Manuscript Details

Manuscript number

Title
JQSR_2018_231 Italy and a phylogenetic analysis of suines

Article type
Research Paper

Abstract

Sus strozzii is the only species of Suinae occurring in the first part of Early Pleistocene in Europe and western Asia. It is characterized by a large body size and several morphological similarities with extinct and extant pigs from Island South East Asia (ISEA), such as the Javan Warty Pig S. verrucosus. In this study, a new mandible of S. strozzii from the Early Pleistocene of Pantalla (central Italy) is described and the diagnosis of the species is emended. Based on 52 craniomandibular and dental morphological characters, the first phylogenetic analysis of both living and fossil Eurasian and African Suinae is carried out to reconstruct their relationships. Our results are in agreement with the literature based on molecular and/or morphological analyses. The late Miocene Microstonyx is the first taxon to branch off the monophyletic Suinae clade. The separation between the African (Kolpochoerus/Hylochoerus and Metridiochoerus/Phacochoerus) and the Eurasian (Sus) clades occurred early, probably even in the late Miocene. The inclusion of Potamochoerus in the latter group is questionable, being probably due to the retaining of similar plesiomorphic characters in this African pig and in Sus. The Wild Boar S. scrofa and the Early-Middle Pleistocene S. lydekkeri are the species of Sus that display the most numerous plesiomorphic character states. They are followed by the monophyletic group of suines that show verrucosic lower canines, which includes the Pliocene S. arvernensis, S. strozzii, and the extinct and extant verrucosic pigs from ISEA.

Keywords

\section*{Corresponding Author}

Corresponding Author's Institution

Order of Authors

Suggested reviewers

Europe; phylogeny; Pleistocene; Pliocene; Suidae; Suinae; systematics; Villafranchian

Marco Cherin Dipartimento di Fisica e Geologia, Università degli Studi di Perugia

Marco Cherin, Leonardo Sorbelli, Marco Crotti, Dawid Iurino, Raffaele Sardella, Antoine Souron

Dimitris Kostopoulos, Jan Van der Made, Raymond Bernor, Salvador MoyaSola, Maëva Orliac

New material of Sus strozzii (Suidae, Mammalia) from the Early Pleistocene of Italy and a phylogenetic analysis of suines

Marco Cherin ${ }^{\text {a,b,**, Leonardo Sorbellic }}$, Marco Crotti ${ }^{\text {d }}$, Dawid A. Iurino ${ }^{\text {b,e, }, ~ R a f f a e l e ~ S a r d e l l a ~}{ }^{\text {b,e }}$, Antoine Souron ${ }^{f}$
${ }^{\text {a }}$ Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, Via A. Pascoli, I-06123 Perugia, Italy
${ }^{\text {b }}$ PaleoFactory, Sapienza Università di Roma, Piazzale A. Moro 5, I-00185 Roma, Italy
${ }^{\text {c }}$ Dipartimento di Scienze della Terra, Università degli Studi di Torino, Via Valperga Caluso 35, I-10125 Torino, Italy
${ }^{d}$ Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
${ }^{\text {e }}$ Dipartimento di Scienze della Terra, Sapienza Università di Roma, Piazzale A. Moro 5, I-00185 Roma, Italy
${ }^{\text {f }}$ De la Préhistoire à l'Actuel: Culture, Environnement et Anthropologie (PACEA), UMR 5199 CNRS, Université de Bordeaux, Bâtiment B18, Allée Geoffroy Saint Hilaire, CS 50023, 33615 Pessac, France
* Corresponding author. Tel.: +39 075 5852626. E-mail address: marco.cherin@unipg.it (M. Cherin)

Abstract

Sus strozzii is the only species of Suinae occurring in the first part of Early Pleistocene in Europe and western Asia. It is characterized by a large body size and several morphological similarities with extinct and extant pigs from Island South East Asia (ISEA), such as the Javan Warty Pig S. verrucosus. In this study, a new mandible of S. strozzii from the Early Pleistocene of Pantalla (central Italy) is described and the diagnosis of the species is emended. Based on 52 craniomandibular and dental morphological characters, the first phylogenetic analysis of both living and fossil Eurasian and African Suinae is carried out to reconstruct their relationships. Our results are in agreement with the literature based on molecular and/or morphological analyses. The late Miocene Microstonyx is the first taxon to branch off the monophyletic Suinae clade. The separation

between the African (Kolpochoerus/Hylochoerus and Metridiochoerus/Phacochoerus) and the Eurasian (Sus) clades occurred early, probably even in the late Miocene. The inclusion of Potamochoerus in the latter group is questionable, being probably due to the retaining of similar plesiomorphic characters in this African pig and in Sus. The Wild Boar S. scrofa and the EarlyMiddle Pleistocene S. lydekkeri are the species of Sus that display the most numerous plesiomorphic character states. They are followed by the monophyletic group of suines that show verrucosic lower canines, which includes the Pliocene S. arvernensis, S. strozzii, and the extinct and extant verrucosic pigs from ISEA.

Keywords: Europe, phylogeny, Pleistocene, Pliocene, Suidae, Suinae, systematics, Villafranchian.

1. Introduction

The family Suidae includes the pigs and their relatives, that is, artiodactylan ungulates characterized by a robust and squat body, relatively short legs, large heads, and at least in extant forms, short neurocranium and elongated splanchnocranium forming a tubular snout (Groves and Grubb, 1993). Suids are part of the superfamily Suoidea together with the New World peccaries Tayassuidae. The close relationship between Suidae and Tayassuidae is well documented on both molecular (Irwin and Arnason, 1994; Randi et al., 1996) and morphological grounds (Gentry and Hooker, 1988; Boisserie et al., 2005; Orliac et al., 2010a).

The phylogenetic status of the Suoidea has changed during the last decades. Classically, they were considered as sister group of the Hippopotamidae, forming with them the suborder Suiformes. However, molecular data questioned the monophyly of this group, considering the Hippopotamidae as closer to the Cetacea and the Suoidea at the root of the whole clade Cetartiodactyla (Irwin et al., 1991; Randi et al., 1996; Gatesy, 1997; Montgelard et al., 1997; Nikaido et al., 1999; Matthee et al., 2001; Marcot, 2007; Agnarson and May-Collado, 2008). Conversely, alternative phylogenetic
reconstructions based on morphological data consistently place the Suoidea as the sister group of hippopotamids (Theodor and Foss, 2005; Thewissen et al., 2007). Even the origin of the Suoidea is the subject of controversy (Ducrocq, 1994; Ducrocq et al., 1998; Liu, 2001, 2003; Harris and Liu, 2007; Orliac et al., 2010a; Gongora et al., 2011; Frantz et al., 2016). Molecular evidence suggests that the first common ancestor of Suidae and Tayassuidae lived in a timespan close to the Oligocene-Eocene boundary (39.69-34.50 Ma) (Gongora et al., 2011).

Although wild and domestic pigs were introduced in the Americas and Oceania by humans, the original distribution of extant Suidae is restricted to the Old World (Eurasia and Africa), and the same goes for their extinct relatives. Thanks to its richness, the suid fossil record has been used in these areas as biostratigraphic tools for decades (e.g. Pliocene-Pleistocene African suids; White and Harris, 1977; Cooke, 1978a). At the origin of the ecological success of this family is the capability to adapt to different kind of environments. Today it is possible to find pigs in a wide range of habitats, from the tropical forests of Southeast Asia and Africa to the cold steppes of northern Europe and the open grasslands of Africa. Currently, the family is composed by a minimum of five genera and 17 species (Frantz et al., 2016). These were traditionally divided into three subfamilies Babyrousinae, Phacochoerinae, and Suinae (Groves and Grubb, 1993), but are today grouped in a single, widely-accepted living subfamily, the Suinae (Grubb, 2005; Harris and Liu, 2007; see Frantz et al., 2016 for the enigmatic phylogenetic position of Babyrousa). However, the modern diversity of Suidae is much lower than in the past. During the Neogene and Quaternary, the Suidae diversified into over 30 genera, representing several subfamilies (Pickford, 1993; Harris and Liu, 2007). Even if the earliest sporadic records of Suoidea in the Old World - with the radiation of at least three different lineages, Sanitheriidae, Palaeochoeridae, and hyotheriine Suidae (Orliac et al., 2010b) - are from the middle Oligocene, the first diversification and dispersal of these animals in Eurasia and Africa start only in the first stages of the Miocene (Frantz et al., 2016). About 15 Ma , the suids had spread in the whole Old World with at least four subfamilies, Listriodontinae, Cainochoerinae, Hyotheriinae, and Tetraconodontinae (Orliac et al., 2010a; Frantz et al., 2016),
showing a large spectrum of adaptive features. The most successful suid group, the Suinae, appears in the fossil record around 10 Ma and expands rapidly in the Old World to the detriment of the above subfamilies, which gradually disappeared from the Planet (Van der Made et al., 2006; Geraads et al., 2008; Orliac et al., 2010a; Frantz et al., 2016). Shortly after the Miocene-Pliocene boundary, almost all the non-Suinae subfamilies went extinct in Eurasia and Africa, while the Suinae differentiated and spread out (Gongora et al., 2011; Pickford, 2012; Haile-Selassie and Simpson, 2013; Frantz et al., 2016). Besides the Suinae, only the Tetraconodontinae occurred in Africa and Eurasia during the Pliocene and the beginning of Pleistocene (Van der Made, 1998; White and Suwa, 2004).

The evolutionary history of African suids has been strongly debated for decades. The centre of origin of the African lineages is commonly placed in Eurasia (Pickford, 2012), but recent molecular analysis by Gongora et al. (2011) suggests that the African suids form a monophyletic group to the exclusion of Eurasian suids.

The African Miocene suid record is rich and diverse, including more than 20 species belonging to six subfamilies (Kubanochoerinae, Listriodontinae, Tetraconodontinae, Namachoerinae, Cainochoerinae, and Schizochoerinae) (Bishop, 2010), but the detailed description of these forms is out of the scope of this article. On the other hand, three major groups of Suinae are recognized in Africa from the Pliocene to Present (White and Harris, 1977; Harris and White, 1979). The genera Kolpochoerus and Hylochoerus form the first group. Kolpochoerus is a welldocumented genus, but still subject of taxinomic (see Section 2 for the use of this term) and phylogenetic debates. Currently, at least ten species are recognized: K. afarensis, K. cookei, K. deheinzelini, K. limnetes (K. heseloni sensu Cooke, 1997), K. majus, K. olduvaiensis, K. paiceae, K. phacochoeroides, K. millensis, and K. phillipi (Souron et al., 2015 and references therein). However, K. phacochoeroides from Maghreb as well as the disputed "S." falconeri from the Siwalik Hills (India-Pakistan) referred to K. falconeri by Chavasseau (2008), Pickford (2012, 2013a), and Pickford and Obada (2016), likely belong to Metridiochoerus (Souron, 2012, 2015).

The origin of the living Hylochoerus meinertzhageni is still poorly known, but it likely originated from a derived species of Kolpochoerus (Harris and White, 1979; Geraads, 2004; Souron et al., 2015), which would render the latter genus paraphyletic. The second group includes the extant genus Phacochoerus (with the two species Ph. aethiopicus and Ph. africanus) and the paraphyletic genus Metridiochoerus, from which probably Phachochoerus descended (Cooke, 1978b; Harris and White, 1979). Metridiochoerus includes the species Me. compactus, Me. andrewsi, Me. hopwoodi, Me. shawi, and Me. modestus (Cooke, 2005; Bishop, 2010). The only member of the third group is Potamochoerus, with the existing species Po. porcus and Po. larvatus. The evolutionary history of this genus is poorly known due to the very scanty fossil record. According to Souron et al. (2015), Potamochoerus was used in the past as a "wastebasket taxon" to allocate many archaic remains characterized by simple-shaped, brachyodont, and bunodont teeth, thus confusing the identification of its origin. For example, K. afarensis is frequently placed into the genus Potamochoerus based on similarities of dental morphology (Harris and White, 1979; Bishop, 2010) that are likely symplesiomorphies shared by Potamochoerus and early members of Kolpochoerus. When considering overall craniomandibular morphology, K. afarensis is extremely different from Potamochoerus and clearly aligns with other species of Kolpochoerus (Souron, 2012; Souron et al., 2015).

In Eurasia, two distinct groups are recognized during the late Miocene, including Microstonyx/Hippopotamodon and Korynochoerus/Propotamochoerus, respectively (Pickford, 1988, 1993; Van der Made and Hussain, 1989; de Bonis and Bouvrain, 1996; Fortelius et al., 1996; Liu et al., 2005). The two genera of the first group share similar craniomandibular and dental features (Liu et al., 2005). Microstonyx is a polymorphic large-sized suine found in several Eurasian sites (Kostopoulos et al., 2001; Liu et al., 2005). Two chronologically-distinct species are currently documented: the poorly-known Mi. antiquus (Vallesian Land Mammal Age; LMA) and the more common Mi. major (late Vallesian-Turolian LMAs). However, the validity of the first species is doubtful, due to the poor fossil record (Liu et al., 2004). Some authors (Fortelius et al., 1996;

Geraads et al., 2005; Liu et al., 2005) consider Mi. antiquus as belonging to the genus Hippopotamodon. A third species, Mi. erymanthius, is described based on a skull from Pikermi (Greece) (Roth and Wagner, 1854), but this species is probably a synonym of Mi. major (Liu et al., 2004, 2005). The genus Hippopotamodon - also including tentatively Hi. antiquus from Europe (see above) - is mainly based on material from the Siwaliks (India), referred to the species Hi . sivalense (Pickford, 1988; Liu et al., 2004). The relationships between Hippopotamodon and Microstonyx are not clear and some authors even consider the former genus as a junior synonym of Microstonyx (Van der Made and Hussain, 1989; Van der Made, 1997; Van der Made et al., 1999).

The relationships between Korynochoerus and Propotamochoerus are also uncertain.
Actually, Korynochoerus is frequently considered as a junior synonym of Propotamochoerus (Van der Made, 1997). The latter genus was erected by Pilgrim (1926) and is probably another example of "wastebasket taxon" for a large number of Miocene isolated suid remains. According to the most recent literature, Propotamochoerus includes five species (most of them previously referred generically to Sus): Pr. hysudricus (type species), Pr. wui, Pr. hyotheroides, Pr. palaeochoerus, and Pr. provincialis, with the latter being the only species to survive beyond the Miocene-Pliocene boundary, until the middle Pliocene (MN13-MN15) (Van der Made et al., 1999; Gallai, 2006; Geraads et al., 2008). Unfortunately, most of the above species are described on the basis of scarce material and it is likely that in the past, some species of Propotamochoerus (notably Pr. hysudricus and Pr. provincialis) were confused with other suine species (Van der Made et al., 1999). Pickford (2013a) reviewed the complex taxinomic history of the latter species (alternately referred to the genera Sus, Korynochoerus, ?Potamochoerus, and Propotamochoerus) and noticed that the available diagnosis - probably based on specimens belonging to different taxa - is not useful to support Pr. provincialis as a valid species.

The first representatives of the successful genus Sus appeared in Eurasia in the Pliocene and spread in the Pleistocene. Sus arvernensis is the earliest recognized species of Sus (Gallai, 2006). It is a small-sized suine that occurs in the Eurasian Pliocene (MN14-MN16; Ruscinian and Early

Villafranchian LMAs), from Spain to China (Van der Made and Moyà-Solà, 1989; Berdondini, 1992), although the latter record probably needs to be revised. This species overall shows a very convoluted taxinomic history (Pickford and Obada, 2016). In this work, we consider S. minor as a junior synonym of S. arvernensis following Guérin and Faure (1985).

Sus arvernensis is closely related and probably ancestral to the larger S. strozzii (Azzaroli, 1954, 1975; Berdondini, 1992; Pickford, 2012, 2013a; Pickford and Obada, 2016). The latter is a common element of Eurasian mammal assemblages referred to the first half of the Early Pleistocene (MN17-MNQ19; Middle to early Late Villafranchian LMA) (Rook and Martínez-Navarro, 2010) and occurred in the whole southern part of Europe and western Asia, from Spain to the northeastern Azov Sea area in Russia (Titov, 2000; Kostopoulos and Athanassiou, 2003). However, the recent paper by Bona and Sala (2016) describes a mandible clearly belonging to S. strozzii from the Arda River (Italy) dated to about 0.99 Ma , which might represent the last occurrence of the species.

According to many scholars (Azzaroli, 1954, 1975; Berdondini, 1992; Pickford, 2012;
Pickford and Obada, 2016), S. arvernensis would be ancestral not only to S. strozzii, but also to a wide group of Asian suids characterized by "verrucosic" lower canines (see Section 4). This group includes some of the living Island South East Asia (ISEA) pigs (S. verrucosus and S. celebensis) and some related fossil forms (S. brachygnathus and S. macrognathus) (Pickford, 2012). All the above species (i.e. all the extinct and extant alleged relatives of S. arvernensis showing a verrucosic lower canine) were referred to the genus Dasychoerus by Pickford (2012).

Numerous fossil species of Suinae are described in the Pleistocene of China. Sus lydekkeri is restricted to the northern part of the Country, while S. xiaozhu, S. bijiashanensis, S. peii (including S. australis), and S. liuchengensis are found in southern China (Han et al., 1975; Han, 1987; Liu et al., 2017). Among them, only the closely related Early-Middle Pleistocene S. lydekkeri and S. peii are represented by significantly rich fossil samples. These two species are approximately as large as the European S. strozzii, but they show several morphological affinities with the extant S. scrofa and might even be its ancestors (Dong et al., 2006, 2013; Liu et al., 2017). According to Fujita et al.
(2010), the similarities between S. lydekkeri and S. scrofa are so strong that the former should be considered as a chronosubspecies of S. scrofa, namely S. scrofa lydekkeri.

