin, Gent, and Carroll type, in turn. Notice that the GG model first appeared in Pucci &
Saccomandi [39] and the DCMR model in Dobrynin & Carrillo [14].

We also calculated the corresponding constants of second- and third-order elasticity, as

μ0 = C1 + C2, A = −4(C1 + 2C2), (3.18)

for all models, while the constant of fourth-order elasticity is

D = Jm + 1
Jm

C1 + 3C2,
Jm + 1

Jm
C1 + 8

3
C2,

Jm + 1
Jm

C1 + 17
6

C2, (3.19)

for the GMR, GG, and GC models, respectively, and

D = 13 − 15β + 9β2 − 3β3

3(1 − β)(3 − 2β + β2)
C1 + 3C2,

13 − 15β + 9β2 − 3β3

3(1 − β)(3 − 2β + β2)
C1 + 8

3
C2,

13 − 15β + 9β2 − 3β3

3(1 − β)(3 − 2β + β2)
C1 + 17

6
C2, (3.20)

for the DCMR, DCG, and DCC models, respectively.
In table 4 we collected the results of the curve fitting exercises over the whole range of available

data for the Treloar data, and similarly in table 5 for the DC9 data.
For all models, the fit is excellent. Hence with only three parameters, we are able to cover the

full reported data with an error that compares favourably with the experimental error (recall that
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Table 4. Material parameters C1, C2 (N mm−2) and Jm or β for the Gent (top) or Dobrynin–Carrillo (bottom) version of the
Mooney–Rivlin, Gent–Thomas and Carrollmodels, obtained by curve fitting of Treloar’s data over all available data. The smallest
relative error err∗ is also displayed, as well as the elastic constants of fourth-order weakly nonlinear elasticityμ0, A and D.

C1 C2 Jm err∗ μ0 A D

GMR 2.1531 2.1304 74.74 5.76% 4.283 −25.66 8.573
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GG 2.4401 1.9511 78.33 3.38% 4.391 −25.37 7.674
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GC 2.3319 2.0077 76.82 4.70% 4.340 −25.39 8.051

C1 C2 β err∗ μ0 A D

DCMR 1.9542 2.2548 0.02966 5.32% 4.209 −25.85 9.631
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DCG 2.2716 2.0134 0.02787 4.87% 4.285 −25.19 8.699
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DCC 2.1524 2.9426 0.02858 4.24% 4.245 −25.35 8.736
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 5. Material parameters C1, C2 (N mm−2) and Jm or β for the Gent (top) or Dobrynin–Carrillo (bottom) version of the
Mooney–Rivlin, Gent–Thomas and Carroll models, obtained by curve fitting of the DC9 data over all available data.

C1 C2 Jm err∗ μ0 A D

GMR 3.9770 3.7662 64.16 2.70% 7.743 −46.04 15.34
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GG 4.7472 2.9650 76.48 2.59% 7.712 −42.71 12.72
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GC 4.4597 3.2536 70.73 2.74% 7.713 −43.87 13.74

C1 C2 β err∗ μ0 A D

DCMR 3.8024 3.7673 0.0327 2.69% 7.492 −45.04 16.77
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DCG 4.5773 2.9582 0.0275 2.60% 7.456 −41.66 14.48
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DCC 4.2062 3.2487 0.0297 2.75% 7.455 −42.81 14.83
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Treloar reported values with only three significant digits, see (3.1)). In particular, the ‘Gent–Gent
model’ [31,39]

W = −1
2

C1Jm ln
(

1 − I1 − 3
Jm

)
+ 3

2
C2 ln

(
I2

3

)
, (3.21)

gives a maximal relative error of less than 3.4% for the Treloar data and less than 2.6% for the
DC9 data, see plots in figure 8. In fact, we find that the GG model can be used also to capture
the small-to-moderate and strain-hardening regimes only (first N0 + Np data points), so that the
model (3.9) with a power-law term can be advantageously replaced with the Gent–Gent model
(figure 1).

