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Abstract

Monotone classification is a relatively recent topic in machine learning in which
the classification function to learn is asked to guarantee a sort of monotonicity
of the class with respect to attribute values. Nevertheless, real datasets are
quite far from being monotone and this can sharply limit the performance of
purely monotone classifiers while standard classifiers are simply insensitive to
monotonicity. Here we focus on rank discrimination measures to be used in
decision tree induction, i.e., functions able to measure the discrimination power
of an attribute with respect to the class taking into account the monotonicity
of the class with respect to the attribute. Three new measures are studied
in detail and a hierarchical construction model is derived allowing the formal
definition of a general rank discrimination measure. Our measures have been
compared with other well-known proposals, quantifying both the accuracy and
the monotonicity of the resulting binary decision tree classifiers.

Keywords: rank discrimination measure, monotone classification, monotone
binary decision tree classifier

1. Introduction

Economy, social sciences and medicine are natural fields for decision tasks
involving a set of objects Ω = {ω1, . . . , ωn} described by attributes aj ’s rang-
ing in a totally ordered set Xj , and labelled with a class coming also from a
totally ordered set C. Indeed, the introduction of order structures increases the
expressive power of the decision model allowing the representation of semantic
concepts such as preference, priority, importance and so on. Prototypical ex-
amples are monotone price models [35], customer satisfaction analysis [16] and
medical diagnosis [24, 36].
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Evidently, these problems are quite similar to a standard classification task
[6, 31] in the sense that a classification function must be learned. Nevertheless, in
this context an additional monotonicity requirement is imposed on the classifier,
expressing the intuitive idea that objects with better attribute values should not
be labelled with worse decision class.

This problem has been studied in different communities such as machine
learning, statistics and multi-criteria decision aid and thus there exist several
names for it, like monotone or ordinal classification, ranking or sorting, and
multi-criteria classification. In this paper we will adopt the name of monotone
classification.

More formally, denoting with X the description space generated by the
Xj’s, the monotone classification problem (see, e.g., [30]) consists in finding
a monotone extension λ′ : X → C, of a monotone consistent labelling function
λ : E → C defined on a set of examples E ⊆ X . Anyway, real data are generally
neither monotone consistent nor consistent, i.e., λ could be non-monotone on E
or worse λ could be just a relation on E × C.

Hence, to face this problem two options are available:

1. Require monotone consistency and possibly modify the dataset;

2. Do not require any assumption on the dataset and work with all the avail-
able information.

In the first option, techniques for dataset monotonization (see, e.g., [12, 21,
30]) must be adopted such as delete all non-monotone examples or perform class
relabelling. The result of this approach is generally a classifier which although
monotone could be even very far from the information content of the initial
dataset. On the other hand, the second option requires to extract monotone
structures from data (if present) and this implies a deeper investigation on the
given dataset. Evidently, this second approach does not produce a monotone
classifier in general.

In our opinion, the second possibility is more preferable since it does not
require to remove data or add artificial information, hence in this paper no
particular hypothesis is required on the considered datasets. At the same time,
we think that a monotone classifier should exploit the presence of monotonicity
in the data in order to increase his prediction power and achieve in this way a
better understanding of data structure.

Despite its highly applicative nature, monotone classification has gathered
only few attention in the past years, being almost obscured by the ordinary non-
monotone classification. In the literature, some monotone classifiers have been
proposed such as the Ordinal Learning Model (OLM) [2, 3] and the Ordinal
Stochastic Dominance Learner (OSDL) [8, 9, 22] but in [4] it is shown the
existing monotone classifiers do not possess any statistical advantage w.r.t. non-
monotone classifiers in terms of classification accuracy. In the same paper, the
authors conjecture the tested monotone classifiers are deeply influenced by non-
monotone noise present in real data.

In this paper we consider decision tree classifiers which are known to be
particularly understandable by field experts. Classically, a decision tree is built
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with a Top Down Induction of Decision Tree (TDIDT) algorithm [6, 31], that
is an algorithm building the tree from the root to the leaves by repeated parti-
tioning of the dataset. The main distinguishing feature of existing algorithms is
the discrimination measure [24, 25, 26] used to select at each step the attribute
for splitting. Well-known choices are the conditional Shannon entropy [1, 31],
the Gini discrepancy index [6] and the Yuan and Shaw measure of ambiguity
(originally proposed to build fuzzy decision trees) [39].

More precisely, our aim is to inductively build a decision tree exploiting
somehow the eventual monotonicity present in the dataset, however, since no
assumption of monotonicity is made on the data, we need to relax requirements.
Indeed, the global monotonicity constraint acts on the final classifier λ′ and so
it requires an a priori knowledge of the entire tree. Hence, global monotonic-
ity is difficult to enforce in an inductive construction procedure since at each
step only one attribute can be taken into account. This is why we adopt a
greedy approach: at each step of the building process we choose the attribute
aj “enforcing the most” the local monotonicity constraint, i.e., for all ωi, ωh ∈ Ω,

aj(ωi) ≤ aj(ωh) ⇒ λ(ωi) ≤ λ(ωh),

where aj(ωi) and λ(ωi) are the values of the attribute aj and the labelling
function λ on the object ωi. As a consequence, we cannot expect a globally
monotone classifier at the end of the procedure.

In order to achieve this greedy construction of monotone decision trees we
need discrimination measures sensitive to monotonicity, indeed, common dis-
crimination measures do not possess this property [3]. With this aim, we search
for functions able to quantify the monotonicity of λ w.r.t. aj and being robust
to non-monotone noise.