After its appearance in Asia, S. scrofa spread in Europe at the end of the Early Pleistocene, apparently finding empty ecological niches to fill. As a matter of fact, Martínez-Navarro et al. (2015) showed that no suid remains are found in Europe during the last part of Villafranchian (approximately from 1.8 to 1.2 Ma), in contrast to what is observed before and after this interval, when these animals represent almost ubiquitous elements in the mammal faunas. After this hiatus, "modern" suines re-appeared in the European Epivillafranchian record with fossils attributed to Sus sp. (Sima del Elefante and Vallparadís Estacio in Spain; Vallonnet in France) or to the ancestor of the living wild boar, S. scrofa priscus (Untermassfeld in Germany) (Bellucci et al., 2015; MartínezNavarro et al., 2015). The aforementioned late finding of S. strozzii from the Arda River (Bona and Sala, 2016) should now be included in this Epivillafranchian suine contingent. In addition, Freudenthal (1971) and De Giuli et al. (1986) include Sus sp. in the faunal list of Pirro Nord (latest Villafranchian of southern Italy). Therefore, the "gap" in suid fossil record might be interpreted as a mere lack of documentation.

Despite the rich fossil record of suines in Europe, with different species and several specimens described, very little has been done so far to try reconstructing their phylogenetic relationships, as well as those with Miocene to Pleistocene taxa from Africa and Asia, and with living pigs. This paper tries to partially fill this gap by offering the first phylogenetic analysis based on craniomandibular and dental characters of suines. The work is focused on S. strozzii, the best represented fossil species from the Villafranchian LMA in Europe. Its record is here enriched with a very well-preserved mandible from the Early Pleistocene site of Pantalla, central Italy. The main research questions that we want to address are: What are the relationships between S . strozzii and its putative ancestor, S. arvernensis? How are these extinct pigs related to the living species of Sus? In general, what phylogenetic relationships can be reconstructed between European, African, and Asian taxa?

2. Materials and methods

2.1. Materials

The new specimen of S. strozzii (SBAU 337647) from Pantalla (central Italy) is compared to the mandibles and lower teeth of the same species from the Upper Valdarno (IGF 414, 416, 418, $422,424,4006,5979,8968,8970,8975)$, Olivola (IGF 4007, 4008, 4606) and Senèze (NHMB Se1775) (Azzaroli, 1954), from locality "Frantoio", Arda River (MCCA Vt-090) (Bona and Sala, 2016), and from the Sables marins de Montpellier (MNHN F.MON-13) (Pickford, 2013a). Additional comparisons are made with S. arvernensis, i.e. the Eurasian species preceding stratigraphically S. strozzii. The following lower jaw and teeth of S. arvernensis are considered: MNHN F.PET-2005 from Les Étouaires and IZASM no num. from Dermenji (Pickford and Obada, 2016); NHMB VI-144 and VI-145 from Villafranca d'Asti (Berdondini, 1992); CCECL Pp-195 and FSL Rss-70 from Perpignan (Azzaroli, 1954); FSL 40.061 and 40.154 from the Sables marins de Montpellier (Pickford, 2013a); MNHN ACA-311 from Çalta (Guérin et al., 1998). Using descriptions and illustrations available in the literature, the new material is compared to S. lydekkeri from China (Dong, 2008; Liu et al., 2017) and to S. brachygnathus and S. macrognathus from Indonesia (Hardjasasmita, 1987). The list of fossil Suinae considered in this paper (including those included in the phylogenetic analysis; see below) is in Table 1. The mandibles of the following living Suinae are also used for comparison: Hy. meinertzhageni (MZUF 1233, NHMUK 63.617, NHMUK 63.623); Ph. aethiopicus (MZUF 13305); Ph. africanus (MZUF 763, NHMUK 66.516, NHMUK 66.521); Po. larvatus (MZUF 2728, NHMUK 66.514); Potamochoerus sp. (MZUF 1977, NHMUK 6.12.4.71); S. barbatus (NHMUK 0.3.30.13, NHMUK 90.6.25.10); S. celebensis (NHMUK 61.12.11.26); S. scrofa (MZUF 754, MZUF 8516, MZUF 11917, NHMUK 1989.407,

NHMUK 76.410); and S. verrucosus (NHMUK 67.4.12.211, NHMUK 67.4.12.216). The dental nomenclature (Fig. 1) follows Fujita et al. (2000).

Morphometric measurements (Fig. 1) of the Pantalla specimen were recorded to the nearest 0.1 mm with a digital calliper mainly following Von der Driesch (1976). Morphometric data for comparison are from Hardjasasmita (1987) and Pickford (2012, 2013a, 2013b).

Following the proper Greek etymology (Pasteur, 1976), in this paper we prefer using the spelling "taxinomy" (and "taxinomic") instead of the commonly used "taxonomy" (and "taxonomic").

2.2. Tomography

The analysed specimen was scanned through a Philips Brilliance CT 64-channel scanner at the 'M.G. Vannini' Hospital of Rome (Italy) in order to study the internal anatomy and to reconstruct a virtual 3D model. The specimen was scanned in the coronal (i.e. transverse) plane from rostral to caudal. The scanning resulted in 476 slices (i.e. images) of 768×768 pixels each. The slices were 0.8 mm thick with an interslice space of 0.4 mm . Segmentation and 3D rendering of the fossil were computed using Osirix 3.9.4 32-bits for Mac, an open-source image processing software dedicated to DICOM files, and the 3D open-source software Blender 2.63a Intel 32 bits for Mac. A short video showing the 3 D reconstruction of the specimen is available in Appendix 1.

2.3. Phylogenetic analysis

In association with detailed observations of extant and fossil specimens and bibliographical data, 52 morphological characters (23 cranial, 9 mandibular, and 20 dental) were coded for 19 taxa (character list in Appendix 2; data matrix in Appendix 3). Of these characters, 32 were selected from the literature (Azzaroli, 1954; Hardjasasmita, 1987; Geraads, 2004; Orliac et al., 2010a;

Souron, 2012; Souron et al., 2015) and either used directly or modified for coding, as specified in Appendix 2. All characters were treated as unordered and unweighted. The phylogenetic reconstruction was carried out in PAUP*4.0 (Swofford, 2002), under parsimony using heuristic searches with tree bisection reconnection branch-swapping algorithm and ACCTRAN optimisation. Branch support was calculated with 100000 bootstrap replicates with random stepwise addition, and with Bremer index using the bremer.run script in TNT 1.5 (Goloboff and Catalano, 2016).

As outgroup, we selected the tetraconodontine suid Nyanzachoerus khinzir, represented by well-preserved craniomandibular material described and figured by Boisserie et al. (2014). The ingroup consists of 18 extinct and extant Suinae. It includes all the aforementioned taxa used for the comparative analysis of the new specimen from Pantalla, i.e. the extinct S. strozzii, S. arvernensis, S. lydekkeri, and S. brachygnathus (we excluded only S. macrognathus given the absence of sufficiently complete craniomandibular material) and the extant S. barbatus, S. celebensis, S. scrofa, S. verrucosus, H. meinertzhageni, Phacochoerus spp. and Potamochoerus spp. Among the living species, S. scrofa is characterized by a strongly marked polymorphism, which reflects in the differentiation in a large number of geographical subspecies (Albarella et al., 2009 and references therein). In order to minimize the influence of intraspecific variability, we analysed several craniomandibular specimens of S. scrofa collected in different geographical areas, considering both direct observation of museum samples (see above) and data gained from the literature (Hardjasasmita, 1987).

The taxinomic sample for the phylogenetic analysis was expanded with the Miocene Eurasian species Mi. major (data from Van der Made and Hussain, 1989; Van der Made et al., 1992; Kostopoulos et al., 2001; Liu et al., 2004, 2005; Sylvestrou and Kostopoulos, 2009) and with representatives of the two most characteristic suine groups of the African Plio-Pleistocene record: Kolpochoerus and Metridiochoerus. Taking into account the availability of well-preserved skulls and based on previously published phylogenetic information, for each genus we selected two species for each genus: K. afarensis (data from Cooke, 1978b; Harris and White, 1979; Geraads,

2004; Souron, 2012; Souron et al., 2015) and K. phillipi (data from Souron et al., 2015), M. shawi (data from Bender, 1992; Cooke, 2005) and M. andrewsi (data from Harris and White, 1979; Pickford, 2013c, 2013d), respectively. Finally, we also included in the ingroup also the disputed species "K." phacochoeroides from Maghreb (data from Geraads, 2004; Souron, 2012) and "S." falconeri from the Indian-Pakistan Siwalik Hills (Lydekker, 1884; Pickford, 2012; personal observations of NMI F. 18583 and NHMUK M2012).

Institutional abbreviations - CCECL: Centre de Conservation et d'Étude des Collections, Lyon (France); FSL: Faculty of Science, Lyon (France); IGF: Museo di Storia Naturale, Sezione di Geologia e Paleontologia, Università di Firenze (Italy); IZASM: Institute of Zoology, Academy of Sciences of Moldova; MCCA: Museo "G. Cortesi" of Castell'Arquato, Piacenza (Italy); MNHN: Muséum National d'Histoire Naturelle, Paris (France); MZUF: Museo di Storia Naturale, Sezione di Zoologia "La Specola", Università di Firenze (Italy); NHMB: Natural History Museum of Basel (Switzerland); NHMUK: Natural History Museum, London (UK); NMI: National Museum of Ireland, Dublin (Ireland); NNMO: Nihewan National Nature Reserve Management Office, Hebei Province (China); SBAU: Soprintendenza per i Beni Archeologici dell'Umbria, Perugia (Italy). \boxtimes

3. Systematic palaeontology

Order: Artiodactyla Owen, 1848
Family: Suidae Gray, 1821
Subfamily Suinae Zittel, 1893
Genus Sus Linnaeus, 1758

Sus strozzii Forsyth Major, 1881
(Fig. 1, Table 2)

Type material: Lectotype IGF 424, partial skeleton of an adult male including the cranium with associated mandible, 4 cervical, 14 thoracic, and 2 lumbar vertebrae, some fragmented ribs, both scapulae, and the proximal part of the left humerus. The lectotype was selected by Azzaroli (1954) since no type material was reported by Forsyth Major (1881).

Emended diagnosis: Large-sized suine with relatively narrow parietal region of the cranium; gently undulating dorsal cranial profile in lateral view, with slight ventral concavity in the middle part; widely diverging and pneumatized zygomatic arches tending to be broader in the middle than at the rear (more gracile in females); laterally expanded nasals separated by a bony prominence; rostrocaudally elongated and rugose supracanine flange in males (more gracile in females); labial longitudinal thickening of the mandibular corpus (more gracile in females), with major lateral convexity in the middle; absence of I3; thick enamel in cheek teeth; verrucosic lower canines; absent or very small talonid in p 3 and p 4 ; elongated m 3 with single cuspid (hypopreconulid) between the mesial and distal lobe and well-developed talonid composed by four main cuspids arranged in a cross (modified and extended from Azzaroli, 1954, Koufos, 1986, Berdondini, 1992, and Pickford and Obada, 2016).

Type locality: Upper Valdarno Basin, Tuscany (Italy).

Chronological occurrences: Early Pleistocene: Middle-early Late Villafranchian (about 2.51.8 Ma) plus Epivillafranchian (about $1.2-1.0 \mathrm{Ma}$); no confirmed records from the late Late Villafranchian (about 1.8-1.2) are known to date.

Geographical occurrences: Europe and western Asia, from Spain to Azerbaijan.

New material: SBAU 337647 (Fig. 2; 3D model in Appendix 1), left hemimandible still articulated with a small and damaged portion of the right corpus. Incisors' roots, lower canine, and p2-m3 are preserved. Specimen is referred to an adult male.

Geographical and geological framework: The site of Pantalla is located about 30 km south of Perugia (Italy; $42^{\circ} 52^{\prime} 46.79^{\prime \prime} \mathrm{N}, 12^{\circ} 24^{\prime} 23.26^{\prime \prime} \mathrm{E}$; Fig. 3). The mammal assemblage was recovered from two different levels of a 15 m -thick stratigraphic succession referred to the Early Pleistocene Santa Maria di Ciciliano Unit (Gentili et al., 1997). SBAU 337647 come from the lowermost fossiliferous level. In addition to the suid described herein, the Pantalla mammal assemblage includes Apodemus cf. A. dominans, Canis etruscus, Vulpes sp., Lynx issiodorensis valdarnensis, Acinonyx pardinensis, Lutraeximia umbra, Leptobos merlai, Pseudodama nestii, Equus sp., and Mammuthus cf. M. meridionalis (Cherin et al., 2013a, 2013b, 2014a, 2014b, 2016, 2017). The assemblage is referred to the early Late Villafranchian LMA (Olivola/(Tasso?) Faunal Units) (Gentili et al., 1997; Cherin et al., 2017), in a time interval ranging approximately between 2.1 and 1.9 Ma (Nomade et al., 2014).

4. Description

4.1. Mandible

The specimen SBAU 337647 (Figs 2, 4A; 3D model in Appendix 1) is a left hemimandible with a small portion of the right corpus still preserved in the symphysis area. The fossil is overall undeformed and exquisitely preserved, although the fragmentation of the ramus prevents the description of the mandibular condyle.

In occlusal view, the mandibular corpus appears rather massive, in particular in the molar portion. The labial surface of the corpus is characterized by a longitudinal swelling (pachygnathy in Arambourg, 1947) running from the canine to the ramus base. This swelling is almost subparallel to the tooth row, but shows a greater lateral convexity in the middle part. The high density of this portion is evidenced by tomographic images (Fig. 4B). Distolabially to m 3 , the corpus enlarges in a triangular and very concave area. The preserved portion of the right corpus is extremely small, being represented only by the incisor area and a narrow strip of the rostromedial wall. Thanks to these preserved fragments, it is possible to estimate an angle of divergence between the corpi of about 30 degrees. The symphysis is relatively long and extends caudally up to half length of p 2 .

In labial view, the dorsal and ventral margins of the corpus are parallel each other. The rostroventral margin forms a wide obtuse angle with the ventral one (mental prominence in Von der Driesch, 1976), in correspondence of the diastema between p 1 and p 2 . Two mental foramina are recognisable. The first, narrow and elongated, is in the rostrolabial part, just below the i3 alveolus. The second, smaller and rounded, is about 2 cm below the mesial margin of p 2 . The labial surface of the canine alveolus is characterized by a bulging rim. Similarly, a thin longitudinal swelling (extramolar ridge in Fujita et al., 2000) develops ventrally to the cheek teeth, from p 3 to m 3 . In lingual view, the mandibular fossa extends rostrally up to the contact between m 2 and m 3 .

The basal portion of the ramus is relatively flat laterally and markedly concave medially. The rostral margin of the ramus begins to rise vertically in a relatively backward position, so it does not cover the m 3 nor in a labial or lingual view. The lateral surface of the gonial angle shows roughness and small undulations (lateral masseter tubercles), which correspond to the insertion area of the masseter muscle. The latter are much more marked on the medial surface, where they become at least four deep furrows (medial pterygoid tubercles) and correspond to the insertion area of the medial pterygoid muscle.

4.2. Lower dentition

The hemimandible retains the canine, three of the four premolars (p 2 , p 3 , and p 4), and the three molars, while the crowns of the incisors and the p 1 are not preserved. In occlusal view, the teeth from the canine to ml are aligned along an axis inclined caudomedially with respect to the long axis of the corpus. The cheek teeth are low crowned and show a medium to high degree of wear, with ml being the most worn tooth. There is a short diastema between the canine and the p 1 alveolus and a second, longer diastema between the latter and p 2 .

4.2.1. Lower incisors

The incisor crowns are not preserved. However, the analysis of tomographic images allows to identify the roots of all the incisors (Fig. 4C). The roots of i1s and i2s are particularly well visible. They are fusiform and elongated, extending up to the level of the p 1 alveolus. The roots of i3s are small and poorly preserved and the left one is positioned close to the canine.

4.2.2. Lower canine

The left canine is massive and well preserved. It projects dorsally and laterally, forming angles of about 90 and 60 degrees with the main axis of the corpus in labial and occlusal views, respectively. The apex of the canine is oriented slightly caudally. The canine can be defined as "verrucosic", i.e. in a cross section of the crown, the labial and lingual sides are similar in size, and are larger than the distal one. On the contrary, in the "scrofic" lower canines the distal side is larger than the labial (Stehlin, 1899-1900; Hardjasasmita, 1987). A thin layer of enamel only covers the labial and lingual surfaces of the tooth, although it is almost completely eroded from the latter surface. Though oblique light it is possible to observe that the enamel surface is furrowed both by parallel longitudinal lines and by curved enamel growth lines perpendicular to the long axis of the tooth. CT images allow to appreciate the remarkable development of the canine root, whose open
inner extremity extends inside the dentary up to the mesial edge of m 2 , that is, up to half length of the corpus (Fig. 4D).

4.2.3. Lower premolars

The p 1 alveolus is small and sub-circular and located very close to the canine, after a 4-mmlong diastema. The CT scans reveal that the alveolus is fully filled by sediment, thus suggesting that the tooth has fallen before the burial. CT images, although not sufficiently clear due to the sediment filling, suggest that p 1 had single root. The $\mathrm{p} 2, \mathrm{p} 3$, and p 4 have two roots. The p 2 is almost completely destroyed, with the exception of a thin enamel layer on the labial side.

The p 3 is better preserved that p 3 , but lacks most of the lingual portion of the crown. In labial view, the crown is trapezoidal in shape, with the dorsal angle formed by the high protoconid. The latter forms a sharp cutting edge with the worn and steep paraconid (mesially) and metaconid (distally), which are similar in height. Two small stylids are visible respectively on the mesiolabial and distolabial extremities of the crown. The cervix is lowered below the paraconid and metaconid to form the presynclinid and postsynclinid, respectively, while it is raised below the protoconid to form a pointed anticlinid.

The p 4 is the best-preserved premolar. It has a squared occlusal outline, which is broader than that of p 3 . In occlusal view, the paraconid, metaconid, and hypoconid are aligned forming the main cutting edge, although the metaconid is slightly shifted lingually. Conversely, the protoconid occupies a labial position between the paraconid and metaconid. The protoconid is the highest cusp in labial view. As in p3, the labial side of the tooth exhibits a mesial and a distal stylid, the latter being preceded by a deep vertical furrow. The labial cervix undulates as in p 3 , but the anticlinid is less marked.