4. Simple and rectilinear shear
Now it remains to figure out how robust and predictive our results are with respect to other
deformations. For instance, Ogden et al. [31] showed that two different Ogden models could give
the same excellent fit for uniaxial tension and widely different predictions for rectilinear shear,
thereby invalidating them. Here we first consider the simple shear deformation,

x = X + KY, y = Y and z = Z, (4.1)

where the constant K is the amount of shear. This deformation is used to idealize some
experimental test protocols such as the double sandwich test and the quadruple shear test [40].
However, it is not easy to find simple shear test data in the literature on nonlinear elastic solids,
for the reasons discussed by Destrade et al. [41]: in nonlinear elasticity theory, simple shear is not
due to a pure shear stress field, and normal stress differences have to be taken into account.
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Figure 8. Nonlinear least-square fitting over the entire range of experimental data with the three-parameter Gent–Gent
model. (a) Treloar data and (b) DC9 data. The corresponding parameters are shown in table 4. (Online version in colour.)

In the literature, simple shear data are often inferred from a pure shear experiment, see
Treloar [9]. Yeoh [27] does present some simple shear data obtained with a quadruple test.
He observes that ‘These normal components of stress do not have much effect on the overall
load/deformation behaviour and are ignored.’ However, we note there exists no protocol to
measure normal stress components during a simple shear test, and therefore we cannot quantify
and decide whether these stress quantities can indeed be neglected. In fact, normal stress effects
(Poynting effect) can be observed directly in experiments, by drilling holes in the shearing plates
and observing the bulging of the material [42,43].

Now to draw meaning comparisons using the Mooney–Rivlin, Gent–Thomas and Carroll
models (3.4), (3.5) and (3.6), we must stay in the small-to-moderate range of stretches, up to
a maximal stretch of extension λ1  2, indicating that the material cannot be contracted to a
stretch lower than λ2 = λ

−1/2
1 = 0.71. Because the amount of shear is related to the least stretch

through K = λ−1
2 − λ2, we obtain a maximum of K = 0.71. In figure 9a, we plot the predictions in

simple shear for Treloar’s rubber, using the material constants of table 2. Clearly all three models
are in good accord, with the Carroll and Gent–Thomas models indicating a slight softening
for shears K ≥ 0.5.

Moving on the models (3.9), including a strain-hardening term to model the upturn, we now
limit the simple shear predictions to the range 0 ≤ K ≤ 1.0, as the upper bound reflects a tilting
angle of 45◦ for the slanted faces, a clear physical limit for a realistic simple shear test. Figure 9b
displays the comparison between each model, using the material parameters of table 3, and
again shows good agreement in the predictions. These results confirm that the robustness already
noted in the fitting of simple extension data is conserved when considering a deformation with
a completely different character (recall that simple shear is a plane deformation, with changing
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Figure 9. Predictions in simple shear of (a) theMooney–Rivlin, Gent–Thomas and Carroll materials and (b) the samematerials
augmented by a power term to model strain hardening, using Treloar’s data. (Online version in colour.)
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Figure 10. Predictions for the inhomogeneous rectilinear shear of (a) the Mooney–Rivlin (full black line), Gent–Thomas
(dashed red line) and Carroll (dashed green line) materials and of (b) the samematerials augmented by a power term tomodel
strain hardening, using Treloar’s data. (Online version in colour.)

orientation of the principal axes with the deformation, in contrast with the three-dimensional
uniaxial tension with conserved principal orientations).

Next, we consider the following rectilinear shear deformation

x = X + h(Y), y = Y and z = Z, (4.2)

for an unknown function h. This inhomogeneous deformation leads to a simple boundary-value
problem (BVP) which has to be solved numerically for each different model. The BVP is as follows:
a slab is located in the region −H ≤ Y ≤ H, and its deformation is driven by a gradient of pressure
in the X-direction, with h(−H) = h(H) = 0, see Ogden et al. [31] for details. The aim here is again
to check whether the various models with material parameters listed in tables 2 and 3 make
comparable predictions of the deformation field. The answer is found in figure 10, showing h(Y)
through the slab when H = 1, for increasing levels of pressure gradient: the variation between
the different models is hardly notable, showing again the robustness of the methodical modelling
presented in the paper. This result is in sharp contrast with the simulations conducted by Ogden
et al. [31] for the same BVP: there the same Ogden models, characterized by different values of the
material parameters, gave the same close fitting to uniaxial tension and yet predicted different
deformations.
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5. Conclusion and discussion
The fitting of constitutive parameters in the mathematical models of rubber-like materials is often
considered to be a trivial task, although in fact this is not the case at all. Indeed more than 10 years
ago, Ogden et al. [31] had already pointed out how the fitting procedure is a very delicate aspect
of the modelling procedure. Here we went one step further and proposed a possible solution to
the main issues. Our solution is not a new form of the strain energy; rather it is intrinsic to the
theory of nonlinear elasticity and proves its robustness.