In [18] the authors propose a rank generalization of Shannon mutual infor-
mation, namely rank mutual information, which is a combination of Shannon
entropy with dominance rough set relation [14, 15], based on the object-wise
writing of Shannon entropy. In the same paper they underline that this mea-
sure is both sensitive to monotonicity and robust to noisy data. In [17] this
measure is used to build binary tree classifiers guaranteed to possess a weak
form of monotonicity in the case the starting dataset is monotone consistent.
They call this TDIDT algorithm REMT and show it behaves well compared to
both monotone and non-monotone classifiers. Moreover, in [19] they use the
rank mutual information for feature selection.

Here, we apply the same rank generalization procedure given in [18] to other
two deeply studied discrimination measures such as Gini measure and Yuan and
Shaw measure, moreover, we directly introduce a third measure not having a
non-monotone counterpart. Since all the introduced measures share a common
functional structure, a hierarchical construction model for rank discrimination
measures (see [27]) in the spirit of [24, 25, 26] has been proposed and a formal
definition of rank discrimination measure has been given. As a side effect, the
definition of a hierarchical construction model is also important since it provides
a base for creating new measures.
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In order to show the effectiveness of the proposed measures we wrote a binary
tree classifier parametrized by a discrimination measure H used for splitting.
This TDIDT algorithm, called RDMT(H), is essentially based on REMT [17]
and is written in Java using the WEKA package. RDMT(H) does not produce
globally monotone classifiers in general, nevertheless, it guarantees a weak form
of monotonicity, namely rule monotonicity, in case the dataset is monotone
consistent and the measure H is a rank discrimination measure.

Since the main goal of present paper is the study of rank discrimination mea-
sures and the resulting splitting criteria, RDMT(H) has been tested on artificial
and real datasets varying H among the given rank discrimination measures and
other proposals present in the literature (in detail, the conditional Shannon en-
tropy [31], the conditional Gini index [6], the total ambiguity score used in MID
algorithm [2] and the conditional GiniL1 impurity used in ICT algorithm [34]).

Our study focused on the impact of the sole discrimination measure on the
final classifier in terms of classification accuracy and monotonicity, testing all
the measures under the same experimental conditions.

We firstly investigated the effect of non-monotone noise on the considered
performance indices for the different measures, generating artificial datasets with
an increasing degree of non-monotone noise [28]. In these tests no significant
difference on classification accuracy has been detected between the tested mea-
sures, while an evident better response of our measures in terms of monotonicity
has been noticed, especially for increasing degree of non-monotone noise.

We then compared the measures on 15 real datasets and the obtained re-
sults have been validated through the Friedman test and the post-hoc Nemenyi
test [11]. Our analysis on real datasets highlighted no statistically significant
difference among the tested measures for what concerns classification accuracy.
On the converse, from the same tests we detected significantly better results of
our measures in terms of monotonicity.

In all the performed tests, our measures showed a tendency toward trees with
a higher number of leaves in which the number of pairwise non-monotone label
comparisons is minimized. In other terms, our measures give generally rise to
a finer partition of the description space in which the non-monotone labellings
are minimized.

This fact suggests a possible advantage in using our measures before applying
a post-processing of the tree [34] for enforcing global monotonicity, indeed, in
this case the possible exogenous information introduced by the post-processing is
surely less than starting from a less monotone tree built using different measures.

The paper is organized as follows. In Section 2 some preliminary notions are
given together with the rank version of conditional Shannon entropy proposed
in [18]. In Section 3 three new candidate rank discrimination measures are in-
troduced while in Section 4 a study of their rank discrimination capabilities is
carried on. In Section 5 the hierarchical construction model for rank discrimi-
nation measures is introduced and the general definition of rank discrimination
measure is given. In Section 6 computational aspects of splitting criteria based
on rank discrimination measures are studied. In Section 7 the RDMT(H) clas-
sifier is presented. In Section 8 the indices for measuring non-monotonicity in
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datasets and trees we use are reproduced in our notation, while in Section 9
we present other discrimination measures used in monotone decision tree in-
duction. In Section 10 the experimental analysis comparing our measures with
other proposals present in the literature is shown. Finally, in Section 11 we list
conclusions and possible lines of future development.

2. Preliminaries

We consider a set Ω = {ω1, . . . , ωn} of objects or alternatives described by
a family A = {a1, . . . , am} of attributes with finite totally ordered range (also
called true criteria in [8, 9]), i.e., for each j = 1, . . . ,m, aj is a function on Ω
ranging in Xj = {xj1 , . . . , xjtj

} with tj > 1 and (Xj ,≤) totally ordered. We

assume a labelling function λ : Ω → C is given, where C = {c1, . . . , ck} is a set
of classes with k > 1 and (C,≤) also totally ordered.

We stress that, for i = 1, . . . , n, each object ωi can be mapped to a corre-
sponding (m + 1)-tuple (a1(ωi), . . . , am(ωi), λ(ωi)), obtaining a dataset of ex-
amples, moreover the product space X = X1 × · · · × Xm (also referred to a
description space) forms a lattice (X,≤) where for each x, y ∈ X ,

x ≤ y ⇔ xj ≤ yj , for j = 1, . . . ,m. (1)

Remark 2.1. In order to avoid cumbersome notation we will use the same
symbol ≤ for all the orderings: the context will clarify which relation we refer
to.