4.2.4. Lower molars

The molars are robust, bunodont, and brachyodont. The tomographic images show that m1 and m 2 have four slender roots in correspondence of the four main cuspids, while m 3 has a fifth accessory root below the talonid. The advanced state of wear makes the m 1 difficult to describe. Its occlusal outline is 8 -shaped, with a medial constriction separating the mesial cuspids (protoconid and metaconid) from the distal ones (hypoconid and entoconid). A small enamel island interpretable as the hypoectoconulid, is visible on the labial side of the medial constriction. Distally, the crown seems to show a small additional median cusp (pentaconid?).

The m 2 is sub-rectangular in occlusal shape, with the distal portion slightly broader than the mesial. The entoconid is the best preserved cuspid, while the hypoconid and especially the protoconid and metaconid are heavily worn and fragmented. Between the distal and mesial main cuspids, a distinct hypopreconulid is present and a small pentaconid is barely distinguishable at the distal end of the crown. A swelling on the labial surface of the hypoconid can be interpreted as a cingulum.

The m3 is very well preserved. It has an elongated and mesiodistally tapered occlusal appearance, with relatively squared mesial outline and rounded distal outline. The occlusal constrictions separating the three lobes of the tooth are not deep. The enamel is very thick and in the four main cuspids, it is characterized by well-marked invaginations (furchen of Hünermann, 1968). The metaconid is larger than the protoconid and in turn, the two are larger than the hypoconid and entoconid. No mesial cingulum is present. In both the metaconid and protoconid, the distal furchen (number 6 and 3, respectively; Fig. 1) is very deep. The hypopreconulid is large approximately half of the main cuspids and is triangular in occlusal shape. The third lobe of the m 3 is long and massive and is composed by four main cuspids arranged in a cross. The pentapreconulid is slightly smaller than the hypopreconulid and a pentaectoconulid is well visible on its labial side. The pentaconid, hexaconid, and heptaconid are approximately the same size. A small tubercle is visible on the labial corner of the heptaconid. Another, smaller tubercle develops lingually, between the entoconid and hexaconid. In labial view, two vertical grooves cross the wall of the protoconid and two others that
of the hypoconid. Similarly, the walls of the talonid show some shallow vertical grooves or undulations. The cervix is more undulated on the lingual side than on the labial.

5. Comparisons and discussion

Measurements of the hemimandible SBAU 337647 are given in Table 2 and a length-width diagram of m 3 of selected extant and extinct Sus species is available in Figure 5.

The studied specimen belongs to an adult individual, as evidenced by the complete eruption of the permanent teeth and their state of wear. The massive and elongated lower canine and the labial thickening of the corpus allow referring the hemimandible to a male.

5.1. Comparisons with previously described specimens of Sus strozzii

Most characters of SBAU 337647 clearly fit the general mandibular and lower tooth morphology of S. strozzii described in the literature. Similarities with the lectotype IGF 424 (Azzaroli, 1954) are remarkable (Fig. 6A-B). In occlusal view, the symphysis area is equally developed in the two specimens, extending distally up to the contact between p 2 and p 3 . The labial longitudinal swelling follows the same outline. In labial view, the two mandibles appear similarly slender and elongated and the ventral outlines are almost identical. In both specimens, the labial cervix of the lower canine and cheek teeth is ventrally bounded by a longitudinal ridge. Similar features are recognisable in the other male mandibles from the Upper Valdarno (IGF 414, 8970) and Olivola (IGF 4006), as well as in the complete mandible from Senèze NHMB Se-1775 (Azzaroli, 1954) (Fig. 6C), although the overall shape of this specimen is more gracile due to the subadult age of the individual. The partial mandible from the Arda River MCCA Vt-090 (Bona and Sala, 2016) differs from SBAU 337647 in the shorter symphysis, which does not exceed distally the mesial margin of p 2 .

The lower teeth also exhibit the typical S. strozzii morphology. The shape, size, and orientation of the impressive lower canine fit those of IGF 4006 from Olivola and MCCA Vt-090 from the Arda River. As in all the analysed S. strozzii specimens, p 1 is very small and located few millimetres behind the canine. Again, the lower cheek teeth of SBAU 337647 closely look alike those of the lectotype IGF 424, also in the wear stage, suggesting a similar age for the two individuals. In both specimens - as well as in IGF 416 and 8970 from the Upper Valdarno, IGF 4006 and 4007 from Olivola, and NHMB Se-1775 from Senèze - p2 and p3 are relatively narrow, while p 4 is wider, especially in the distal part. The m 1 and m 2 are poorly preserved in the Pantalla hemimandible, but their general shape recalls that of the corresponding teeth of the lectotype. The m 2 of MCCA Vt-090 from the Arda River is peculiar in having a more-developed pentaconid. The elongated m3 of SBAU 337647 displaying a long and robust talonid with distal lobe composed by four main cuspids, is very similar to that of IGF 424, IGF 4006, NHMB Se-1775, and MCCA Vt090. Conversely, some other male specimens of S. strozzii such us IGF 414, 4007, and 8970 , show relatively shorter and stouter m 3 talonids. The same condition is observed in the m 3 MNHN F.MON-13 from Montpellier (Pickford, 2013a), which also differs from the Pantalla m3 in the presence of a well-developed mesial cingulum and in the different size and arrangement of the talonid cuspids, dominated by the very large heptaconid located in distolabial position.

In light of the morphological comparisons, attribution of the new material to S. strozzii is well supported. As for the size of m 3 (Fig. 5), SBAU 337647 falls in the upper dimensional range of S. strozzii and represents one of the larger Sus individuals among those analysed.

5.2. Comparisons with Sus arvernensis

According to many scholars, the Ruscinian to Early Villafranchian small-sized Eurasian pig S. arvernensis is the putative ancestor of S. strozzii, from which it differs essentially in its smaller dimensions (Azzaroli, 1954, 1975; Berdondini, 1992; Pickford, 2012, 2013a; Pickford and Obada,
2016). This is confirmed in our comparative morphometric analysis (Fig. 5), in which the dimensional ranges of the length and width of m 3 for the two species are completely separated, with the values of S. strozzii larger than those of S. arvernensis by just over 30% on average.

When compared morphologically to the holotype of S. arvernensis MNHN F.PET-2005 from Les Étouaires (Pickford and Obada, 2016: figs 3-6), SBAU 337647 is different in its significantly longer symphysis in occlusal view. Conversely, the symphysis length and general shape of SBAU 337647 is similar to what observed in the exquisitely preserved mandible of S. arvernensis NHMB VI-144 from Villafranca d'Asti (Berdondini, 1992, Pickford and Obada, 2016) (Fig. 6D). However, the latter specimen differs from SBAU 337647 in the ventral outline of the corpus, which tapers rostrally without the typical mental prominence below the $\mathrm{p} 1-\mathrm{p} 2$ diastema observed in S. strozzii and in SBAU 337647.

The lower teeth of S. arvernensis from Les Étouaires (Pickford and Obada, 2016), Perpignan (Azzaroli, 1954), Montpellier (Pickford, 2013a), Villafranca d'Asti (Berdondini, 1992, Pickford and Obada, 2016), Dermenji (Pickford and Obada, 2016), and Çalta (Guérin et al., 1998) are smaller in size but similar in shape to those of the mandible from Pantalla, but the enamel occlusal patterns observed in the latter - and in S. strozzii, in general - are more complex that in S. arvernensis.

5.3. Comparisons with Sus lydekkeri

Among the numerous fossil species of Sus described in the Quaternary of China (see Section 1), we consider here only S. lydekkeri from the Early-Middle Pleistocene of the northern part of the country, as it is the only species for which significantly preserved mandibular material is known. The knowledge of this taxon is significantly increased thanks to the recent discovery of a complete cranium (NNMO HY13-58.1) with mandible (NNMO HY13-58.2) from Yangshuizhan in Nihewan Basin (Liu et al., 2017). However, contrary to what the authors wrote, we believe that the

Yangshuizhan skull belongs to a male, mainly on the basis of the very long lower canines and the well-developed supracanine flanges.

The mandible and lower teeth of S. lydekkeri (NNMO HY13-58.2) are overall similar to those from Pantalla in the following characters: development of the symphysis; obtuse angle between the corpus and ramus; shape of the labial longitudinal swelling of the corpus in occlusal view; occurrence of distinct stylids in p 3 and p 4 ; relative length of the m 3 talonid.

On the other hand, the following are the main differences between the two specimens: in labial view, the gonial angle extends below the ventral margin of the corpus in S. lydekkeri; the lower canine is verrucosic in the Yangshuizhan fossil (Liu et al., 2017), but is generally defined as intermediate between scrofic and verrucosic in S. lydekkeri (Fujita et al., 2000; Chen, 2004; Dong, 2008), while it is always verrucosic in S. strozzii (including SBAU 337647); the p 1 is absent in NNMO HY13-58.2; in the latter specimen, the p4 exhibits distinct separation between the metaconid and hypoconid; the pentaconid of m 1 and m 2 are much more developed; in the m 3 , the mesial cingulum, protopreconulid, and protoendoconulid (all absent in SBAU 337647) are well developed, while the heptaconid in much smaller than in SBAU 337647; overall, the lower molar enamel occlusal pattern of S. lydekkeri is less complex. Most of the above dental features fit the conditions observed in S. scrofa, confirming the putative relationships between these taxa (Fujita et al., 2000; Dong et al., 2006, 2013; Liu et al., 2017).

5.4. Comparisons with extinct and extant pigs from Island South East Asia (ISEA)

ISEA is today characterized by the occurrence of numerous Sus species, often endemic to one or more islands of variable size, suggesting multiple events of allopatric speciation. These species are sometimes grouped as the "warty pigs" (Groves and Grubb, 1993), being characterized by the presence of facial warts of different kind, particularly developed in males. However, warts occur also in the African Phacochoerus, Potamochoerus, and Hylochoerus, which are not
phylogenetically related to the ISEA pigs (Gongora et al., 2011, Frantz et al., 2013). For this, here we avoid using the term "warty pigs".

Among living ISEA species, we focused our comparative analysis on the three best known taxa, i.e. the Javan Warty Pig S. verrucosus, the Bearded Pig S. barbatus, and the Sulawesi Warty Pig S. celebensis. In addition, we considered the closely related extinct S. brachygnathus (Indonesia) and S. macrognathus (Indonesia and other Asian localities; see Table 1) (Hardjasasmita, 1987). We did not include in the comparison the Philippines species S. philippensis, S. cebifrons, S. oliveri, and S. ahoenobarbus (taxinomy from Frantz et al., 2016) due the small number of available samples in museums and the scarcity of the literature data available about their craniomandibular and dental anatomy.

The mandible and lower teeth of the Pantalla suid share several characters with living and fossil ISEA species: the ventral margin of the mandible is identical to that observed in S. verrucosus, S. barbatus, and S. celebensis (in S. brachygnathus the gonial angle is shifted ventrally; no mandibles of S. macrognathus are known to date); the symphysis is approximately as long as in the ISEA pigs (although in S. barbatus, the whole mandible including the symphysis area, appears more slender and elongated); the strong longitudinal swelling of the corpus with a major convexity in the median part is common to all species; in all taxa, the lower canine is verrucosic, p 2 and p 3 show distinct stylids, the p4 has aligned paraconid, metaconid, and hypoconid forming a continuous cutting edge, the enamel of the molars exhibits complex occlusal patterns. Although fragmented, the ascending ramus of SBAU 337647 seems to form a wide angle with the corpus, as observed in S. barbatus. The p 1 is present in all species (not known in S. macrognathus), but is positioned very close to the canine only in SBAU 337647, S. verrucosus, and S. brachygnathus. The m 3 of the Pantalla hemimandible is longer and wider than that of the considered ISEA pigs (Fig. 5). In general, the lower part of the dimensional range of S. strozzii partially overlaps the upper ranges of S. verrucosus and S. barbatus, while S. brachygnathus and especially S. celebensis are characterized by smaller dimensions (Fig. 5). The general morphology of m3 and cuspid size and topology are
similar in all taxa. In particular, they all share a strong talonid with distal lobe composed of four main cuspid of similar size arranged in a cross. The relative length of the $m 3$ talonid of SBAU 337647 fits that of S. brachygnathus, S. macrognathus, and S. celebensis, while the talonid is slightly longer in S. verrucosus and S. barbatus.

5.5. Comparisons with Sus scrofa

The Wild Boar S. scrofa has one of the widest geographic distributions of all terrestrial mammals, spanning the whole Eurasia and Maghreb. This is reflected in a wide range of morphological and metrical variation (Groves and Grubb, 1993). Despite this strong polymorphism, we recognized in the analysed mandibles the following morphological characters that differentiate S. scrofa from SBAU 337647: the labial longitudinal swelling of the corpus is straight in occlusal view, without the convexity in the middle part observed in the Pantalla specimen; the angle between the corpus and the ramus is almost right; the lower canine is scrofic; p 1 is small; p 2 and p 3 do not show clear stylids; in the majority of the specimens, the cuspids of the p 4 are clearly separated; the occlusal enamel pattern of the molars is simpler than in SBAU 337647 ; m 1 and m 2 show a welldeveloped pentaconid, mesially in contact with a smaller pentapreconulid; m3 has an evident mesial cingulum; between the main mesial and distal cuspids of m3, the protoendoconulid and hypopreconulid are equally developed and often associated to a hypoectoconulid in labial position.

From the morphometric point of view (Fig. 5), the considered Wild Boar's third lower molars are smaller than those of S. strozzii, including SBAU 337647. The range of S. scrofa is intermediate between those of S. arvernensis and S. strozzii, and partially overlaps those of S. lydekkeri, S. verrucosus, and S. barbatus.

5.6. Comparisons with Potamochoerus

The mandible from Pantalla and that of the African Potamochoerus share some general features (e.g. the overall elongated shape in labial view, with abrupt angle between the ventral and the rostroventral margins and obtuse ramus with respect to the corpus), but a detailed analysis highlights the following significant differences: the symphysis is equally elongated, but Potamochoerus is distinguished in having a bony shelf at the caudoventral extremity of the symphysis, well visible in occlusal view (Souron, 2012); in Potamochoerus, the longitudinal swelling along the corpus is straight; the lower canine is scrofic; the cheek teeth are covered by thicker enamel and are relatively poorly folded; p 1 is almost always absent; p 2 is markedly smaller than p3 (this condition was also observed in S. arvernensis by Pickford and Obada, 2016); there are no stylids in p 2 and p 3 ; p 4 is the most distinctive tooth, characterized by a massive and conical protoconid (Azzaroli, 1975); the pentaconid of m 1 and especially m 2 is well developed; the m 3 talonid is proportionally shorter and has pentaconid and hexaconid smaller than pentapreconulid and heptaconid. Notwithstanding the above characters, it is worth noting that Potamochoerus is characterized by significant intraspecific variation in tooth number and morphology. For instance, Boisserie et al. (2014) observed absence of p2 in 2\% of Po. larvatus and 16% of Po. porcus out of 132 specimens analysed, as well as a high degree of variation in the morphological complexity of the m 3 talonid.

5.7. Comparisons with Kolpochoerus and Hylochoerus

The extinct African genus Kolpochoerus is closely related to the living Hy. meinertzhageni (White and Harris, 1977; Harris and White, 1979). As a matter of fact, the Giant Forest Hog should be considered as a member of Kolpochoerus, which is thus paraphyletic (Souron et al., 2015; see Section 6). The mandibles of these taxa share a number of morphological characters, which differentiate them from the Pantalla specimen: the symphysis area is relatively shorter and wider; the lower canine is verrucosic, but proportionally much more elongated, especially in

Kolpochoerus; p 1 is usually absent and p 2 is very reduced in Kolpochoerus and absent in Hylochoerus; the postcanine diastema is much longer; p 2 and p 3 do not have visible stylids; the main cuspids of p 4 are clearly separated; the enamel folding pattern is less complex; in some species of Kolpochoerus (i.e. K. phillipi and K. majus) and in Hylochoerus, the main cuspids of m3 are mesiodistally compressed (Souron et al., 2015); the m 3 talonid is approximately as developed as in SBAU 337647, but is characterized by an additional mesial cuspid adjacent and sometimes partially fused to the pentapreconulid; K. olduvaiensis, K. paiceae, and Hylochoerus shows a longer talonid with additional cuspids (Souron et al., 2015).

5.8. Comparisons with Metridiochoerus and Phacochoerus

The African Wart Hog Phacochoerus probably originated from the Plio-Pleistocene Metridiochoerus clade (Cooke, 1978b, 1982; Harris and White, 1979). The mandible and lower dentition of these taxa are considerably different from the Pantalla specimen in several aspects, among which noteworthy are the relatively short and wide symphysis area in occlusal view especially in males, the rostrocaudally enlarging labial longitudinal swelling of the corpus, the elongated blade-like lower canines in males. In addition, late species of Metridiochoerus and the living Phacochoerus are characterized by the absence of p 1 and p 2 , the high-crowned molars, and the extremely elongated m 3 talonid with multiple tightly packed additional cuspids.

Most of the above characters are also observed is "Kolpochoerus" phacochoeroides from Maghreb (Geraads 2004), which aligns better with Metridiochoerus as suggested by Souron (2012, 2015).
5.9. Comparisons with "Sus" falconeri

The only male mandible of "S." falconeri (NHMUK M2012) found to date in the Siwalik Hills (Lydekker, 1884) shares some similarities with the hemimandible from Pantalla, that is, the mesial position of p 1 , the blade-like occlusal pattern of p 4 , and the complexity of enamel folding in molars. However, NHMUK M2012 differs from SBAU 337647 in the wide and short symphysis area, in the longer m 3 talonid with an additional distolingual cuspid, and especially in the highcrowned cheek teeth ("S." falconeri is defined as hypsodont by Pickford, 2013a), characterized by the presence of vertical grooves on the side cusps (Souron, 2012, 2015). All these characters support the suggestion by Souron $(2012,2015)$ that "S." falconeri belongs to Metridiochoerus, rather than to Kolpochoerus (Chavasseau, 2008; Pickford, 2012, 2013a; Pickford and Obada, 2016). Already Colbert (1935) and Azzaroli (1954) had noticed the affinities between " S." falconeri and Phacochoerus (i.e. an advanced relative of Metridiochoerus). Gaur (1987) had also detected the similarity in third molar morphology between Metridiochoerus from eastern Africa and S. choprai, a new species he described from the Siwaliks, now considered as a junior synonym of " S." falconeri. Azzaroli (1954) and Gaur (1987) interpreted these similarities as a result of convergent evolution.