We used experimental data already published in the literature to show that our method is
quite general and does not rely too heavily on the quality of the experimental data to capture the
salient features of the behaviour of rubber. Clearly, it is possible to collect data in a more careful
and uniform way for our treatment, for example, by fixing a priori the range of extension of interest
and by fixing a uniform incremental step in the acquisition of the data for all the samples.

The starting point of our method was to delineate three ranges of deformations in the nonlinear
framework: the small-to-moderate range, the strain-hardening range (the zone of the upturn point
in the Mooney plot) and the region of limiting-chain singularity. The aim of the procedure was
to find a mathematical model able to fit the data within a reasonable error in part or all of the
range. The main focus was more on the computational aspect of the fitting procedure than on
the corresponding potential experimental issues. Using a step-by-step method, we came to the
conclusion that the theory of nonlinear elasticity is a more robust theory than was previously
thought. We saw that minimizing the relative errors of (2.13), as opposed to minimizing the
classical (absolute) residuals of (2.12), ensures consistency of the fitting procedure across the
various measures of stress and strain. We demonstrated quantitatively that for incompressible
materials, the strain energy must depend on both principal invariants I1 and I2. Moreover, we
found that any standard linear combination of function of these two invariants fits well the data
in the small-to-moderate range.

Then in order to model the upturn zone, we proposed an additional term to incorporate
strain-stiffening effects. We also required full compatibility with the weakly nonlinear theory
of fourth-order elasticity. This compatibility is not a mathematical whim but is dictated by the
generality of the response of rubber-like materials to large shear and large bending deformations.
Again the resulting model provides a robust mathematical behaviour able to capture the data
with low relative errors.

For the last step, we needed to understand what is going on at very large deformations.
This range of deformation has been studied in details in the last two decades and two reliable
models have emerged: the Worm Like Chain model [35] and the Freely Jointed Chain model, itself
accurately modelled by the Gent model [34,44]. We proposed a practical way to investigate the
mathematical behaviour of the vertical asymptote associated with the limiting-chain effects, and
thus determine the order of the singularity for a given set of data. Hence we were able to confirm
the insights coming from statistical mechanics computations on ideal macromolecular chains.

Finally, we showed that the three-parameter Gent–Gent model proposed by Pucci &
Saccomandi [39] is capable of fitting the entire deformation range with low relative error for
both sets of experimental data studied. This versatility singles out the Gent–Gent strain-energy
density as a powerful model for all nonlinear aspects of rubber-like behaviour (see also [31,39,45]),
although we note that the other five models investigated also performed well at the curve-fitting
tasks, including the Carillo–Dobryin model proposed in 2011.

By deconstructing, decrypting and then recomposing all the puzzle of mathematical models
for rubber-like materials, we provided evidence that the theory of nonlinear elasticity can describe
accurately uniaxial tension data with a strictly bounded error and a low number of unique
parameters. The theory of nonlinear elasticity is a basic, well-grounded theory of continuum
mechanics. It is a mandatory passage required to explain the mechanical behaviour of many
real-world materials. Therefore, it was fundamental to confirm that this theory is not only
mathematically well founded but also provides a robust description of experimental data, which
is not contingent to the choice of a specific strain-energy function, provided it satisfies some basic
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requirements and is adequate for (a) given regime(s). Using one of the other models proposed in
the literature instead of the ones constructed here cannot change our main findings, because the
heart of the modelling problem is independent on the functional form of the strain energy but
relies instead on the methodology of fitting and on the way we read the data. This is essentially
good news for the theory of nonlinear elasticity. Indeed if this theory was dependent on the choice
of a given functional form, we would have to declare it a poor and restricted mathematical theory
of mechanics.

Finally, because one of the most important elements of a computer simulation for deformable
solid mechanics is the actual model of a material, our findings on the mathematical structure of
the mathematical models for rubber-like materials is bound to have non-trivial consequences on
their numerical implementation.
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