We say that the dataset of examples is consistent if and only if for each
ωi, ωh ∈ Ω it holds

(a1(ωi), . . . , am(ωi)) = (a1(ωh), . . . , am(ωh)) ⇒ λ(ωi) = λ(ωh), (2)

moreover, it is said to be monotone consistent if and only if for each ωi, ωh ∈ Ω
it holds

(a1(ωi), . . . , am(ωi)) ≤ (a1(ωh), . . . , am(ωh)) ⇒ λ(ωi) ≤ λ(ωh). (3)

Remark 2.2. The monotone consistency assumption on the dataset is much
stronger than the consistency assumption since the former implies the latter.

Notice that in the rest of the paper no particular hypothesis is required
on the given dataset, that is we will assume the dataset is neither monotone
consistent nor consistent.

Recall that each attribute aj ∈ A as well as the labelling function λ deter-
mines a partition of Ω, whose elements are denoted, respectively, as

{aj = xjs} = {ωh ∈ Ω : aj(ωh) = xjs}, s = 1, . . . , tj , (4)

{λ = cq} = {ωh ∈ Ω : λ(ωh) = cq}, q = 1, . . . , k, (5)
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moreover, the same partitions can be object-wise written, denoting for each
ωi ∈ Ω

[ωi]aj
= {ωh ∈ Ω : aj(ωi) = aj(ωh)}, (6)

[ωi]λ = {ωh ∈ Ω : λ(ωi) = λ(ωh)}, (7)

where for each ωh ∈ [ωi]aj
we have [ωh]aj

= [ωi]aj
and, analogously, for each

ωh ∈ [ωi]λ we have [ωh]λ = [ωi]λ.
In [18] the following object-wise writing of conditional Shannon entropy is

shown (reported here in our notation).

Proposition 2.1. Put ps =
|{aj=xjs}|

|Ω| and pq,s =
|{λ=cq}∩{aj=xjs}|

|Ω| :

HS(λ|aj) =

tj
∑

s=1

ps

(

−

k
∑

q=1

(

pq,s
ps

)

log2

(

pq,s
ps

)

)

=

|Ω|
∑

i=1

1

|Ω|

(

− log2

(

|[ωi]λ ∩ [ωi]aj
|

|[ωi]aj
|

))

.

In the same paper the authors underline the incapability of conditional Shan-
non entropy to detect monotonicity of λ w.r.t. aj . To overcome this obstacle,
they go back to the dominance rough set approach (see [14, 15]) introducing the
notion of dominant set generated, respectively, by aj and λ. For each ωi ∈ Ω,
they define

[ωi]
≤
aj

= {ωh ∈ Ω : aj(ωi) ≤ aj(ωh)}, (8)

[ωi]
≤
λ = {ωh ∈ Ω : λ(ωi) ≤ λ(ωh)}. (9)

Then they propose a rank version of conditional Shannon entropy, obtained
simply substituting in the object-wise writing the equivalence classes [ωi]λ ∩
[ωi]aj

and [ωi]aj
with the corresponding dominant sets, deriving the following

definition (we keep conditional notation just for uniformity).

Definition 2.1 (Rank Shannon discrimination measure).

H∗
S(λ|aj) =

|Ω|
∑

i=1

1

|Ω|

(

− log2

(

|[ωi]
≤
λ ∩ [ωi]

≤
aj
|

|[ωi]
≤
aj |

))

.

In Definition 2.1, the ratio
|[ωi]

≤

λ
∩[ωi]

≤
aj

|

|[ωi]
≤
aj

|
is a measure of satisfaction of the

local monotonicity constraint for a fixed ωi ∈ Ω, quantifying the validity of

aj(ωi) ≤ aj(ωh) ⇒ λ(ωi) ≤ λ(ωh),

for all ωh ∈ Ω.
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Proposition 2.2. For a fixed ωi ∈ Ω,

|[ωi]
≤
λ ∩ [ωi]

≤
aj
|

|[ωi]
≤
aj |

= 1 if and only if aj(ωi) ≤ aj(ωh) ⇒ λ(ωi) ≤ λ(ωh),

for all ωh ∈ Ω.

Proof. It immediately follows since
|[ωi]

≤

λ
∩[ωi]

≤
aj

|

|[ωi]
≤
aj

|
= 1 if and only if {ωh ∈ Ω :

λ(ωi) ≤ λ(ωh) ∧ aj(ωi) ≤ aj(ωh)} = {ωh ∈ Ω : aj(ωi) ≤ aj(ωh)} and this is
true if and only if the local monotonicity constraint is satisfied for ωi.

3. New rank discrimination measures

In this section we extend the approach proposed by Hu et al in [18] to
other well-known discrimination measures such as Gini measure and Yuan and
Shaw measure and we investigate if the obtained functions are proper rank
discrimination measures.

We start with Gini measure whose object-wise writing is given in the follow-
ing proposition.

Proposition 3.1. Put ps =
|{aj=xjs}|

|Ω| and pq,s =
|{λ=cq}∩{aj=xjs}|

|Ω| :

HG(λ|aj) =

tj
∑

s=1

ps

(

1 −

k
∑

q=1

(

pq,s
ps

)2
)

=

|Ω|
∑

i=1

1

|Ω|

(

1 −
|[ωi]λ ∩ [ωi]aj

|

|[ωi]aj
|

)

.