6. Phylogenetic relationships

The phylogenetic analysis produced two equally parsimonious phylogenetic trees of 143 steps, consistency index of 0.427 and retention index of 0.619 . Figure 7 shows the strict consensus tree, with node support indicated by Bremer and bootstrap values. The distribution of character states in the most parsimonious trees is reported in Table 3.

Microstonyx major is the first taxon to branch off the Suinae clade (Node 1). This result agrees with the early stratigraphic occurrence (i.e. late Miocene) of this Eurasian taxon displaying numerous plesiomorphic character states. The basal position of Microstonyx is here supported for
the first time by cladistic analysis, after being previously hypothesized in the phylogenetic tree of Frantz et al. (2016), which however is a qualitative consensus based on the literature.

Microstonyx major is the sister taxon of a large clade (Node 23) including two branches. The first (Node 29) includes the Kolpochoerus and Metridiochoerus lineages, the second (Node 22) includes the genus Potamochoerus and the Sus lineage. Both the Kolpochoerus (Node 30) and Metridiochoerus (Node 28) genera are paraphyletic, as they include the living Hylochoerus and Phacochoerus, respectively. Within the first clade, the early branching of K. afarensis (Geraads, 2004; Haile-Selassie and Simpson, 2013; Souron et al., 2015) is confirmed, as well as the sistergroup relationship (Node 31) between K. phillipi and H. meinertzhageni (Souron et al., 2015). The position of "S." falconeri at the base of the Metridiochoerus group allows us to confidently confirm its attribution to the latter genus (Souron, 2012, 2015). The same goes for "K." phacochoeroides, which occupies in the tree an intermediate position within the Metridiochoerus clade. A formal reassignment of those two species to the genus Metridiochoerus is under preparation (Souron and Chavasseau, in prep.). The fact that those two taxa branch early in the Metridiochoerus group could explain why they were previously misidentified as Kolpochoerus. They do resemble species of Kolpochoerus due to the retention of plesiomorphic character states and do not display all the more derived character states found in "classic" Metridiochoerus species like M. andrewsi. Similarly, M. shawi was also placed into a separate genus named Potamochoeroides based on its peculiar morphology (Bender, 1992) that mostly reflect retention of plesiomorphic character states. The close phylogenetic relationship between Phacochoerus and Metridiochoerus (Node 34) is largely accepted in the literature (e.g. Cooke, 1978b; Harris and White, 1979; Bishop, 2010; Pickford, 2013c), and is here evidenced for the first time by means of cladistic analysis.

The African Potamochoerus is regarded as a morphologically primitive suine, retaining several conservative anatomical characters that make it superficially similar to Sus in many features (Groves and Grubb, 1993). This might explain the basal position of Potamochoerus with respect to Sus in our tree (Node 11), which is not in accordance with previous studies either based on
morphological (Geraads, 2004; Souron et al., 2015) or molecular (Wu et al., 2006; Gongora et al., 2011) data.

6.1. Phylogenetic relationships of Sus

The phylogenetic relationships between extinct and extant Sus species are still not fully understood. As for living taxa, some authors (Groves, 1981; Groves and Grubb, 1993; Pickford, 2012) separate the genus Sus in two groups on the basis of the lower canine morphology: the "scrofic group" includes only S. scrofa [the Pigmy Hog "Sus" salvanius of Groves and Grubb (1993) is today referred to the distinct genus Porcula (Funk et al., 2007)]; the "verrucosic group" is formed by all other living species of Sus, geographically restricted to ISEA. However, this separation is questioned by some evidence. Among them, Groves (1997) represents the first attempt to resolve the phylogenetic relationships of living Sus species. He coded 30 morphological characters for S. scrofa and several ISEA species and recovered two groups: one was formed by S. barbatus and S. verrucosus; in the other, S. scrofa is clustered with the "verrucosic" species S. celebensis, S. philippensis, S. cebifrons, and S. oliveri. Lucchini et al. (2005) intertwined molecular (two mtDNA cyt b fragments) and morphometric (cranial measurements) data, and identified three groups, one with S. celebensis and S. cebifrons, one with S. barbatus, and one with S. scrofa, S. ahoenobarbus, and S. verrucosus (although the latter was not analysed genetically). Wu et al. (2006) analysed the complete mtDNA cyt b sequences and obtained a similar grouping: S. celebensis, S. cebifrons, and S. philippensis are at the base of the Sus clade, followed by S. scrofa as sister taxon of the pair formed by S. verrucosus and S. barbatus (with the latter being paraphyletic with respect to the former). Although working again on mtDNA cyt b data, Mona et al. (2007) obtained rather different results, as they recognized two main clades including respectively S. scrofa plus S. philippensis and S. verrucosus plus the paraphyletic S. barbatus (haplotypes of S. celebensis were found in both groups, so the species was considered as polyphyletic). The phylogenetic
affinity between S. scrofa and the Philippines suines was confirmed by Funk et al. (2007), who also focused on mitochondrial loci. On the contrary, the phylogenetic tree of Gongora et al. (2011) grounded on both nuclear and mitochondrial DNA sequences, found S. scrofa as the basal taxon of the Sus radiation, followed by the clade of ISEA pigs. Similar conclusions are reached by other molecular studies based on whole-genome data (Frantz et al., 2013; Ai et al., 2015), and are confirmed in the synthetic tree of Frantz et al. (2016: fig. 1), which accounts for both molecular and morphological data.

The latter results are in agreement with those obtained in our phylogenetic analysis (Fig. 7), in which the Wild Boar is the first species to branch off the Sus lineage (Node 2). Sus scrofa is followed by S. lydekkeri (Node 4) from the Early-Middle Pleistocene of China. The morphological affinities between S. scrofa and S. lydekkeri are largely accepted (Fujita et al., 2000, Dong et al., 2006, 2013; Liu et al., 2017). However, our results question the alleged ancestor-descendant relationship between S. lydekkeri and S. scrofa (Dong, 2008; Liu et al., 2017) and even the fact that S. lydekkeri can be a chronological subspecies of S. scrofa (Fujita et al., 2000). Further insights on the phylogenetic and taxinomic status of S. lydekkeri could derive from future studies on the Chinese fossil record, including other Pleistocene species such as S. peii, which unfortunately are so far represented only by fragmentary remains. The lower canine of S. lydekkeri is morphologically intermediate between the scrofic and verrucosic conditions (Fujita et al., 2000; Chen, 2004; Dong, 2008). The remaining clade (Node 24) is composed by living and fossil species all characterized by verrucosic lower canine, among which S. arvernensis is the first branching (Node 3). This result is widely supported by previous works (Azzaroli, 1954, 1975; Berdondini, 1992; Pickford, 2012; Pickford and Obada, 2016), according to which S. arvernensis would be ancestral to S. strozzii and ISEA pigs. Unfortunately, the relationships between the latter taxa are not resolved in our tree (Node 26): S. strozzii is part of a polytomy that also includes S. verrucosus, S. barbatus, and the clade formed by S. celebensis and S. brachygnathus, whose affinity was already pointed out by Von Koenigswald (1933). In the two most parsimonious trees, the following topologies are recognized:
((S. barbatus, S. verrucosus), (S. strozzii, (S. celebensis, S. brachygnathus))) and (S. barbatus, ((S. strozzii, S. verrucosus), (S. celebensis, S. brachygnathus))). The presence of this unresolved node is indicative of the difficulty of finding diagnostic morphological characters useful to differentiate these species, which all share similar conservative craniomandibular anatomy. Moreover, as also hinted by the contrasting results obtained by the different molecular studies carried out on these taxa (see above), there is the possibility that this polytomy may be due to rapid radiation of species with strong hybridisation between the different taxa in the early stage of divergence.

Nevertheless, the position of S. strozzii in our tree is the first cladistic evidence of the affinity between this species and verrucosic ISEA pigs, previously hypothesized by several authors (Azzaroli, 1954; Berdondini, 1992; Faure, 2004; Pickford, 2013b) on the basis of morphological observations but not supplemented by phylogenetic analyses.

Our results also have interesting taxinomic implications. Pickford (2012) resurrected the genus name Dasychoerus, established by Gray (1873) for the "Warty Pigs" D. verrucosus and D. celebensis. According to Pickford (2012), these species would be the present-day survivors of a Plio-Pleistocene lineage started from D. arvernensis (and from the newly erected species D. natrunensis from Egypt), and continued with D. strozzii, D. brachygnathus, and D. macrognathus. Sus barbatus - for which Gray (1868) erected the separate genus Euhys - is not included into Dasychoerus by Pickford (2012), due to its uncertain molecular phylogenetic affinities (Funk et al., 2007; Gongora et al., 2011; see above). In this framework, our phylogenetic results do not support the validity of Dasychoerus sensu Pickford (2012) (i.e. living and fossil verrucosic relatives of D. arvernensis) because the corresponding clade in our tree (Node 24) also includes S. barbatus.

We also reject Pickford's (2012) phylogenetic hypothesis, according to which "Dasychoerus" arvernensis would have given rise in Eurasia to the aforementioned lineage and in Africa to the genus Kolpochoerus. Similarly, we do not support the hypothesis of a derivation of Kolpochoerus from S. arvernensis through S. strozzii (Gallai, 2007). On the contrary, our phylogenetic reconstruction is in agreement with an early separation between Sus and the "African" lineage
(including Kolpochoerus/Hylochoerus and Metridiochoerus/Phacochoerus), which is estimated at about 10 Ma (Frantz et al., 2016). The only anomaly in our results is the clustering of Potamochoerus with Sus, but it can be related to the fact that both these genera retain plesiomorphic craniomandibular and dental character states.

7. Conclusions

Sus strozzii is commonly found in Early Pleistocene European and western Asian land mammal assemblages. The new mandibular material from central Italy described herein expands our knowledge on this species' anatomy. Our phylogenetic analysis of extinct and extant Old World suines clarifies the relationships between S. strozzii and its putative relatives. Suinae probably originated in the late Miocene (Gongora et al., 2011). After the early separation of the Microstonyx lineage, Suinae branched into two main clades. The first comprises the African genera Kolpochoerus and Metridiochoerus and their respective modern relatives Hylochoerus and Phacochoerus. We also recovered as belonging to this group "S." falconeri from the Siwalik Hills and "K." phacochoeroides from Maghreb and refer them to Metridiochoerus. The second clade includes Sus and Potamochoerus. However, the position of the latter genus in our tree is likely due to its overall craniomandibular and dental similarity with Sus, and is questioned by molecular phylogenetic analysis (Gongora et al., 2011) that put Potamochoerus at the base of the African clade as a sister taxon to the clade (Phacochoerus, Hylochoerus). The Wild Boar S. scrofa is the first offshoot within its genus, followed by S. lydekkeri from the Pleistocene of northern China and by the group of verrucosic Sus species. This topology is in agreement with those obtained by previous phylogenetic analyses based on molecular data (Gongora et al., 2011) and on the overlapping between morphological and molecular data (Frantz et al., 2016). Our results support the primitive status of the S. arvernensis (Pliocene) with respect to S. strozzii (Early Pleistocene) (Fig. 8). Unfortunately, the phylogenetic relationships between the latter and verrucosic ISEA species are
not totally resolved. This new evidence strongly suggests that the centre of origin of verrucosic species of Sus is located in southeastern Asia and encourage new prospections especially in that area to clarify the phylogenetic affinities between Asian and European pigs.

Acknowledgements

We are indebted to M.C. De Angelis (SBAU), who entrusted M.C. with the study of the mammal collections from Pantalla and other Umbrian sites. We are grateful to E. Cioppi (IGF), L. Costeur and M. Schneider (NHMB), P. Agnelli (MZUF), R. Portela Miguez, P. Brewer, E. Bernard, and A. Currant (NHM), M. Parkes (NMI), and all the staff of the Palazzone (SBAU), for the access to museum collections and the technical support. M. Danti ('M.G. Vannini' Hospital, Rome) supported us in the making of the CT scanning. A. S. was funded by LaScArBx, a research programme supported by the Agence Nationale de la Recherche (ANR-10-LABX-52). M. Antón gave useful suggestions to L.S. for the making of the reconstructions of Sus strozzii and Sus arvernensis. We acknowledge The Willi Hennig Society for the use of TNT.

References

Agnarson, I., May-Collado, L.J., 2008. The phylogeny of Cetartiodactyla: the importance of dense taxon sampling, missing data, and the remarkable promise of cytochrome b to provide reliable species-level phylogenies. Molecular Phylogenetics and Evolution 48, 964-985.

Ai, H., Fang, X., Yang, B., Huang, Z., Chen, H., Mao, L., Zhang, F., Zhang, L., Cui, L., He, W., Yang, J., Yao, X., Zhou, L., Han, L., Li, J., Sun, S., Xie, X., Lai, B., Su, Y., Lu, Y., Yang, H., Huang, T., Deng, W., Nielsen, R., Ren, J., Huang, L., 2015. Adaptation and possible ancient interspecies introgression in pigs identified by whole-genome sequencing. Nature Genetics 47, 217-225.

Albarella, U., Dobney, K., Rowley-Conwy, P., 2009. Size and shape of the Eurasian wild boar (Sus scrofa), with a view to the reconstruction of its Holocene history. Environmental Archaeology 14, 103-136.

Alekseeva, L.I., 1977. The theriofauna of the Early Anthropogene of Eastern Europe. Trudy Instituta Geologii i Geofiziki Akademiya Nauk SSSR 300, 1-214.

Ambrosetti, P., Basilici, G., Capasso Barbato, L., Carboni, M. G., Di Stefano, G., Esu, D., Gliozzi, E., Petronio, C., Sardella, R., Squazzini, E., 1995. Il Pleistocene Inferiore nel ramo sudoccidentale del Bacino Tiberino (Umbria): aspetti litostratigrafici e biostratigrafici. Il Quaternario 8, 19-36.

Arambourg, C., 1947. Mission Scientifique de l'Omo 1932-1933. Tome 1: GéologieAnthropologie. Fascicule 3: Contribution à l'étude géologique et paléontologique du bassin du Lac Rodolphe et de la basse vallée de l'Omo. Deuxième partie: Paléontologie. Editions du Muséum, Paris, pp. 231-562.

Arribas, A., Garrido, G., 2008. A new wild boar belonging to the genus Potamochoerus (Suidae, Artiodactyla, Mammalia) from the Eurasian Late Upper Pliocene (Fonelas P-1, Cuenca de Guadix, Granada). Cuadernos del Museo Geominero 10, 337-364.

Azzaroli, A., 1954. Revisione della fauna dei terreni fluvio-lacustri del Valdarno Superiore, V. Filogenesi e biologia di Sus strozzii e di Sus minor. Palaeontographia Italica 48, 41-76.

Azzaroli, A., 1975. Remarks on the Pliocene Suidae of Europe. Zeitschrift für Säugetierkunde 40, 355-367.

Bellucci, L., Bona, F., Corrado, P., Magri, D., Mazzini, I., Parenti, F., Scardia, G., Sardella, R., 2014. Evidence of late Gelasian dispersal of African fauna at Coste San Giacomo (Anagni Basin, central Italy): Early Pleistocene environments and the background of early human occupation in Europe. Quaternary Science Reviews 96, 72-85.

Bellucci, L., Sardella, R., Rook, L. 2015. Large mammal biochronology framework in Europe at Jaramillo: The Epivillafranchian as a formal biochron. Quaternary International 389, 84-89.

Bender, P.A., 1992. A reconsideration of the fossil suid Potamochoeroides shawi from the Makapansgat Limeworkes, Potgietersrus, Northern Transvaal. Navorsinge van die Nasionale Museum: Researches of the National Museum 8, 1-63.

Berdondini, E., 1992. Suids from the Early Villafranchian of Villafranca d'Asti and China. Rendiconti Lincei Scienze Fisiche e Naturali 9, 109-124.

Bernsen, J.J.A., 1931. Eine revision der fossilen säugetierfauna aus den Tonen von Tegelen, IV Sus strozzii Meneghini. Natuurhistorische Maandblatt Maastricht 7, 104-108.

Bishop, L., 2010. Suoidea. In: Werdelin, L., Sanders, W.J. (Eds.), Cenozoic Mammals of Africa. University of California Press, Berkeley, Los Angeles, London, pp. 821-842.

Boisserie, J.R., Lihoreau, F., Brunet, M., 2005. The position of Hippopotamidae within Cetartiodactyla. Proceedings of the National Academy of Sciences of the United States of America 102, 1537-1541.

Boisserie, J.R., Souron, A., Mackaye, H.T., Likius, A., Vignaud, P., Brunet, M., 2014. A new species of Nyanzachoerus (Cetartiodactyla: Suidae) from the Late Miocene Toros-Ménalla, Chad, Central Africa. PLoS ONE 9, e103221.

Bolomey, A., 1965. Die fauna zweier villafrankischer Fundstellen in Rumaenien. Berichte der Geologischen Gesellschaft der DDR 10, 77-88.

Bona, F., Sala, B., 2016. Villafranchian-Galerian mammal faunas transition in South-Western Europe. The case of the late Early Pleistocene mammal fauna of the Frantoio locality, Arda River (Castell'Arquato, Piacenza, Northern Italy). Geobios 49, 329-347.

Bout, P., 1960. Le Villafranchien du Velay et du Bassin hydrographique moyen et supérieur de l'Allier. Corrélations françaises et Européens. Unpublished PhD thesis, Université de Paris, 344 pp.

Brunet, M., Beauvilain, A., Coppens, Y., Heintz, E., Moutaye, A.H., Pilbeam, D., 1995. The first australopithecine 2,500 kilometres west of the Rift Valley (Chad). Nature 378, 273-275.

Chavasseau, O., 2008. Les faunes miocènes de grands mammifères d'Asie du Sud-Est: biochronologie et biogéographie. Unpublished PhD thesis, Université Montpellier 2, 299 pp.

Chen, G., 2004. Artiodactyla. In: Zheng, S. (Ed.), Jianshi Hominid Site. Science Press, Beijing, China, pp. 254-308 [In Chinese, English summary].

Cherin, M., Iurino, D.A., Sardella, R., 2013a. New well-preserved material of Lynx issiodorensis valdarnensis (Felidae, Mammalia) from the early Pleistocene of Pantalla (central Italy). Bollettino della Società Paleontologica Italiana 52, 103-111.

Cherin, M., Bertè, D.F., Sardella, R., Rook, L., 2013b. Canis etruscus (Canidae, Mammalia) and its role in the faunal assemblage from Pantalla (Perugia, central Italy): comparison with the late Villafranchian large carnivore guild of Italy. Bollettino della Società Paleontologica Italiana 52, 11-18.

Cherin, M., Bertè, D.F., Rook, L., Sardella, R., 2014a. Re-defining Canis etruscus (Canidae, Mammalia): a new look into the evolutionary history of early Pleistocene dogs resulting from the outstanding fossil record from Pantalla (Italy). Journal of Mammalian Evolution 21, 95-110.

Cherin, M., Iurino, D.A., Sardella, R., Rook, L., 2014b. Acinonyx pardinensis (Carnivora, Felidae) from the early Pleistocene of Pantalla (Italy): predatory behavior and ecological role of the giant Plio-Pleistocene cheetah. Quaternary Science Reviews 87, 82-97.

Cherin, M., Iurino, D.A., Willemsen, G., Carnevale, G., 2016. A new otter from the early Pleistocene of Pantalla (Italy), with remarks on the evolutionary history of Mediterranean Quaternary Lutrinae (Carnivora, Mustelidae). Quaternary Science Reviews 135, 92-102.

Cherin, M., D'Allestro, V., Masini, F., 2017. New bovid remains from the Early Pleistocene of Umbria (Italy) and a reappraisal of Leptobos merlai. Journal of Mammalian Evolution, published online 9 December 2017. doi:10.1007/s10914-017-9421-x.

Colbert, E.A., 1935. Distributional and phylogenetic studies on the Indian Suidae, and the origin of the Hippopotamidae. American Museum Novitates 799, 1-24.

Cooke, H.B.S., 1978a. Suid evolution and correlation of African hominid localities: an alternative taxonomy. Science 201, 460-463.

Cooke, H.B.S., 1978b. Pliocene-Pleistocene Suidae from Hadar, Ethiopia. Kirtlandia 29, 1-63.
Cooke, H.B.S., 1982. Phacochoerus modestus from Bed I, Olduvai Gorge, Tanzania. Zeitschrift fur Geologische Wissenschaften 10, 899-908.

Cooke, H.B.S., 1993. Undescribed suid remains from Bolt's Farm and other Transvaal cave deposits. Palaeontologia Africana 30, 7-23.

Cooke, H.B.S., 1997. The status of the African fossil suids Kolpochoerus limnetes (Hopwood, 1926), K. phacochoeroides (Thomas, 1884) and "K." afarensis (Cooke, 1978). Geobios 30, 121126.

Cooke, H.B.S., 2005. Makapansgat suids and Metridiochoerus. Palaeontologia Africana 41, 131140.

Cooke, H.B.S., Coryndon, S.C., 1970. Pleistocene mammals from the Kaiso Formation and related deposits in Uganda. In: Leakey, L.S.B., Savage, R.J.G. (Eds.), Fossil Vertebrates of Africa. Volume 2. Academic Press, London, pp. 107-224.

Croizet, J.B., Jobert, A., 1828. Recherches sur les ossemens fossiles du département du Puy-deDôme. Adolphe Delahays, Paris, 226 pp.

David, A., Suspanov, K., Obada, T., Croitor, R., 1997. Evolutia teriofaunei Republicii Moldova in Pliocenul Superior-Pleistocenul Mediu. In: Diversitatea si ecologia lumii animale in ecosysteme naturali si antropizate. Academia de Stiinte Republicii Moldova, Institutul de Zoologie, Chisinau, pp. 205-216.
de Bonis, L., Bouvrain, G., 1996. Suidae du Miocène supérieur de Grèce. Bulletin du Muséum national d'Histoire naturelle Paris, 4e sér., section C 18, 107-132.

De Giuli, C., Masini, F., Torre, D., 1986. The latest Villafranchian faunas of Italy: the Pirro Nord fauna (Apricena, Gargano). Paleontographia Italica 74, 51-62.

De Heinzelin, J., Clark, D., White, T.D., Hart, W., Renne, P., Woldegabriel, G., Beyene, Y., Vrba, E., 1999. Environment and behavior of 2.5-million-year-old Bouri hominids. Science 284, 625629.

Depéret, C., 1890. Les animaux pliocènes de Roussillon. Mémoires de la Société géologique de France 3, 1-164.

Dimaggio, E.N., Campisano, C.J., Rowan, J., Dupont-Nivet, G., Deino, A.L., Bibi, F., Lewis, M.E., Souron, A., Garello, D., Werdelin, L., Reed, K.E., Arrowsmith, J.R., 2015. Late Pliocene fossiliferous sedimentary record and the environmental context of early Homo from Afar, Ethiopia. Science 347, 1355-1359.

Dong, W., 1999. The Artiodactyla from Hulu Cave, Tangshan, Nanjing and the environment of Nanjing Man. Acta Anthropologica Sinica 18, 270-281 [In Chinese, English summary].

Dong, W., 2008. Early Pleistocene suid (Mammal) from the Dajushan, Huainan, Anhui Province (China). Vertebrata PalAsiatica 46, 233-246 [In Chinese, English summary].

Dong, W., Fang, Y., 2008. New suid materials from the Early Pleistocene of the Tuozi Cave at Tangshan, Jiangsu Province, China. In: Dong, W. (Ed.), Proceedings of the Eleventh Annual Meetings of the Chinese Society of Vertebrate Paleontology. China Ocean Press, Beijing, pp. 53-63 [In Chinese, English summary].

Dong, W., Jin, C., Zheng, L., Sun, C., Lü, J., Xu, Q., 2006. Artiodactyla from the Jinpendong Site at Wuhu, Anhui Province. Acta Anthropologica Sinica 25, 161-171 [In Chinese, English summary].

Dong, W., Fang, Y., Zhang, Z., 2007. Artiodactyla. In: Nanjing Museum, Institute of Archaeology, Jiangsu Province (Ed.), The Early Pleistocene Mammalian Fauna at Tuozi Cave, Nanjing, China. Science Press, Beijing, pp. 85-130 [In Chinese, English summary].

Dong, W., Jin, C., Wang, Y., Xu, Q., Qin, D., Sun, C., Zhang, L., 2013. New materials of Early Pleistocene Sus from Sanhe Cave, Chongzuo, Guangxi, South China. Acta Anthropologica Sinica 32, 63-76 [In Chinese, English summary].

Ducrocq, S., 1994. An Eocene peccary from Thailand and the biogeographical origins of the artiodactyl family Tayassuidae. Palaeontology 37, 765-779.

Ducrocq, S., Chaimanee, Y., Suteethorn, V., Jaeger, J.J., 1998. The earliest known pig from the Upper Eocene of Thailand. Palaeontology 41, 147-156.

Echassoux, A., Moigne, A.M., Moulle, P.E., Li, T., Feng, X.B., Li, W., Wu, Z., Fauquembergue, E., Magnaldi, B., 2008. Les faunes de grands mammiferes du site de l'homme de Yunxian, Quyuanhekou, Quingqu, Yunxian, Province du Hubei, Republique Populaire de Chine. In: Henry, D.L., Li, T. (Eds.), Le Site de l'homme de Yunxian, Quyuanhekou, Quingqu, Yunxian, Province du Hubei. CNRS Editions, Paris, pp. 253-364.

Falconer, H., Cautley, T., 1847. Fauna Antiqua Sivalensis. Smith, Elder \& Co., London, 136 pp. Faure, M., 2004. Le Sus strozzii du Pliocène final de Saint-Vallier (Drôme). Geobios 37, 189-190. Faure, M., Guérin, C., 1984. Sus strozzii et Sus scrofa, deux mammifères artiodactyles, marqueurs des paléoenvironnements. Palaeogeography Palaeoclimatology Palaeoecology 48, 215-228.

Fejfar, O., 1961. Die plio-pleistozänen Wirbeltierfaunen von Hajnacka und Ivanovce (Slowakei), CSR. I. Die Fundumstände und Stratigraphie. Neues Jahrbuch der Geologie und Paläontologie Abhandlungen 111, 257-273.

Fejfar, O., 1964. The lower Villafranchian vertebrates from Hajnacka, near Filakovo in Southern Slovakia. Rozpravy Ùstredniho ùstavu Geologického 30, 1-117.

Forsyth-Major, C., 1881. Studi sugli avanzi pliocenici del genere Sus (Sus strozzii Menegh.). Atti della Società Toscana di Scienze Naturali, Processi verbali 2, 227.

Fortelius, M., Van der Made, J., Bernor, R. 1996. Middle and late Miocene Suoidea of central Europe and the eastern Mediterranean: evolution, biogeography and paleoecology. In: Bernor, R., Fahlbusch, V., Mittmann, H. (Eds.), The Evolution of Western Eurasian Neogene Mammal Faunas. Columbia University Press, New York, pp. 348-377.

Frantz, L., Schraiber, J., Madsen, O., Megens, H.J., Semiadi, G. Meijaard, E., Li, N., Crooijmans, R.P.M.A., Archibald, A.L., Slatkin, M., Schook, L.B., Larson, G., Groenen, M.A.M.,
2013.Genome sequencing reveals fine scale diversification and reticulation history during speciation in Sus (Suidae: Cetartiodactyla). Genome Biology 14, R107.

Frantz, L., Meijaard, E., Gongora, J., Haile, J., Groenen, M.A.M., Larson, G., 2016. The evolution of Suidae. Annual Review of Animal Biosciences 4, 3.1-3.25.

Freudenthal, M., 1971. Neogene vertebrates from the Gargano Peninsula, Italy. Scripta Geologica 3, $1-10$.

Fujita, M., Kawamura, Y., Murase, N., 2000. Middle Pleistocene wild boar remains from NT Cave, Niimi, Okayama Prefecture, west Japan. Journal of Geosciences 43, 57-95.

Funk, S., Verma, S., Larson, G., Prasad, K., Singh, L., Narayan, G., Fa, J., 2007. The pygmy hog is a unique genus: 19th Century taxonomists got it right first time round. Molecular Phylogenetics and Evolution 45, 427-436.

Gallai, G., 2006. Sistematica, paleoecologia, paleogeografia dei Suidae fossili italiani. Unpublished PhD thesis, Università di Firenze, 201 pp .

Gallai, G., 2007. Sistematica, paleoecologia, paleogeografia dei Suidae fossili Italiani. PaleoItalia 17, 17-22.

Gatesy, J., 1997. More DNA support for a Cetacea-Hippopotamidae clade: the blood-clotting protein gene gamma-fibrinogen. Molecular Biology and Evolution 14, 537-543.

Gaudry, A., 1862-1867. Animaux fossiles et géologie de l'Attique. F. Savy, Paris, 472 pp.
Gaur, R., 1987. Ecology and Environment of Early Man in Northwest India: Geological and Paleontological Evidences. B.R. Publishing Corporation, Delhi, 252 pp.

Gentili, S., Ambrosetti, P., Argenti, P., 1997. Large carnivores and other mammal fossils from the early alluvial plain of the Tiberino Basin (Pantalla, Central Italy). Preliminary reports. Bollettino della Società Paleontologica Italiana 36, 233-240.

Gentry, A.W., Hooker, J.J., 1988. The phylogeny of the Artiodactyla. In: Benton, M.J. (Ed.), The Phylogeny and Classification of the Tetrapods. Systematics Association Special Volume 35B. Clarendon Press, Oxford, pp. 235-272.

Geraads, D., 2004. New skulls of Kolpochoerus phacochoeroides (Suidae: Mammalia) from the late Pliocene of Ahl al Oughlam, Morocco. Palaeontologia Africana 40, 69-83.

Geraads, D., Guérin, C., Faure, M., 1986. Les Suidés du Pléistocène ancien d’Oubeidiyeh (Israel). Mémoires et Travaux du Centre de Recherche Français de Jérusalem 5, 93-105.

Geraads, D., Kaya, T., Mayda, S., 2005. Late Miocene large mammals from Yulafli, Thrace region, Turkey, and their biogeographic implications. Acta Palaeontologica Polonica 50, 523-544.

Geraads, D., Spassov, N., Garevski, R., 2008. New specimens of Propotamochoerus (Suidae, Mammalia) from the Late Miocene of the Balkans. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 248, 103-113.

Girotti, O., Capasso Barbato, L., Esu, D., Gliozzi, E., Kotsakis, T., Martinetto, E., Petronio, C., Sardella, R., Squazzini, E., 2003. The section of Torre Picchio (Terni, Umbria, Central Italy): A Villafranchian site rich in vertebrates, molluscs, ostracods and plants. Rivista Italiana di Paleontologia e Stratigrafia 109, 77-98.

Goloboff, P.A., Catalano, S.A., 2016. TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics 32, 221-238.

Gongora, J., Cuddahee, R.E., Do Nascimento, F., Palgrave, C.J., Lowden, S., Ho, S.Y.W., Simond, D., Damayanti, C.S., White, D.J., Tay, W.T., Randi, E., Klingel, H., Rodrigues-Zarate, C.J., Allen, K., Moran, C., Larson, G., 2010. Rethinking the evolution of extant sub-Saharan African suids (Suidae, Artiodactyla). Zoologica Scripta 40, 327-335.

Gray, J.E., 1821. On the natural arrangement of vertebrose animals. London Medical Repository 15, 296-310.

Gray, J.E., 1868. Synopsis of the species of pigs (Suidae) in the British Museum. Proceedings of the Zoological Society of London 1868, 17-49.

Gray, J.E., 1873. Observations on Pigs (Sus, Linnaeus; Setifera, Illiger) and their skulls, with the description of a new species. Annals and Magazine of Natural History, s. 4, 11, 431-439.

Groves, C., 1981. Ancestors for the pigs: taxonomy and phylogeny of the genus Sus. Technical Bulletin $\mathrm{N}^{\circ} 3$ of the Department of Prehistory, Research School of Pacific Studies Canberra, Australian National University Press, 96 pp.

Groves, C., Taxonomy of wild pigs (Sus) of the Philippines. Zoological Journal of the Linnean Society 120, 163-191.

Groves, C., Grubb, P., 1993. The suborder Suiformes. In: Oliver, W. (Ed.), Pigs, Peccaries, and Hippos: Status Survey and Conservation Action Plan. IUCN, Gland, pp. 1-4.

Grubb, P., 2005. Order Artiodactyla. In: Wilson, D.E., Reeder, D.M. (Eds.), Mammal Species of the World: A Taxonomic and Geographic Reference Guide. Johns Hopkins University Press, Baltimore, pp. 637-722.

Guérin, C., Faure, M., 1985. Les Suidae (Mammalia, Artiodactyla) du Pliocène de la Formation de Perpignan. Collection "Hommage à Charles Depéret", Muséum d'Histoire Naturelle de Perpignan 1985, 22.

Guérin, C., 2013. The Tapiridae, Rhinocerotidae and Suidae (Mammalia) of the Early Villafranchian site of Milia (Grevena, Macedonia, Greece). Geodiversitas 35, 447-489.

Guérin, C., Faure, M., Sen, S., 1998. Le gisement de vertébrés pliocènes de Çalta, Ankara, Turquie, 8. Suidae. Geodiversitas 20, 441-453.

Haile-Selassie, Y., Simpson, S., 2013. A new species of Kolpochoerus (Mammalia: Suidae) from the Pliocene of the Central Afar, Ethiopia: its taxonomy and phylogenetic relationships. Journal of Mammalian Evolution 20, 115-127.

Han, D., 1987. Artiodactyla fossils from Liucheng Gigantopithecus cave in Guangxi. In: IVPP (Ed.), Memoirs of Institute of Vertebrate Paleontology and Paleoanthropology, Academia Sinica, vol. 18. Science Press, Beijing, pp. 135-208 [In Chinese, English summary].

Han, D., Xu, C., Yi, G., 1975. The Quaternary mammalian fossils from Bijiashan, Liuzhou, Guangxi. Vertebrata PalAsiatica 13, 250-256.

Hardjasasmita, H.S., 1987. Taxonomy and phylogeny of the Suidae (Mammalia) in Indonesia. Scripta Geologica 85, 1-68.

Harris, J.M., 1987. Artiodactyla. 10.1 Fossil Suidae from Laetoli. In: Leakey, M.D., Harris, J.M. (Eds.), Laetoli, a Pliocene site in Northern Tanzania. Clarendon Press, Oxford, pp. 349-358.

Harris, J.M., Liu, L.P., 2007. Superfamily Suoidea. In: Prothero, D.R., Foss, S. (Eds.), The Evolution of Artiodactyla. John Hopkins University Press, Baltimore, pp. 130-150.

Harris, J.M., White, T.D., 1979. Evolution of the Plio-Pleistocene African Suidae. Transactions of the American Philosophical Society 69, 1-128.

Hooijer, D.A., 1947. Notes on some fossil mammals from the Netherlands. Archives of the Museum Teyler, s. 3, 10, 33-51.

Hu, C., Qi, T., 1978. Gongwangling Pleistocene mammalian fauna of Lantian, Shaanxi. Palaeontologia Sinica, n. s. C, 21, 1-64 [In Chinese, English summary].

Huang, Y., 1996. Mammalian fossils. In: Tangshan Archaeological Team (Ed.), Locality of the Nanjing Man Fossils 1993-1994. Cultural Relics Publishing House, Beijing, pp. 83-247 [In Chinese, English summary].

Huang, W., Fang, D., Ye, Y., 1982. Preliminary study of the fossil hominid skull and fauna of Hexian, Anhui. Vertebrata PalAsiatica 20, 248-256 [In Chinese, English summary].

Hünermann, K.A., 1968. Die Suidae (Mammalia, Artiodactyla) aus den Dinotheriensanden $($ Unterpliozän $=$ Pont) Rheinhessens (Südwestdeutschland). Schweizerische Paläontologische Abhandlungen 86, 1-96.