Proof. Consider fixed q and s. Since {aj = xjs} = [ωi]aj
for each ωi ∈ {aj =

xjs} and {λ = cq} ∩ {aj = xjs} = [ωi]λ ∩ [ωi]aj
for each ωi ∈ {λ = cq} ∩ {aj =

xjs}, it follows

|{λ = cq} ∩ {aj = xjs}|
2

|{aj = xjs}|
=

∑

ωi∈{λ=cq}∩{aj=xjs}

|[ωi]λ ∩ [ωi]aj
|

|[ωi]aj
|

.

This implies

HG(λ|aj) =

tj
∑

s=1

|{aj = xjs}|

|Ω|

(

1 −

k
∑

q=1

(

|{λ = cq} ∩ {aj = xjs}|

|{aj = xjs}|

)2
)

= 1 −
1

|Ω|

tj
∑

s=1

k
∑

q=1

|{λ = cq} ∩ {aj = xjs}|
2

|{aj = xjs}|

= 1 −
1

|Ω|

|Ω|
∑

i=1

|[ωi]λ ∩ [ωi]aj
|

|[ωi]aj
|

=

|Ω|
∑

i=1

1

|Ω|

(

1 −
|[ωi]λ ∩ [ωi]aj

|

|[ωi]aj
|

)

.
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In analogy with Definition 2.1 the rank version of Gini measure is obtained
just replacing the equivalence classes [ωi]λ ∩ [ωi]aj

and [ωi]aj
in the object-wise

writing with the corresponding dominant sets.

Definition 3.1 (Rank Gini discrimination measure).

H∗
G(λ|aj) =

|Ω|
∑

i=1

1

|Ω|

(

1 −
|[ωi]

≤
λ ∩ [ωi]

≤
aj
|

|[ωi]
≤
aj |

)

.

Notice that the rank generalization of Gini measure given in Definition 3.1
differs from the one proposed in [38].

The same procedure is now applied to the Yuan and Shaw measure of am-
biguity [39]. In order to achieve the object-wise writing, we have to notice that
in the standard definition of this measure a total order on the cardinalities

|{λ = cq} ∩ {aj = xjs}|, q = 1, . . . , k,

is assumed for each fixed s = 1, . . . , tj, therefore, we need to “transport” this
ordinal structure to objects in Ω by defining the following binary relation.

Definition 3.2. For each ωi, ωh ∈ Ω

ωi -λ,aj
ωh iff [ωi]λ ∩ [ωi]aj

= [ωh]λ ∩ [ωh]aj

or






aj(ωi) = aj(ωh)
[ωi]λ ∩ [ωi]aj

6= [ωh]λ ∩ [ωh]aj

|[ωi]λ ∩ [ωi]aj
| ≤ |[ωh]λ ∩ [ωh]aj

|

.

It is easily proven that -λ,aj
is a partial preorder on Ω, moreover the sym-

metric part ∼λ,aj
is an equivalence relation on Ω while the asymmetric part

≺λ,aj
is a partial strict order on Ω/∼λ,aj

. In particular, to each decreasing

≻λ,aj
-chain in Ω/∼λ,aj

we can associate an increasing index starting from 1 and

so for each ωi we can define

ρ(ωi) = “index of the ∼λ,aj
-equivalence class containing ωi”. (10)

Intuitively, the aim of function ρ is to express at the object level the (not
necessarily unique) permutation σ of index q corresponding to the non-increasing
ordering of cardinalities |{λ = cσ(q)} ∩ {aj = xjs}| for each fixed s = 1, . . . , tj .
Indeed, each such permutation σ uniquely determines a corresponding ρ and
vice versa. This implies the function ρ is generally not unique, but it is trivial
to verify that all the possible choices of ρ give rise to the same final result as it
holds for the choice of the index permutation in the standard definition of Yuan
and Shaw measure.

In the following, to simplify notation we assume 1
0 = ∞ and we define

fin(x) =

{

x if x < ∞
1 otherwise

.
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Proposition 3.2. Put ps =
|{aj=xjs}|

|Ω| and pq,s =
|{λ=cq}∩{aj=xjs}|

|Ω| with pσ(1),s ≥

. . . ≥ pσ(k),s for s = 1, . . . , tj:

HY (λ|aj) =

tj
∑

s=1

ps

(

k
∑

q=1

pσ(q),s

pσ(1),s
log2

(

fin

(

q

q − 1

))

)

=

|Ω|
∑

i=1

1

|Ω|













max
ωh∈[ωi]aj

|[ωh]λ ∩ [ωh]aj
|

|[ωi]aj
|







−1

log2

(

fin

(

ρ(ωi)

ρ(ωi) − 1

))






.

Proof. Let ρ be the index function corresponding to the permutation σ. Con-
sider fixed q and s, then for each ωi ∈ {λ = cσ(q)} ∩ {aj = xjs} it holds

|{λ = cσ(1)} ∩ {aj = xjs}| = max
ωh∈[ωi]aj

|[ωh]λ ∩ [ωh]aj
|,

log2

(

fin

(

q

q − 1

))

= log2

(

fin

(

ρ(ωi)

ρ(ωi) − 1

))

.

Moreover, since {aj = xjs} = [ωi]aj
for each ωi ∈ {aj = xjs} it follows

|{aj = xjs}| · |{λ = cσ(q)} ∩ {aj = xjs}| =
∑

ωi∈{λ=cσ(q)}∩{aj=xjs}

|[ωi]aj
|.

This implies

HY (λ|aj) =

tj
∑

s=1

|{aj = xjs}|

|Ω|

(

k
∑

q=1

|{λ = cσ(q)} ∩ {aj = xjs}|

|{λ = cσ(1)} ∩ {aj = xjs}|
log2

(

fin

(

q

q − 1

))

)

=
1

|Ω|

tj
∑

s=1

k
∑

q=1

|{aj = xjs}|
|{λ = cσ(q)} ∩ {aj = xjs}|

|{λ = cσ(1)} ∩ {aj = xjs}|
log2

(

fin

(

q

q − 1

))

=
1

|Ω|

|Ω|
∑

i=1

|[ωi]aj
|

max
ωh∈[ωi]aj

|[ωh]λ ∩ [ωh]aj
|

log2

(

fin

(

ρ(ωi)

ρ(ωi) − 1

))

=

|Ω|
∑

i=1

1

|Ω|













max
ωh∈[ωi]aj

|[ωh]λ ∩ [ωh]aj
|

|[ωi]aj
|







−1

log2

(

fin

(

ρ(ωi)

ρ(ωi) − 1

))






.

To introduce the rank version of Yuan and Shaw measure we need a definition
of relation -λ,aj

taking into account dominant sets.
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Definition 3.3. For each ωi, ωh ∈ Ω

ωi -
′
λ,aj

ωh iff [ωi]
≤
λ ∩ [ωi]

≤
aj

= [ωh]≤λ ∩ [ωh]≤aj

or










aj(ωi) = aj(ωh)

[ωi]
≤
λ ∩ [ωi]

≤
aj

6= [ωh]≤λ ∩ [ωh]≤aj

|[ωi]
≤
λ ∩ [ωi]

≤
aj
| ≤ |[ωh]≤λ ∩ [ωh]≤aj

|

.

Even in this case it is easy to show that relation -′
λ,aj

is a partial preorder

on Ω and all the properties mentioned before still hold for ∼′
λ,aj

and ≺′
λ,aj

.
Hence, for each ωi we can define

ρ′(ωi) = “index of the ∼′
λ,aj

-equivalence class containing ωi”, (11)

and the rank version of Yuan and Shaw measure is obtained as follows.

Definition 3.4 (Rank Yuan and Shaw discrimination measure).

H∗
Y (λ|aj) =

|Ω|
∑

i=1

1

|Ω|















max
ωh∈[ωi]aj

|[ωh]≤λ ∩ [ωh]≤aj
|

|[ωi]
≤
aj |







−1

log2

(

fin

(

ρ′(ωi)

ρ′(ωi) − 1

))









.

Observing Definition 3.4 one can see that the rank version of Yuan and
Shaw measure considers for each object ωi only the set [ωh]≤λ ∩ [ωh]≤aj

with the
maximum cardinality having ωh ∈ [ωi]aj

. This optimistic approach may produce

a sort of blindness w.r.t. monotonicity since the ratio

max
ωh∈[ωi]aj

|[ωh]
≤

λ
∩[ωh]

≤
aj

|

|[ωi]
≤
aj

|
could

be 1 even if
|[ωi]

≤

λ
∩[ωi]

≤
aj

|

|[ωi]
≤
aj

|
is less than 1. Furthermore, the measure takes into

account an ordering on the cardinalities of dominant sets (expressed by ρ′)
which may conflict with the order on the values determining the dominant sets
themselves, which is the one we wish to preserve. Previous discussion suggests
the rank generalization of Yuan and Shaw measure may not behave as a proper
rank discrimination measure.

Therefore, in the next definition we directly introduce a third measure which
is inspired to the functional structure of Definition 3.4 but has a cautious nature
and so we call it pessimistic.

Definition 3.5 (Pessimistic rank discrimination measure).

H∗
P (λ|aj) =

|Ω|
∑

i=1

1

|Ω|









−







min
ωh∈[ωi]aj

|[ωh]≤λ ∩ [ωh]≤aj
|

|[ωi]
≤
aj |







−1

log2







min
ωh∈[ωi]aj

|[ωh]≤λ ∩ [ωh]≤aj
|

|[ωi]
≤
aj |















.
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We stress that the ratio

min
ωh∈[ωi]aj

|[ωh]
≤

λ
∩[ωh]

≤
aj

|

|[ωi]
≤
aj

|
can be equal to 1 only in the

case
|[ωi]

≤

λ
∩[ωi]

≤
aj

|

|[ωi]
≤
aj

|
is 1 but it could be less than 1 even in the case the last equality

holds.
Example 3.1 shows the computation of H∗

S , H∗
G, H∗

Y and H∗
P .

Example 3.1. Consider the set of objects Ω = {ω1, . . . , ω5} together with the
attribute a1 ranging in {0, 1, 2} and the labelling function λ ranging in {0, 1}
whose definition is reported in Table 1.

a1 λ
ω1 0 0
ω2 1 1
ω3 2 0
ω4 1 1
ω5 1 0

Table 1: Definition of a1 and λ

The dominant sets generated by a1 and λ are: [ω1]≤a1
= [ω1]≤λ = [ω3]≤λ =

[ω5]≤λ = Ω, [ω2]≤a1
= [ω4]≤a1

= [ω5]≤a1
= {ω2, ω3, ω4, ω5}, [ω3]≤a1

= {ω3} and

[ω2]≤λ = [ω4]≤λ = {ω2, ω4}. The corresponding intersection then are: [ω1]≤λ ∩

[ω1]≤a1
= Ω, [ω2]≤λ ∩ [ω2]≤a1

= [ω4]≤λ ∩ [ω4]≤a1
= {ω2, ω4}, [ω3]≤λ ∩ [ω3]≤a1

= {ω3}

and [ω5]≤λ ∩ [ω5]≤a1
= {ω2, ω3, ω4, ω5}.