Hünermann, K.A., 1971. Die Plio-Pleistozänen Wirbeltierfaunen von Hajnacka und Ivanovce (Slovakei) CSR. VII: Sus minor (Depéret, 1890). Neues Jahrbuch für Geologie und Paläontologie Monatshefte 1971, 213-230.

Hünermann, K.A., 1975. Die Suidae aus dem türkischen Neogen, in Die Gleiderung des höheren Jungtertiärs und Alt quartärs in der Turkei nach Vertebrates und ihre Bedeutung für die internationale Neogen-Stratigraphie. Geologisches Jahrbuch B 15, 153-156.

Kostopoulos, D.S., Athanassiou, A., 2003. In the shadow of bovids: suids, cervids and giraffids from the Plio-Pleistocene of Greece. Quaternaire 2, 179-190.

Kostopoulos, D.S., Spassov, N., Kovachev, D., 2001. Contribution to the study of Microstonyx: evidence from Bulgaria and the SE European populations. Geodiversitas 23, 411-437.

Koufos, G.D., 1986. Le presence of Sus strozzii in the Villafranchian (Villanyan) of Macedonia (Greece). Paläontologische Zeitschrift 60, 341-351.

Kullmer, O., 2008. The fossil Suidae from the Plio-Pleistocene Chiwondo Beds of northern Malawi, Africa. Journal of Vertebrate Paleontology 28, 208-216.

Irwin, D.M., Arnason, U., 1994. Cytochrome b gene of marine mammals: phylogeny and evolution. Journal of Mammalian Evolution 2, 37-55.

Irwin, D.M., Kocher, T.D., Wilson, A.C., 1991. Evolution of the cytochrome b gene of mammals. Journal of Mammalian Evolution 32, 128-144.

Linnaeus, C., 1758. Systema Naturae per Regna Tria Naturae, Secundum Classes, Ordines, Genera, Species, cum Characteribus, Differentiis, Synonimys, Locis. Tomus I. Laurentius Salvus, Stockholm, 338 pp .

Liu, L.P., 2001. Eocene suoids (Artiodactyla, Mammalia) from Bose and Yongle basins, China, and the classification and evolution of the Paleogene suoids. Vertebrata PalAsiatica 39, 115-128.

Liu, L.P., 2003. Chinese Fossil Suoidea Systematics, Evolution, and Paleoecology. Helsinki University Printing House, Helsinki, 40 pp.

Liu, L.P., Kostopoulos, D.S., Fortelius, M., 2004. Late Miocene Microstonyx remains (Suidae, Artiodactyla) from Hezheng areas. Geobios 37, 49-64.

Liu, L.P., Kostopoulos, D.S., Fortelius, M., 2005. Suidae (Mammalia, Artiodactyla) from the late Miocene of Akkasdagi, Turkey. Geodiversitas 27, 715-733.

Liu, W.H., Dong W., Zhang, L.M., Zhao, W.J., Li, K.Q., 2017. New material of Early Pleistocene Sus (Artiodactyla, Mammalia) from Yangshuizhan in Nihewan Basin, North China. Quaternary International 434, 32-47.

Lucchini, V., Meijaard, E., Diong, C.H., Groves, C.P., Randi, E., 2005. New phylogenetic perspectives among species of South-east Asian wild pig (Sus sp.) based on mtDNA sequences and morphometric data. Journal of Zoology 266, 25-35.

Lydekker, R., 1884. Indian Tertiary and Post-Tertiary Vertebrata: Siwalik and Narbada Bunodont Suina. Memoir of the Geological Survey of India, Palaeontologica Indica 3, 35-104.

Lydekker, R., 1885. Catalogue of the Fossil Mammalia in the British Museum (Natural History) Part 2. Trustees of the British Museum, London, 324 pp.

Lydekker, R., 1886. Note on some Vertebrata from the Red Crag. Quarterly Journal of the Geological Society of London 42, 364.

Marcot, J.D., 2007. Molecular phylogeny of terrestrial artiodactyls. In: Prothero, D.R., Foss, S. (Eds.), The Evolution of Artiodactyla. John Hopkins University Press, Baltimore, pp. 4-18.

Martínez-Navarro, B., Madurell-Malapeira, J., Ros-Montoya, S., Espigares, M.P., Medin, T., Hortola, P., Palmqvist, P., 2015. The Epivillafranchian and the arrival of pigs into Europe. Quaternary International 389, 131-138.

Matthee, C.A., Burzlaff, J.D., Taylor, J.F., Davis, S.K., 2001. Mining the mammalian genome for artiodactyl systematics. Systematic Biology 50, 367-390.

Mazo, A.V., Torres, T., 1990. El Pozo de Piedrabueno, un nuevo yacimientos de Vertebrados pliocenos en el Campo de Calatrava (Ciudad Real). Paleontologia i Evoluciò 23, 213-222.

Mazzini, I., Paccara, P., Petronio, C., Sardella R., 2000. Geological evolution and biochronological evidences of the Monte Riccio section (Tarquinia, central Italy). Rivista Italiana di Paleontologia e Stratigrafia 106, 247-256.

Medin, T., Martínez-Navarro, B., Rivals, F., Libsekal, Y., Rook, L., 2015. The late Early Pleistocene suid remains from the paleoanthropological site of Buia (Eritrea): systematics, biochronology and eco-geographical context. Palaeogeography Palaeoclimatology Palaeoecology 431, 26-42.

Mona, S., Randi, E., Tommaseo-Ponzetta, M., 2007. Evolutionary history of the genus Sus inferred from cytochrome b sequences. Molecular Phylogenetics and Evolution 45, 757-762.

Montgelard, C., Ducrocq, S., Douzery, E., 1998. What is a Suiformes (Artiodactyla)? Molecular Phylogenetics and Evolution 9, 528-532.

Montoya, P., Ginsburg, L., Alberdi, M.T., Van der Made, J., Morales, J., Soria, D., 2006. Fossil large mammals from the Early Pliocene locality of Alcoy (Spain) and their importance in biostratigraphy. Geodiversitas 28, 137-173.

Mottl, M., 1939. Die Mittelpliozäne Säugetierfauna von Gödöllő bei Budapest. Mitteilungen aus dem Jahrbuch der Königliche Ungarnischen Geologischen Anstalt 32, 257-350.

Newton, E.T., 1891. The Vertebrata of the Pliocene Deposits of Britain. Eyre \& Spottiswoode, London, 120 pp .

Nikaido, M., Rooney, A.P., Okada, O., 1999. Phylogenetic relationships among cetartiodactyls based on insertions of short and long interpersed elements: hippopotamuses are the closest extant relatives of whales. Proceedings of the National Academy of Sciences USA 96, 10261-10266.

Nomade, S., Pastre, J.F., Guillou, H., Faure, M., Guérin, C., Delson, E., Debard, E., Voinchet, P., Messager, E., 2014. ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ constraints on some French landmark late Pliocene to early Pleistocene large mammalian paleofaunas: paleoenvironmental and paleoecological implications. Quaternary Geochronology 21, 2-15.

Orliac, M.J., Pierre-Olivier, A., Ducrocq, S., 2010a. Phylogenetic relationships of the Suidae (Mammalia, Cetartiodactyla): new insights on the relationships within Suoidea. Zoologica Scripta 39, 315-330.

Orliac, M.J., Antoine, P.O., Roohi, G., Welcomme, J.L., 2010b. Suoidea (Mammalia, Cetartiodactyla) from the Early Oligocene of the Bugti Hills, Balochistan, Pakistan. Journal of Vertebrate Paleontology 30, 1300-1305.

Owen, R., 1848. On the Archetype and Homologies of the Vertebrate Skeleton. Richard and John Taylor, London, 245 pp .

Owen, R., 1856. Description of some mammalian fossils from the Red Crag of Suffolk. Proceedings of the Geological Society of London 12, 186-223.

Pasteur, G., 1976. The proper spelling of taxonomy. Systematic Zoology 25, 192-193.
Pazzaglia, F., Barchi, M.R., Buratti, N., Cherin, M., Pandolfi, L., Ricci, M., 2013. Pleistocene calcareous tufa from the Ellera basin (Umbria, central Italy) as a key for an integrated paleoenvironmental and tectonic reconstruction. Quaternary International 292, 59-70.

Pickford, M., 1988. Revision of the Miocene Suidae of the Indian Subcontinent. Münchner Geowissenschaftliche Abhandlungen 12, 1-91.

Pickford, M., 1993. Old World suoid systematics, phylogeny, biogeography and biostratigraphy. Paleontologia i Evolució 26-27, 237-269.

Pickford, M., 2012. Ancestors of Broom's Pigs. Transactions of the Royal Society of South Africa 67, 17-35.

Pickford, M., 2013a. Re-assessment of the suids from the Sables marins de Montpellier and selection of a lectotype for Sus provincialis Blainville, 1847. Geodiversitas 35, 655-689.

Pickford, M., 2013b. Locomotion, diet, body weight, origin and geochronology of Metridiochoerus andrewsi from the Gondolin Karst Deposits, Gauteng, South Africa. Annals of the Ditsong National Museum of Natural History 3, 33-47.

Pickford, M., 2013c. The diversity, age, biogeographic and phylogenetic relationships of PlioPleistocene suids from Kromdraai, South Africa. Annals of the Ditsong National Museum of Natural History 3, 11-32.

Pickford, M., 2013d. Suids from the Pleistocene of Naungkwe Taung, Kayin State, Myanmar. Paleontological Research 16, 307-317.

Pickford, M., Gommery, D. 2016. Fossil Suidae (Artiodactyla, Mammalia) from Aves Cave I and nearby sites in Bolt's Farm Palaeokarst System, South Africa. Estudios Geológicos 72, e059.

Pickford, M., Obada, T. 2016. Pliocene suids from Musaitu and Dermenji, Moldova: implications for understanding the origin of African Kolpochoerus Van Hoepen \& Van Hoepen, 1932. Geodiversitas 38, 99-134.

Pilgrim, G.E., 1926. The fossil Suidae of India. Memoir of the Geological Survey of India, Palaeontologica Indica 8, 1-65.

Qi, G.Q., Ho, C.K., Zhang, C., 1999. The fossil suids from the Pleistocene in Taiwan. In: Tong Y.S. (Ed.), Evidence of Evolution. Essays in Honour of Prof. Chungchien Young on the Hundredth Anniversary of his Birth. China Ocean Press, Beijing, pp. 151-164.

Radulescu, C., 2005. Artiodactyles du Pliocène et du Pléistocène inférieur de Roumanie. Quaternaire 2, 191-200.

Radulescu, C., Samson, P., Petculescu, A., Stiuca, E., 2003. Pliocene large mammals of Romania. Coloquios de Paleontologia vol. extr. 1, 549-558.

Randi, E., Lucchini, V., Hoong Diong, C., 1996. Evolutionary genetics of the Suiformes as reconstructed using mtDNA sequencing. Journal of Mammalian Evolution 3, 163-194.

Richarz, S., 1921. Neue Wirbeltierfunde in den Tonen von Tegelen bei Venlo. Centralblatt für Mineralogie, Geologie und Paläontologie 21, 664-669.

Rook, L., Martínez-Navarro, B., 2010. Villafranchian: the long story of a Plio-Pleistocene European large mammal biochronologic unit. Quaternary International 219, 134-144.

Roth, J., Wagner, A., 1854. Die fossilen Knochenueberreste von Pikermi im Griechenland. Abhandlungen der Bayerische Akademie Wissenschaft 7, 371-464.

Schaub, S., 1943. Die Oberpliozäne Säugetierfauna von Senèze (Haute Loire) und ihre verbreitungsgeschichtliche Stellung. Eclogae Geologicae Helvetiae 36, 270-289.

Schreuder, A., 1945. The Tegelen Fauna, with a description of new remains of its rare components (Leptobos, Archidiskodon meridionalis, Macaca, Sus strozzii). Archives Néederlandaises de Zoologie 7, 153-204.

Souron, A., 2012. Histoire évolutive du genre Kolpochoerus (Cetartiodactyla: Suidae) au PlioPléistocène en Afrique orientale. Unpublished PhD thesis, Université de Poitiers, 518 pp .

Souron, A., 2015. Are we ready for meta-analyses of mammalian faunas based on faunal lists? A case-study using the Plio-Pleistocene African Suidae. Suiform Soundings 14, 35-43.

Souron, A., Boisserie, J.R., White, T.D., 2015. A new species of the suid genus Kolpochoerus from Ethiopia. Acta Palaeontologica Polonica 60, 79-96.

Souron, A., 2016. On specimens of extant warthogs (Phacochoerus) from the Horn of Africa with unusual basicranial morphology: rare variants of Ph. africanus or hybrids between Ph. africanus and Ph. aethiopicus? Suiform Soundings 15, 86-92.

Spassov, N., 2005. Brief review of the Pliocene ungulate fauna of Bulgaria. Quaternaire 2, 201212.

Stehlin, H.G., 1899-1900. Über die Geschichte des Suiden Gebisses. Abhandlungen der Schweizerischen Paläontologischen Gesellschaft Zürich 26/27, 1-527.

Stuart, A.J., 1982. Pleistocene Vertebrates of the British Isles. Longman, London, 228 pp.
Suwa, G., Souron, A., Asfaw, B., 2014. Fossil Suidae of the Konso Formation. In: Suwa, G., Beyene, Y., Asfaw, B. (Eds.), Konso-Gardula Research Project. Volume 1. Paleontological Collections: Background and Fossil Aves, Cercopithecidae, and Suidae. University Museum, University of Tokio, pp. 73-88.

Swofford, D.L., 2002. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, 142 pp.

Sylvestrou, I.A., Kostopoulos, D.S., 2009. The Late Miocene mammal faunas of the Mytilinii Basin, Samos Island, Greece: new collection. 12. Suidae. Beiträge zur Paläontologie 31, 283297.

Symeonidis, N., 1992. Lower Pleistocene (Villafranchian) fossil mammals from the Sesklo Basin (Volos). Annales Géologiques des Pays Helléniques 35, 1-21.

Teilhard de Chardin, P., Piveteau, J., 1930. Les mammiferes fossiles de Nihowan (Chine). Annales de Paleontologie 19, 1-134.

Theodor, J.M., Foss, S.E., 2005. Deciduous dentition of Eocene cebochoerid artiodactyls and cetartiodactyls relationships. Journal of Mammalian Evolution 12, 161-181.

Thewissen, J.G.M., Cooper, L.N., Clementz, M.T., Bajpai, S., Tiwari, B.N., 2007. Whales originated from aquatic artiodactyls in the Eocene epoch of India. Nature 6343, 1190-1195.

Thomas, P., 1884. Recherches stratigraphiques et paléontologiques sur quelques formations d'eau douce de l'Algérie. Mémoires de la Société Géologique de France, s. 3, 3, 1-50.

Titov, V.V., 2000. Sus (Suidae, Mammalia) from the Upper Pliocene of the Northeastern part of the Azov Region. Paleontological Journal 34, 203-210.

Tobien, H., 1951. Die Aufzeichnungen H. G. Stehlins über die pliozänen Säugetierreste von Herbolzheim bei Freiburg i. Br. Mitteilungsblatt der Badischen Geologischen Landesanstalt Jahrg 1950, 78-84.

Tobien, H., 1952. Die oberpliozäne Säugerfauna von Wölfers-heim-Wetterau. Zeitschriften der Deutschen Geologischen Gesellschaft 104, 191.

Tobien, H., 1981. Mammals of the Neogene/Quaternary boundary in the Eastern Mediterranean Area and from the Upper Siwaliks. Proceedings of Field Conference on Neogene/Quaternary Boundary (India, 1979) Calcutta, 185-197.

Trofimov, B.A., 1954. Tertiary Mammals, part 2: on the Mammalia of the southern SSSR and Mongolia. The fossil suids of the genus Microstonyx. Doklady Akademii Nauk SSSR 47, 61-99.

Van der Made, J., 1997. The fossil pig from the late Miocene of Dorn-Dürkheim 1 in Germany. Courier Forschungs-Institut Senckenberg 197, 205-230.

Van der Made, J., 1998. Biometrical trends in the Tetraconodontinae, a subfamily of pigs. Transactions of the Royal Society of Edinburgh Earth Sciences 89, 199-225.

Van der Made, J., Moyà-Solà, S., 1989. European Suinae (Artiodactyla) from the Late Miocene onwards. Bollettino della Società Paleontologica Italiana 28, 329-339.

Van der Made, J., Hussain, S.T., 1989. 'Microstonyx' major (Suidae, Artiodactyla) from Toe type area of Toe Nagri Formation, Siwalik Group, Pakistan. Estudios Geológicos 45, 409-416.

Van der Made, J., Montoya, P., Alcalá, L., 1992. Microstonyx (Suidae, Mammalia) from the upper Miocene of Spain. Geobios 25, 395-413.

Van der Made, J., Krakhmalnaya, T., Kubiak, H., 1999. The pig Propotamochoerus palaeochoerus from the Upper Miocene of Grytsiv, Ukraine. Estudios Geológicos 55, 283-292.

Van der Made, J., Morales, J., Montoya, P., 2006. Late Miocene turnover in the Spanish mammal record in relation to palaeoclimate and the Messinian Salinity Crisis. Palaeogeography Palaeoclimatology Palaeoecology 238, 228-246.

Vereshchagin, N.K., 1957. Mammal fossils from the lower Quaternary strata of the Taman Peninsula. Trudy Zoologicheskogo Instituta Akademiia Nauk SSSR 22, 47-49.

Von den Driesch, A., 1976. A guide to the measurement of animal bones from archaeological sites. Peabody Museum Bulletins 1, 1-137.

Von Koenigswald, G.H.R., 1933. Beitrag zur Kenntnis der fossilen Wirbeltiere Javas. Dienst van den Mijnbouw in Nederlandsch-Indië, Wetenschappelijke Mededeelingen 23, 1-185.

White, T.D., Harris, J.M., 1977. Suid evolution and correlation of African hominid localities. Science 198, 13-21.

White, T.D., Suwa, G. 2004. A new species of Notochoerus (Artiodactyla, Suidae) from the Pliocene of Ethiopia. Journal of Vertebrate Paleontology 24, 474-480.

Wu, G.S., Pang, J.F., Zhang, Y.P., 2006. Molecular phylogeny and phylogeography of Suidae. Zoological Research 27, 197-201.