Now it is easily verified that relation -′
λ,a1

has the following descending
≻′

λ,a1
-chains: ω5 ≻′

λ,a1
ω2 ∼′

λ,a1
ω4, while ω1 and ω3 form each one a one-

element chain. This implies ρ′(ω1) = ρ′(ω3) = ρ′(ω5) = 1 and ρ′(ω2) =
ρ′(ω4) = 2. A straightforward computation leads to H∗

S(λ|a1) = H∗
Y (λ|a1) = 2

5 ,
H∗

G(λ|a1) = 1
5 and H∗

P (λ|a1) = 6
5 .

4. Rank discrimination capabilities

In previous section three new functions have been presented as candidate
rank discrimination measures. Evidently, the next step is to verify if they possess
good properties, this in turn will allow a deeper study of only those functions
behaving properly.

We recall that the purpose of a rank discrimination measure is to be used at
each step of a greedy tree induction algorithm to select the attribute “enforcing
the most” the local monotonicity constraint: each time the attribute minimizing
the rank discrimination measure is chosen for splitting. More precisely, each
measure induces a total preoder on the set of attributes A that we will denote,
respectively, as ≤H∗

S
, ≤H∗

G
, ≤H∗

Y
and ≤H∗

P
, of which only the (not necessarily

unique) minimal element is considered.
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From previous discussion it follows that our goal is to find functions able
to distinguish the presence of monotonicity of λ w.r.t. an attribute aj and
presenting robustness to possible non-monotone noise in the data.

For what concerns the monotonicity discrimination power, we generated
three datasets of 500 examples where, for j = 1, 2, 3, aj is a uniform random
variable on [0, 1] and λj = a2j +εj, with εj uniform random variable ranging, re-
spectively, on {0}, [−0.1, 0.1] and [−0.2, 0.2], assuring λj ∈ [0, 1]. Table 2 shows
the three datasets and the corresponding values of the proposed measures.

HS(λj |aj) = HG(λj |aj) = HY (λj |aj) = 0, for j = 1, 2, 3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

λ 1

a1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

λ 2

a2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

λ 3

a3

H∗
S(λ1|a1) = 0 H∗

S(λ2|a2) = 0.1919 H∗
S(λ3|a3) = 0.3334

H∗
G(λ1|a1) = 0 H∗

G(λ2|a2) = 0.1037 H∗
G(λ3|a3) = 0.1729

H∗
Y (λ1|a1) = 0 H∗

Y (λ2|a2) = 0 H∗
Y (λ3|a3) = 0

H∗
P (λ1|a1) = 0 H∗

P (λ2|a2) = 0.5852 H∗
P (λ3|a3) = 1.0811

Table 2: Monotonicity discrimination power

Observing Table 2 it is immediate to see that standard discrimination mea-
sures HS , HG and HY are constantly equal to 0, showing their insensitivity to
non-monotonicity. On the contrary, measures H∗

S , H∗
G and H∗

P are equal to 0
in case of perfect monotonicity while their value increases as the non-monotone
noise increases. As expected, the rank generalization of Yuan and Shaw mea-
sure does not behave in a meaningful way since it is not able to distinguish the
increment of non-monotone noise, being equal to 0 in the three datasets.

We investigate now the robustness with respect to non-monotone noise, con-
sidering the dataset represented in Table 3.

In Table 3 one can see that measures HS , HG, HY and H∗
Y consider equiv-

alent, respectively, situations (a) and (b) and situations (c) and (d). More
precisely, it holds a1 =H∗

Y
a2 <H∗

Y
a3 =H∗

Y
a4 (all the other measures induce

the same total preorder on A). In other terms, this means that situations of
non-monotonicity such as (b) and (d) are judged equivalent, respectively, to
situations of perfect (a) or almost perfect (c) monotonicity. But even worse,
situation (b) is judged strictly better than situation (c).

12



Fr. λ

a1 c1 c2 c3

x11 10 0 0

x12 0 10 0

x13 0 10 0

x14 0 0 10

x15 0 0 10

HS(λ|a1) = 0
HG(λ|a1) = 0
HY (λ|a1) = 0

H∗
S(λ|a1) = 0

H∗
G(λ|a1) = 0

H∗
Y (λ|a1) = 0

H∗
P (λ|a1) = 0

(a)

Fr. λ

a2 c1 c2 c3

x21 10 0 0

x22 0 10 0

x23 0 0 10

x24 0 10 0

x25 10 0 0

HS(λ|a2) = 0
HG(λ|a2) = 0
HY (λ|a2) = 0

H∗
S(λ|a2) = 0.6000

H∗
G(λ|a2) = 0.2833

H∗
Y (λ|a2) = 0

H∗
P (λ|a2) = 1.4616

(b)

Fr. λ

a3 c1 c2 c3

x31 9 0 1

x32 0 10 0

x33 0 10 0

x34 0 0 10

x35 1 0 9

HS(λ|a3) = 0.1875
HG(λ|a3) = 0.0720
HY (λ|a3) = 0.0444

H∗
S(λ|a3) = 0.0856

H∗
G(λ|a3) = 0.0516

H∗
Y (λ|a3) = 0.2000

H∗
P (λ|a3) = 0.7279

(c)