Zittel, K.A., 1893. Handbuch der Paläeontologie. Abteilung I. Paläeozoologie. Band IV, Vertebrata (Mammalia). R. Oldenbourg, Munch, 799 pp .

FIGURE AND TABLE CAPTIONS

Fig. 1. Above: morphometric measurements taken on the analysed specimens. Measurement n. 10 (length of the symphysis) is not figured. Er, extramolar ridge; Goc, Gonion caudale; Id, Infradentale; Mp, mental prominence. Below: dental terminology used in this study after Fujita et al. (2010). Numbers in the four main cuspids of m 3 refer to the furchen of Hünermann (1968). End, entoconid; Hepd, heptaconid; Hexd, hexaconid; Hyd, hypoconid; Med, metaconid; Pad, paraconid; Ped, pentaconid; Prd, protoconid. Colour online.

Fig. 2. Sus strozzii Forsyth Major, 1881 (SBAU 337647) from Pantalla (Italy) in labial (A), lingual (B), and occlusal (C) views. D, detail of p2-m3 in occlusal view. Scale bars represent 5 cm .

Fig. 3. Location of the palaeontological site of Pantalla (Italy). The intermontane Tiber Basin is highlighted along the middle part of the region Umbria. Colour online.

Fig. 4. Images resulting from the analysis of CT-scans of the specimen SBAU 337647. A, 3D model of the hemimandible in labial and occlusal views; B, same model with density filter applied; C, tomographic images showing the incisor roots (L, left; R, right); D, 3D model of the hemimandible in labial and occlusal views with transparent dentary bone; E, virtual reconstruction of the whole mandible of S. strozzii from Pantalla in occlusal view, obtained by cloning and mirroring the left hemimandible on the right side. Scale bars represent 5 cm . Colour online.

Fig. 5. Plot of length vs. width of the m 3 in SBAU 337647 from Pantalla and other extinct and extant species of Sus (data from Hardjasasmita, 1987 and Pickford, 2012, 2013a, 2013b). Colour online.

Fig. 6. Morphological comparison between the mandibles of Sus strozzii SBAU 337647 from Pantalla (A), S. strozzii IGF 424 from the Upper Valdarno (lectotype) (B), S. strozzii NHMB Se1775 from Senèze (subadult) (C), and S. arvernensis NHMB VI-144 from Villafranca d'Asti (D). B and C are redrawn from Azzaroli (1954); D is redrawn from Pickford and Obada (2016). Scale bar represents 3 cm .

Fig. 7. Strict consensus tree showing the phylogenetic relationships between selected extant and extinct (\dagger) Suinae. Node numbers in white circles, Bremer support in black circles above node numbers, bootstrap values below node numbers. Skulls are not drawn to scale.

Fig. 8. Reconstructed life appearance of the Early Pleistocene Sus strozzii (left) and the Pliocene S. arvernensis (right), in which we emphasized some hypothetical morphological similarities with extant verrucosic ISEA pigs as supported by our phylogenetic results. Artwork by L.S. Colour online.

Table 1. List of fossil Suinae considered in this paper in stratigraphical order with corresponding age, localities, and references.

Table 2. Mandibular measurements (in mm) of Sus strozzii SBAU 337647 from Pantalla (Italy).

Table 3. Distribution of character states for nodes in the most parsimonious trees.

m1-2

C

B

D

TABLE 1. List of fossil Suinae considered in this paper in stratigraphical order with corresponding age, localities, and references.

Species	Age	Localities	References
Microstonyx major	Late Miocene	Bulgaria Kalimanci, Ezerovo, Hadjidimovo, Petrelik	Kostopoulos et al. (2001)
		China Hezheng, Lantian, Binxian	Liu et al. (2004)
		France Luberon	Gervais (1848-1952)
		Germany Dorn-Dürkheim	Van der Made (1997)
		Greece Vathylakkos-2, Ravin de Zouaves-5, Dytiko-1, Nikiti-1, Sophades, Perivolaki, Kerassia, Pikermi, Samos, Vathylakkos 2, Proxoma, Axios Valley	Gaudry (1862-1867); Bonis and Bouvrain (1996); Kostopoulos et al. (2001)
		Iran Maragheh	De Bonis and Bouvrain (1996)
		Macedonia Titov Veles	Kostopoulos et al. (2001)
		Russia Eldar, Berislave, Grossulovo, Grebeniki, Taraklia	Trofimov (1954); Van der Made and Moyà-Solà (1989)
		Spain Crevillente 2-15-16 (Segura-Vinalopó Basin); La Roma 2, Masía del Barbo 2B, Peralejos, La Cantera, Puente Minero, Barranco de las Calaveras, Cerro de la Garita, Las Pedrizas (Teruel Basin); Terrassa, Terral d'en Maties, Piera (Vallès-Penedès Basin); La Cerdaña Basin	Van der Made (1992)
		Turkey Akkaş Dağı	Liu et al. (2005)
		Ukraine Grebeniki	Kostopoulos et al. (2001)
Sus arvernensis	Pliocene	Bulgaria Mussielevo	Spassov (2005)
		China ?Nanzhuanggou (Shanxi Basin)	Berdondini (1992)
		England Red Crag	Lydekker (1885, 1886); Newton (1891); Guérin et al. (1998)
		France Les Étouaires, Perpignan, Mas Bruno near St. Estève, Autrey near Gray (Haute Saône), Vialette, Trévoux-Reyrieux, Sables marins de Montpellier (composite unit)	Croizet and Jobert (1828); Depéret (1890); Azzaroli (1954); Bout (1960); Guérin et al. (1998); Pickford (2012, 2013a)
		Germany Herbolzheim, Wölfersheim-Wetterau	Tobien (1951, 1952); Guérin et al. (1998)
		Greece Milia, ?Damatria Formation (Rhodes), ?Ptolemaida/Servia, Megalo Emvolon, ?Sesklo ${ }^{1}$	Tobien (1981); Koufos (1986); Kostopoulos and Athanassiou (2003); Radulescu et al. (2003), Guérin and Tsoukala (2013)
		Hungary Süttö, ?Gödöllő	Mottl (1939); Guérin and Tsoukala (2013); Pickford and Obada (2016)
		India-Pakistan Siwalik Hills ${ }^{2}$	Pickford and Obada (2016)
		Italy Val di Pugna, ?Casino Basin, Villafranca d'Asti area, ?Collepardo (Anagni Basin)	Azzaroli (1954, 1975); Berdondini (1992); Guérin et al. (2004); Gallai (2006); Guérin and Tsoukala (2013)
		Moldova Musaitu, Dermenji (Moldovian Faunal Complex)	Pickford and Obada (2016)
		Romania Capeni-Virghis, Baraolt Basin	Radulescu et al. (2003); Radulescu (2005)
		Slovakia Hajnacka, Ivanovce	Fejfar (1961, 1964); Hünermann (1971)
		Spain Gorafe IV, Piedrabuena, Alcoy	Van der Made and Moyà-Solà (1989); Mazo and Torres (1990); Montoya et al. (2006)
		Taiwan Qiding ${ }^{3}$	Pickford and Obada (2016)
		Turkey Afyon Dinar Akçakoy, Çalta, Afyon Karahisar (Sandiki-Garkin area)	Hünermann (1975); Guérin et al. (1998); Guérin and Tsoukala (2013); Pickford and Obada (2016)
Kolpochoerus afarensis	Pliocene	Ethiopia Hadar (Sidi Hakoma, Denen Dora and Kada Hadar members), Shungura Formation (Member B), Dikika, Maka sands (Middle Awash research area)	Cooke (1978b); Souron (2012)

Metridiochoer shawi

Metridiochoerus andrewsi andrewsi

Late Pliocene
 Pleistocene
"Kolpochoerus" phacochoeroides

Early Pleistocene

Early Pleistocene

Early-Late Pleistocene

Sus strozzii

Tanzania Laetoli (Upper Laetolil Beds)
Chad Koro Toro
South Africa Makapansgat Member 3

Ethiopia Shungura Formation, Konso Formation, Ledi-Geraru research area, Middle Awash research area
Kenya Koobi Fora Formation, Nachukui Formation, Kanjera Formation, Homa Mountain, Marsabit Road.
Malawi Chiwondo Beds
South Africa Swartkrans (Member 2), Bolt's Farm, Gondolin, Kromdraai A
Tanzania Olduvai Beds I and II
Uganda Kaiso Formation
Algeria Aïn el Bey ${ }^{4}$

Morocco Ahl al Oughlam
India-Pakistan Siwalik Hills ${ }^{5}$

Ethiopia Matabaietu (Middle Awash research area), Ledi-Geraru research area

Indonesia Trinil, Kebonduren, Bangle, Kaligede, Teguan, Watualang ${ }^{6}$

Azerbaijan Palan-Tyukan
England Red Crag
France Sables marins de Montpellier (composite unit), Senèze, ?Le Coupet, Saint Vallier
Greece Gerakarou, Vassiloudi
Holland Tegelen

Israel Oubeidiyeh
Italy Upper Valdarno, Olivola, ?Casino Basin, Coste San Giacomo, Monte Riccio, Mugello, Torre Picchio, Villa San Faustino, Santa Sabina, Frantoio (Arda River)

Moldova ?Khaprovian and Odessian Faunal Complexes
Romania Valea Graunceanului (Dacian Basin)
Russia Khapry, ?Taman Peninsula ${ }^{7}$
Spain Fonelas ${ }^{8}$, Valdeganga

Harris (1987); Bishop (2010); Souron (2012)
Brunet et al. (1995)
Bender (1992); Cooke (2005)

Harris and White (1979); de Heinzelin et al. (1999); Suwa et al. (2014)
DiMaggio et al. (2015)
Harris and White (1979) ; Medin et al. (2015)
Kullmer (2008)
Cooke (1993); Pickford (2013d); Pickford and Gommery (2016)
Harris and White (1979)
Cooke and Coryndon (1970)
Thomas (1884)

Geraads (2004)
Lydekker (1884)

DiMaggio et al. (2015); Souron et al. (2015)

Hardjasasmita (1987)

Titov (2000); Kostopoulos and Athanassiou (2003)
Owen (1856); Lydekker (1885, 1886); Stuart (1982); Van der Made and MoyàSolà (1989)
Schaub (1943); Azzaroli (1954, 1975); Fejfar (1964); Geraads et al. (1986); Faure (2004); Pickford (2013a)
Koufos (1986); Kostopoulos and Athanassiou (2003)
Richarz (1921); Bernsen (1931); Schreuder (1945); Hooijer (1947); Van der Made and Moyà-Solà (1989)
Geraads et al. (1986); Kostopoulos and Athanassiou (2003)
Forsyth-Major (1881); Stehlin (1899-1900); Azzaroli (1954, 1975); Faure and Guérin (1984); Ambrosetti et al. (1995); Girotti et al. (2003); Mazzini et al. (2000); Pazzaglia et al. (2013); Bellucci et al. (2014); Bona and Sala (2016); Pickford and Obada (2016)
David et al. (1997)
Bolomey (1965); Faure (2004)
Alekseeva (1977); Titov (2000)
Van der Made and Moyà-Solà (1989); Opdyke et al. (1997); Pickford and Obada (2016)

Sus macrognathus Middle-Late Pleistocene

China Lantian Man Site of Gongwangling, Hexian Man Site, Nanjing Man Site, Yunxian Man Site, Tuozi Cave, Yangshuizhan, Nihewan Basin, Peking Man Site (Locality 1) of Zhoukoudian, Xinyaozi

China Liucheng Gigantopithecus Cave 9, Bijiashan Cave
Indonesia Kedungbrubus, Kebonduren, Bangle, Ngandong, Sumberkepuh, Teguan,
Watualang, Sangiran
Myanmar Naungkwe Taung
Taiwan Qiding

Teilhard de Chardin and Piveteau (1930); Hu and Qi (1978); Huang et al. (1982); Liu (1991); Huang (1996); Dong (1999); Dong et al. (2007); Dong and Fang (2008); Echassoux et al. (2008); Liu et al. (2017)

Han et al. (1975); Pickford and Obada (2016)
Hardjasasmita (1987); Pickford (2013b)

Pickford (2013b)
Qi et al. (1999); Pickford and Obada (2016)
${ }^{1}$ Sus cf. strozzii in Symeonidis (1992).
${ }^{2}$ Sus hysudricus in Falconer and Cautley (1846) and Pilgrim $(1925,1926)$.
${ }^{3}$ Sus houi in Qi et al. (1999).
${ }^{4}$ Sus phacochoeroides in Thomas (1884).
${ }^{5}$ Kolpochoerus falconeri in Chavasseau (2008), Pickford (2012, 2013a), and Pickford and Obada (2016).
${ }^{6}$ Sus vatualangensis in Von Koenigswald (1933)
${ }^{7}$ Sus tamanensis in Vereshchagin (1957)
${ }^{8}$ Potamochoerus magnus in Arribas and Garrido (2008).
${ }^{9}$ Sus australis in Han (1987).

TABLE 2. Mandibular measurements (in mm) of Sus strozzii SBAU 337647 from Pantalla (Italy).

1	Length from the gonial angle (Infradentale - Gonion caudale)	329.0
2	Distance between distal border of m3 and Gonion caudale	110.5
3	Distance between Infradentale and distal border of m3	225.2
4	Distance between mesial border of p2 and Gonion caudale	237.0
5	Distance between distal border of c1 and distal border of m3	170.2
6	Rostroventral length of the mandibular corpus (Infradentale-mental prominence)	101.7
7	Height of the mandibular corpus at the mesial border of p2	57.2
8	Height of the mandibular corpus at the mesial border of m1	66.3
9	Height of the mandibular corpus at the distal border of m3	66.9
10	Length of the symphysis	105.4
11	Length of the c1-p1 diastema	6.7
12	Length of the p1-p2 diastema	23.6
13	Length of the cheektooth row (p1 included)	163.3
14	Length of the cheektooth row (p1 excluded)	133.3
15	Length of the molar row	90.3
16	Length of the premolar row (p1 included)	73.1
17	Length of the premolar row (p1 excluded)	43.5
c1 labial length	23.2	
c1 lingual length	26.7	
c1 distal width	19.6	
p1 alveolus length	7.4	
p1 alveolus width	5.1	
p2 length	14.0	
p2 width	9.4	
p3 length	13.2	
p3 width	10.3	
p4 length	14.8	
p4 width	13.1	
m1 length	17.6	
m1 mesial width	13.8	
m1 distal width	14.5	
m2 length	22.8	
m2 mesial width	16.8	
m2 distal width	18.0	
m3 length	49.8	
m3 maximum width	22.0	
m3 talonid length	34.9	
m3 talonid mesial width	19.8	
m3 talonid distal width	17.4	

Numbers in the first column correspond to those in Fig. 1 (measurement 10 not figured). Values in italics are estimated. All dental measurements are taken at the cervix, except when stated otherwise.

TABLE 3. Distribution of character states for nodes in the most parsimonious trees.

Node	Character(state transformations)
$\underline{1}$	
$\underline{2}$	$\mathbf{7}(0>1), \mathbf{9}(0>1)$
$\underline{3}$	$\mathbf{6}(1>0), \mathbf{7}(1>0), \mathbf{2 7}(1>0), \mathbf{3 2}(1>0), \mathbf{4 6}(1>0)$
$\underline{4}$	$\mathbf{2 3}(0>1)$
$\underline{5}$	$\mathbf{2 1}(1>0), \mathbf{2 5}(1>0)$
$\underline{6}$	$\mathbf{2 8}(0>1), \mathbf{3 6}(0>1), \boldsymbol{8}(1>0)$
$\underline{7}$	$\mathbf{1 9}(0>1), \mathbf{4 6}(0>1), \mathbf{3}(0>1)$
$\underline{8}$	$\mathbf{7}(0>1), \mathbf{8}(1>0), \mathbf{2 7}(1>0), \mathbf{5 1}(1>2)$
$\underline{10}$	$\mathbf{6}(1>0), \mathbf{1 3}(1>0), \mathbf{3 3}(0>1), \mathbf{4 6}(0>1), \mathbf{5 1}(1>2)$
$\underline{11}$	$\mathbf{1 1}(0>1), \mathbf{1 2}(0>1), \mathbf{1 3}(2>1), \mathbf{1 4}(1>0), \mathbf{4 5}(1>0)$
$\underline{13}$	$\mathbf{5}(0>2), \mathbf{1 1}(0>1), \mathbf{2 4}(0>1)$
$\underline{14}$	$\mathbf{1 5}(1>2), \mathbf{2 7}(1>0)$
	$\mathbf{2}(0>1), \mathbf{3}(1>0), \mathbf{4}(2>1), \mathbf{8}(1>0), \mathbf{9}(0>1), \mathbf{1 1}(0>1), \mathbf{1 4}(1>0)$,
	$\mathbf{2 9}(0>1), \mathbf{3 0}(1>0), \mathbf{3 4}(0>1), \mathbf{3 5}(0>1), \mathbf{3 6}(0>1), \mathbf{3 7}(0>1)$,
$\underline{15}$	$\mathbf{4 4}(0>1), \mathbf{4 7}(0>1), \mathbf{4 8}(0>1)$
$\underline{17}$	$\mathbf{2}(0>1), \mathbf{3}(1>0), \mathbf{4 8}(0>1)$
$\underline{18}$	$\mathbf{1}(1>0), \mathbf{1 3}(2>0)$
21	$\mathbf{7}(0>1)$
22	$\mathbf{1 3}(2>1), \mathbf{1 4}(1>0)$
23	$\mathbf{3}(1>0), \mathbf{4}(2>1), \mathbf{1 2}(0>1)$
24	$\mathbf{3 3}(1>02), \mathbf{3 9}(1>0), \mathbf{4 7}(1>0), \mathbf{5 1}(0>1)$
25	$\mathbf{5}(0>1)$
26	$\mathbf{2 2}(1>0), \mathbf{2 6}(0>1), \mathbf{3 9}(0>1)$
27	$\mathbf{4 1}(0>2), \mathbf{5 0}(0>1)$
28	$\mathbf{1 7}(1>0), \mathbf{2 3}(0>1), \mathbf{2 7}(1>0)$
29	$\mathbf{8}(1>2), \mathbf{2 1}(1>2), \mathbf{3 8}(0>1), \mathbf{5 0}(0>1)$
30	$\mathbf{0}(1>0), \mathbf{2 3}(0>1), \mathbf{2 8}(0>1), \mathbf{4 1}(0>1)$
31	$\mathbf{5}(0>1), \mathbf{1 0}(0>1), \mathbf{1 6}(0>1), \mathbf{2 0}(1>0)$
32	$\mathbf{7}(0>1), \mathbf{4 0}(0>1), \mathbf{4 3}(0>1)$
33	$\mathbf{2 9}(0>1), \mathbf{4 4}(0>1), \mathbf{5 1}(1>2)$
34	$\mathbf{3 0}(1>0), \mathbf{3 7}(0>1)$
	$\mathbf{1 1}(0>1), \mathbf{1 2}(0>1), \mathbf{1 8}(1>0), \mathbf{3 5}(0>1)$

Node numbers refer to nodes in the strict consensus tree (Fig. 7). Terminal nodes are underlined. Italics indicate ambiguous apomorphies inferred here using the ACCTRAN optimization.

Appendix 1
 LIST OF CRANIOMANDIBULAR AND DENTAL CHARACTERS USED IN THE CLADISTIC ANALYSIS

Unordered and unweighted states for all characters.
All characters were coded on male individuals unless otherwise stated.
0. Cranium, greatest frontal width relative to $1 / 3$ of cranial length: similar or longer (0); shorter (1).

Remarks: This character describes the general shape of the cranium: species exhibiting character state 0 have relatively shorter and wider crania than those with character state 1 . The greatest frontal width corresponds to the greatest width across the orbital processes of the frontal bone; the cranial length is measured as the distance between Akrokranion and Prosthion. Character modified from Souron et al. (2015: 3).

1. Cranium, angulation between splanchnocranium and neurocranium in lateral view: absent (0); present (1).

Remarks: This character describes the general dorsal profile of the cranium in lateral view and reflects the vertical development of the forehead. Character modified from Souron et al. (2015: 4).
2. Cranium, notch at level of frontoparietal suture in lateral view: absent (0); present (1).
3. Splanchnocranium, length relative to 60% of total cranial length: similar or shorter (0); longer (1).

Remarks: This character describes the relative elongation of the rostrum. The length of the splanchnocranium is measured as the distance between Supraorbitale and Prosthion. Cranial length is measured as in character n .0 .
4. Splanchnocranium, height relative to cranial height: high (0); very high (1).

Remarks: This character describes the relative dorsoventral development of the rostrum. Splanchnocranium height is measured at the mesial border of M1; cranial height is measured between the distal border of M3 and the dorsal margin of the orbit. The character is coded as follows: ratio $>60 \%$ (0); ratio $\leq 60 \%$ (1). Character modified from Souron et al. (2015: 5).
5. Splanchnocranium, development of rhinarium muscle scars: absent or indistinct (0); present (1); very marked (2).

Remarks: Character modified from Souron et al. (2015: 7).
6. Premaxillae, proportions: relatively narrow (0); relatively wide (1).

Remarks: The relative width of the premaxillary area is measured as the ratio between the distance between the mesial border of canines and that between the latter point and the Prosthion. We assign character state 0 to taxa with average ratio $<85 \%$ and character state 1 to taxa with average ratio $\geq 85 \%$. Character modified from Souron et al. (2015: 8).
7. Neurocranium, relative width of postorbital constriction: relatively narrow (0); relatively wide (1).

Remarks: In taxa with character state 0 , the ratio between the least width of the postorbital constriction and the greatest frontal width (see character n. 0) is $<45 \%$, while in taxa exhibiting a relatively wider parietal area (character state 1), this ratio is $\geq 45 \%$. Character modified from Souron et al. (2015: 6).
8. Neurocranium, nuchal crest, width relative to the greatest frontal width: very large (0); large (1); narrow (2).

Remarks: The relative width of the nuchal crest is measured as the ratio between the width of the nuchal crest in dorsal view and the greatest width across the orbital processes of the frontals. The character is coded as follows: ratio $\leq 100 \%$ (0); ratio $>100 \%$ and $<140 \%$ (1); ratio $\geq 140 \%$ (2). Character modified from Souron (2012: 4).
9. Neurocranium, parietal dorsal surface: flat or convex (0); concave (1).

Remarks: Character modified from Geraads (2004: 1).
10. Neurocranium, morphology of the parietal ventrally to the temporal line: inflated (0); flat or concave (1).

Remarks: In taxa showing character state 0 , there is not a distinct change of slope between the dorsal part of the temporal fossa and the parietal roof. Whereas, this change of slope is visible in taxa showing character state 1 . Character from Souron (2012: 6).
11. Nasals, length relative to $1 / 2$ of total cranial length: equal or lower (0); higher (1).

Remarks: Cranial length is measured as in character n. 0.
12. Zygomatic arch, height relative to $1 / 2$ of height of the occipital region: higher (0); lower (1).

Remarks: The height of the zygomatic arch is measured at the medioventral border of the orbit. The height of the occipital region corresponds to the distance between Akrokranion and Basion.
13. Zygomatic arch, outline of the rostral border in dorsal view: straight (0); inclined (1); transverse (2).

Remarks: In taxa showing character state 0 , the rostral border of the zygomatic arch forms a flat outline in continuity with the lateral border of the maxilla; in those showing character state 1 , the rostral border of the zygomatic arch forms an obtuse angle with the lateral border of the maxilla; in those showing character state 2 , this angle is about 90°. Character modified from Souron et al. (2015: 1).
14. Zygomatic arch, ventral outline in lateral view: straight (0); drooping (1).

Remarks: Character modified from Souron et al. (2015: 10).
15. Zygomatic arch, mediolateral thickness in dorsal view: thin (0); thickened (1); rounded knobshaped (2).

Remarks: Character modified from Souron et al. (2015: 2).
16. Zygomatic arch, lateral protuberance in females: absent (0); present (1).

Remarks: Character modified from Souron (2012: 10).
17. Orbit, position of the rostral border in lateral view: above M3 (0); posterior to M3 (1).

Remarks: Character from Geraads (2004: 4).
18. Preorbital fossa: indistinct (0); present (1).

Remarks: The preorbital fossa is here interpreted as the "well marked fossa on the side of the face immediately in front of the eye, involving parts of the lachrymal, jugal and maxillary bones" (Ewer, 1958: 141), representing the posterior insertion area of the levator rostri muscle. Character from Orliac et al. (2010a: 9).
19. Preorbital fossa, depth: deep (0); shallow (1).
20. Tympanic bullae, development: relatively large (0); relatively small (1).

Remarks: Character modified from Geraads (2004: 14).
21. Occipital condyles, position relative to cheektooth row in lateral view: low (0); high (1); very high (2).

Remarks: Character modified from Geraads (2004: 17).
22. Occipital region, overall shape in caudal view: high and narrow (0); low and wide (1).

Remarks: This character is measured as the ratio between the greatest width of the nuchal crest and the height of the occipital region (i.e., distance between Akrokranion and Basion). We assign character state 0 to taxa with average ratio $<75 \%$ and character state 1 to taxa with average ratio $\geq 75 \%$.
23. Mandible, shape of the symphysis area in occlusal view: long and narrow (0); short and wide (1).

Remarks: In taxa exhibiting character state 0 , the average ratio between the mandible width at the labial margin of canine alveoli and the symphysis length is $<85 \%$; in taxa exhibiting character state 1 , this ratio is $\geq 85 \%$. Character modified from Souron et al. (2015: 13).
24. Mandible, bony shelf at the caudoventral corner of the symphysis: absent (0); present (1).
25. Mandible, ventral extension of the angular process: present (0); absent (1).

Remarks: The ventral extension of the angular process is coded as present when the Gonion ventrale is more ventral than the ventral margin of the corpus in labial view. Character modified from Orliac et al. (2010a: 34).
26. Mandible, corpus, shape of the labial longitudinal swelling in males: sub-parallel to the tooth row (0); showing a convexity in the median part (1); enlarging rostrocaudally (2).

Remarks: For the evaluation of this character, mandibles are observed in occlusal view. Sus scrofa exhibits character state 0 , although the forms from Flores (S. scrofa vittatus or S. scrofa floresianus; Hardjasasmita, 1987) shows a strong but relatively small bony protuberance on the labial side of each mandible corpus (see Hardjasasmita, 1987: 57). However, this protuberance is here interpreted as a derived sexual character of these subspecies and is different from the undulate labial margin of the corpus which characterise the taxa coded with character state 1. Character modified from Souron et al. (2015: 15).
27. Mandible, angle between corpus and ascending ramus: approximately right (0); obtuse (1).
28. Upper canines, length: long (0); very long (1).

Remarks: We consider the canine as long when it extends over the lateral margin of the maxilla, without reaching that of the zygomatic arch; very long when it exceeds the lateral margin of the zygomatic arch. Character modified from Geraads (2004: 29).
29. Upper canines, enamel: present (0); absent (1).

Remarks: Given the possible ontogenetic variation of this character (e.g., enamel present in juveniles and absent in adults), we coded it only for adult individuals. Character from Geraads (2004: 20).
30. Upper canines, supracanine flange: absent or weak (0); crest-like (1).

Remarks: Character modified from Souron et al. (2015: 10).
31. Upper canines, supracanine flange dorsoventral development: low (0); high (1).

Remarks: Character from Souron et al. (2015: 11).
32. Upper canines, supracanine flange rostrocaudal development: short (0); elongated (1).

Remarks: Character from Souron et al. (2015: 12).
33. Upper tooth row, relative length of the upper post-canine diastema: short (0); medium (1); long (2).

Remarks: The relative length of the diastema is calculated as the ratio between the actual length of the diastema and the palate width at the mesial border of M1. The character is coded as follows: ratio $\leq 25 \%$ (0); ratio $>25 \%$ and $<40 \%$ (1); ratio $\geq 40 \%$ (2).
34. Upper incisors, size of I1: large (0); small (1).

Remarks: Character from Geraads (2004: 21).
35. Upper incisors, I2: present (0); absent or very reduced (1).
36. Upper incisors, I3: present (0); absent or very reduced (1).

Remarks: Character from Geraads (2004: 23).
37. Upper premolars, P2: present (0); reduced or absent (1).

Remarks: Character modified from Souron et al. (2015: 18).
38. Upper premolars, molarization of P4: absent (0); present (1).
39. Upper and lower premolars, style/stylid in P3-P4/p3-p4: weak (0); well developed (1).

Remarks: Character discussed in Hardjasasmita (1987).
40. Upper and lower molars, mesiodistal compression of the main cusps/cuspids: absent (0); present (1).

Remarks: Character from Souron (2012: 24).
41. Upper and lower molars, complexity of enamel figures exposed at the occlusal surface: low (0); high (1); very high (2).

Remarks: In taxa showing character state 0 , the enamel figures exposed at the occlusal surface of worn cusps/cuspids are sub-circular or with very few invaginations. The latter figures are instead well visible in taxa showing character state 1 and became even more complex and deep in taxa showing character state 2 .
42. Lower canines, morphology: verrucosic (0); scrofic (1).

Remarks: See the manuscript for details on this character.
43. Lower incisors, development of i1-i2: i1-i2 very long and parallel, forming a comb (0); i2 smaller than and oblique to il (1).

Remarks: Character from Souron et al. (2015: 19).
44. Lower incisors, arcade angle: acute (0); right or obtuse (1).

Remarks: The angle is measured between two lines passing through the mesial margin of the canine alveolus and the Infradentale.
45. Lower premolars, p1: present (0); reduced or absent (1).
46. Lower premolars, p 1 position: very close to the lower canine (0); about in the middle of the post-
canine diastema (1).
47. Lower premolars, p2: present (0); reduced or absent (1).
48. Lower premolars, p3: present (0); reduced or absent (1).
49. Lower premolars, occlusal shape of p4: sub-quadrangular (0); mesiodistally elongated (1).
50. Lower premolars, morphology of p4: one main cuspid clearly separated from a low talonid (0); high talonid, forming a blade with the main cuspid or a wide and flat occlusal surface (1).

Remarks: Character discussed in Azzaroli (1954).
51. Lower molars, relative size of the distal part of the m 3 talonid: short (0); long (1); very long (2).

Remarks: The relative length of the distal part of the m 3 talonid is measured as the ratio between the distal talonid length (i.e., length of the portion distal to the hypoconid and entoconid) and the total length of m 3 . The character is coded as follows: ratio $\leq 35 \%$ (0); ratio $>35 \%$ and $<45 \%$ (1); ratio $\geq 45 \%$ (2).

Additional reference

Ewer, R.F., 1958. Adaptive features in the skulls of African Suidae. Journal of Zoology 131, 135-155.

		0	1	2	3		4	5	6	7	8	9	10	11	12	13	141	15	1617	171	18	19 20	202	21	22	232	24	25	26	27	282	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	1
1	Nyanzachoerus khinzir	?	0	0	?	?	1	0	0	0	?	0	0	?	0	2	1	1	0	1	1	1	0	1	?	0	0	0	0	1	0	0	1	0	0	1	0	0	0	0	0	1	0	0	0	0	1	1	-	1	0	0	0	0
2	Microstonyx major	1	1	0	1		1	0	1	1	1	1	0	0	0	2	1	1	?	1	1	0	1	1	1	0	0	?	0	?	0	0	1	0	1	1	0	0	0	0	0	1	0	0	0	0	1	1	-	1	0	1	0	0
3	Sus scrofa	1	0	0	0		0	0	0	1	1	0	0	0	1	1	0	0	0	1	1	1	1	1	1	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1	0	0	1	0/1	
4	Sus arvernensis	1	0	0	0		0	1	1	0	?	0	0	0	1	1	0	0	0	1	1	0	?	1	?	1	0	?	1	?	0	0	1	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	1	
5	Sus lydekkeri	1	0	0	0		0	0	1	0	1	0	0	0	1	1	0	1	0	1	1	0	1	0	0	0	0	0	1	1	0	0	1	0	1	0	0	0	0	0	0	1	0	0	0/1	0	0	0/1	0	0	0	1	0	1
6	Sus strozzii	1	0	0	0		0	1	1	0	0	0	0	0	1	1	1	1	0	1	1	0	1	1	0	0	0	1	1	1	1	0	1	1	1	0	0	0	1	0	0	1	0	2	0	0	0	0	0	0	0	1	1	1
7	Sus brachygnathus	1	0	0	0		0	1	1	?	?	0	0	0	1	1	?	0	0	0	1	0	0	1	?	1	0	0	1	0	?	0	1	1	1	0	0	0	0	0	0	1	0	2	0	0	0	0	0	0	0	1	0	1
8	Sus celebensis	1	0	0	1		0	1	1	0	1	0	0	0	1	1	1	0	0	0	1	1	1	1	0	1	0	1	1	0	0	0	1	1	1	0	0	0	0	0	0	1	0	2	0	0	0	0	1	0	0	1	1	1
9	Sus verrucosus	1	0	0	1	1	0	1	1	1	0	0	0	0	1	1	1	1	0	1	1	0	1	1	0	0	0	1	1	0	0	0	1	0	1	0	0	0	0	0	0	1	0	2	0	0	0	0	0	0	0	1	1	2
10	Sus barbatus	1	0	0	1		0	1	0	0	1	0	0	0	1	0	0	0	0	1	1	0	1	1	0	0	0	1	1	1	0	0	1	0	1	1	0	0	0	0	0	1	0	2	0	0	0	0	1	0	0	1	1	2
11	"Sus" falconeri	0	0	0	1		1	?	1	0	2	0	0	1	1	1	0	1	0	1	1	1	1	2	1	1	0	1	?	1	?	?	1	1	1	0	0	0	0	0	1	0	0	1	0	?	0	0	0	0	0	1	1	
12	Potamochoerus spp.	1	0	0	0		0	2	1	0	1	0	0	1	1	2	1	1	0	1	1	0	1	1	1	0	1	1	0	1	0	0	1	1	1	2	0	0	0	0	0	0	0	0	1	0	1	1	-	0	0	1	0	1
13	Kolpochoerus afarensis	?	1	0	?		1	1	?	0	1	?	1	?	?	2	1	1	1	1	1	1	0	?	?	1	0	1	?	?	?	0	1	?	?	?	?	0	0	0	0	0	0	1	0	0	0	1	-	0	0	1	0	1
14	Kolpochoerus phillipi	0	1	0	1		1	1	1	1	1	0	1	0	0	2	1	2	?	1	1	1	?	1	?	1	0	1	1	0	1	0	1	1	1	0	0	0	0	0	0	0	1	1	0	1	0	1	-	0	0	1	0	1
15	Hylochoerus meinertzhageni	0	1	1	0		0	1	1	1	0	1	1	1	0	2	0	1	1	1	1	1	0	1	1	1	0	1	1	1	1	1	0	-	-	2	1	1	1	1	0	0	1	1	0	1	1	1	-	1	1	1	0	1
16	"Kolpochoerus" phacochoeroides	0	1	1	0		1	0	1	0	2	1	0	0	0	2	1	2	?	1	1	1	1	2	1	1	0	?	2	?	1	1	0	-	-	2	0	0	0	1	1	0	0	1	0	0	1	1	-	1	1	1	1	2
17	Metridiochoerus shawi	0	1	0	1		1	0	1	0	2	0	0	0	0	2	1	?	?	1	1	1	1	2	?	?	?	?	?	?	?	0	0	-	-	1	1	0	1	1	1	0	0	1	0	?	0	1	-	?	0	1	1	1
18	Phacochoerus spp.	0	0	0	1		1	0	1	0	2	0	0	1	1	0	1	2	0	1	0	-	1	2	1	1	0	1	2	1	1	1	0	-	-	2	1	1	1	1	1	0	0	0	0	0	1	1	-	1	0	1	1	2
19	Metridiochoerus andrewsi	0	1	0	1		1	0	1	1	2	1	0	1	1	2	1	2	0	1	0	-	1	2	?	1	0	1	2	1	1	1	0	-	-	2	1	1	1	1	1	0	0	2	0	0	1	1	-	1	0	1	1	2