Fr. λ

a4 c1 c2 c3

x41 0 0 10

x42 1 0 9

x43 9 0 1

x44 0 10 0

x45 0 10 0

HS(λ|a4) = 0.1875
HG(λ|a4) = 0.0720
HY (λ|a4) = 0.0444

H∗
S(λ|a4) = 0.7225

H∗
G(λ|a4) = 0.2743

H∗
Y (λ|a4) = 0.2000

H∗
P (λ|a4) = 31.7023

(d)

Table 3: Robustness with respect to non-monotone noise

On the other hand, measures H∗
S , H∗

G and H∗
P behave in a coherent way

since the situation (c) of almost perfect monotonicity is ranked after situation
(a) of perfect monotonicity but before situations (b) and (d).

The given examples show H∗
Y is not a good rank discrimination measure,

hence, in what follows we will focus on H∗
S , H∗

G and H∗
P .

As already pointed out, it is extremely important to investigate the order
structure the measures H∗

S , H∗
G and H∗

P induce on the set of attributes A. In
particular, the three measures possess an individual meaning only in the case
they are not a monotone transformation of each other. Example 4.1 shows it is
not the case, in fact the three measures generally induce different total preorders
and so they will produce trees with different shape in general.

Example 4.1. Consider the set of objects Ω = {ω1, . . . , ω5} together with the
attributes a1 ranging in {0, 1, 2, 3} and a2 ranging in {0, 1}, and the labelling
function λ ranging in {0, 1, 2, 3}.

If a1,a2 and λ are defined as in Table 4 (a) then we have a1 <H∗
S
a2 and

a1 <H∗
P

a2 while a1 >H∗
G

a2. Furthermore, if a1,a2 and λ are defined as in
Table 4 (b) then we have a1 <H∗

S
a2 and a1 <H∗

G
a2 while a1 >H∗

P
a2.

5. Hierarchical construction model for rank discrimination measures

In the spirit of [24, 25, 26] we aim to develop a hierarchical construction
model for rank discrimination measures (see [27]), with the goal of isolating
which properties a function must satisfy to be a measure of this type. As a side
effect, the definition of a hierarchical construction model is also important since
it provides a base for creating new measures.
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a1 a2 λ
ω1 3 0 0
ω2 2 1 1
ω3 1 1 2
ω4 0 0 1
ω5 3 0 3

H∗
S(λ|a1) = 0.5813

H∗
S(λ|a2) = 0.7287

H∗
G(λ|a1) = 0.3066

H∗
G(λ|a2) = 0.3000

H∗
P (λ|a1) = 1.4559

H∗
P (λ|a2) = 7.7657

(a)

a1 a2 λ
ω1 0 1 3
ω2 2 0 2
ω3 1 1 1
ω4 3 0 1
ω5 0 1 0

H∗
S(λ|a1) = 0.6643

H∗
S(λ|a2) = 0.7627

H∗
G(λ|a1) = 0.2600

H∗
G(λ|a2) = 0.3600

H∗
P (λ|a1) = 5.0438

H∗
P (λ|a2) = 4.1748

(b)

Table 4: Definitions of a1, a2 and λ

In order to simplify notation, for a fixed aj ∈ A and λ denote:

dsr(ωi) =
|[ωi]

≤
λ ∩ [ωi]

≤
aj
|

|[ωi]
≤
aj |

, (12)

mindsr(ωi) =

min
ωh∈[ωi]aj

|[ωh]≤λ ∩ [ωh]≤aj
|

|[ωi]
≤
aj |

, (13)

maxdsr(ωi) =

max
ωh∈[ωi]aj

|[ωh]≤λ ∩ [ωh]≤aj
|

|[ωi]
≤
aj |

, (14)

avgdsr(ωi) =

∑

ωh∈[ωi]aj

|[ωh]
≤

λ
∩[ωh]

≤
aj

|

|[ωi]aj
|

|[ωi]
≤
aj |

. (15)

Notice that the function dsr considers only the object ωi, while the functions
mindsr, maxdsr and avgdsr consider all the objects “in the same conditions” for
what concerns the attribute aj , that is those belonging to the equivalence class
[ωi]aj

. In particular, it holds for every ωh ∈ [ωi]aj
, mindsr(ωh) = mindsr(ωi),

maxdsr(ωh) = maxdsr(ωi) and avgdsr(ωh) = avgdsr(ωi).
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The functions H∗
S , H∗

G and H∗
P can be rewritten as

H∗
S(λ|aj) =

|Ω|
∑

i=1

1

|Ω|
(− log2(dsr(ωi))) , (16)

H∗
G(λ|aj) =

|Ω|
∑

i=1

1

|Ω|
(1 − dsr(ωi)) , (17)

H∗
P (λ|aj) =

|Ω|
∑

i=1

1

|Ω|

(

−
log2 (mindsr(ωi))

mindsr(ωi)

)

. (18)

After a careful look all the measures presented so far share a common func-
tional structure, in which we can distinguish three functions f∗, g∗ and h∗,
composed hierarchically. In particular, for fixed λ and aj , the h∗-layer considers
all the objects in Ω, while both the g∗-layer and the f∗-layer take into account
a single object ωi. Table 5 lists the different layers for the measures introduced
so far. We will use subscripts S, G and P to refer to layers f∗, g∗ and h∗ of
each measure.

Layer H∗
S H∗

G H∗
P

f∗ dsr(ωi) mindsr(ωi)

g∗ − log2 f
∗(ωi) 1− f∗(ωi) − log2 f∗(ωi)

f∗(ωi)

h∗
|Ω|
∑

i=1

1
|Ω|

g∗(f∗(ωi))

Table 5: Hierarchical construction model for measures H∗
S , H∗

G and H∗
P

The f∗-layer is a function quantifying the validity of the local monotonicity
constraint of λ with respect to aj for a fixed ωi ∈ Ω, i.e., it measures the
satisfaction of aj(ωi) ≤ aj(ωh) ⇒ λ(ωi) ≤ λ(ωh), for every ωh ∈ Ω. For this,
f∗ can be referred to as object-wise local monotonicity measure and it is asked
to satisfy the following conditions for every ωi ∈ Ω:

(F1) mindsr(ωi) ≤ f∗(ωi) ≤ maxdsr(ωi);

(F2) if f∗(ωi) = 1, then aj(ωi) ≤ aj(ωh) ⇒ λ(ωi) ≤ λ(ωh), for every ωh ∈ Ω;

(F3) if [ωi]
≤
λ ∩[ωi]

≤
aj

⊆ [ωh]≤λ ∩[ωh]≤aj
and [ωi]aj

= [ωh]aj
, then f∗(ωi) ≤ f∗(ωh).

Notice that condition (F1) implies f∗(ωi) ∈ (0, 1]. From a semantic point
of view, condition (F1) imposes two natural boundaries to f∗(ωi) which are
determined by objects belonging to [ωi]aj

. Condition (F2) requires that f∗(ωi)
is equal to 1 only in the case of complete satisfaction of the local monotonicity
constraint for ωi. Finally, condition (F3) is a monotonicity requirement related
to other objects in [ωi]aj

. It is immediate to verify that dsr, mindsr and avgdsr
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satisfy conditions (F1)–(F3), and so f∗
S , f∗

G and f∗
P . On the contrary, maxdsr

can fail to satisfy (F2). From previous discussion, we have that for every ωi ∈ Ω

1

|Ω|
≤ f∗

P (ωi) ≤ f∗
G(ωi) = f∗

S(ωi) ≤ 1. (19)

Going on, the g∗-layer is a strictly decreasing transformation of the f∗-
layer, and it is a real function defined on (0, 1], i.e., it is an object-wise local
non-monotonicity measure. Putting fi = f∗(ωi), g

∗ must satisfy the following
conditions:

(G1) g∗(fi) ∈ [0,+∞);

(G2) g∗ is a strictly decreasing function of fi;

(G3) g∗(1) = 0.

Notice that g∗G, g∗S and g∗P satisfy conditions (G1)–(G3), moreover on the
interval (0, 1], g∗P dominates g∗S which, in turn, dominates g∗G. Considering (19),
for every ωi ∈ Ω we also have

g∗G(f∗
G(ωi)) ≤ g∗S(f∗

S(ωi)) ≤ g∗P (f∗
P (ωi)). (20)

Finally, the h∗-layer is an aggregation operator of the g∗-layers corresponding
to objects in Ω, and thus it is a real function defined on [0,∞)n, which can be re-
ferred to as aggregated local non-monotonicity measure. Putting gi = g∗(f∗(ωi))
for i = 1, . . . , n, h∗ must satisfy the following conditions:

(H1) h∗(g1, . . . , gn) ∈ [0,+∞);

(H2) h∗(g1, . . . , gn) = h∗(gσ(1), . . . , gσ(n)) for every permutation σ;

(H3) if gi ≤ g′i, then h∗(g1, . . . , gi, . . . , gn) ≤ h∗(g1, . . . , g
′
i, . . . , gn);

(H4) h∗(g1, . . . , gn) = 0 if and only if gi = 0 for i = 1, . . . , n.

Again, it is easily seen that the arithmetic mean satisfies conditions (H1)–
(H4), nevertheless, it is not the only possible choice, indeed, also the maximum
operator and the quadratic mean satisfy such conditions.

Next proposition summarizes some properties of H∗
G, H∗

S and H∗
P .

Proposition 5.1. The following statements hold:

(i) H∗
G(λ|aj) ≤ H∗

S(λ|aj) ≤ H∗
P (λ|aj);

(ii) 0 ≤ H∗
G(λ|aj) <

|Ω|−1
|Ω| ;

(iii) 0 ≤ H∗
S(λ|aj) < log2(|Ω|);

(iv) 0 ≤ H∗
P (λ|aj) < |Ω| log2(|Ω|).
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Proof. All the properties follow by inequalities (19) and (20). In particular, for
properties (ii)–(iv) the upper bound cannot be reached since the f∗-layers of
objects in Ω cannot be simultaneously all equal to 1

|Ω| .

The layered decomposition we just presented suggests the following definition
of a general rank discrimination measure.

Definition 5.1. Let f∗, g∗ and h∗ be functions satisfying conditions (F1)–
(F3), (G1)–(G3) and (H1)–(H4), respectively, then we call rank discrimi-
nation measure

H∗(λ|aj) = h∗(g∗(f∗(ω1)), . . . , g∗(f∗(ωn))).

In Definition 5.1 we kept conditional notation for uniformity.

Remark 5.1. In the following we will use the symbol H∗ to denote a generic
rank discrimination measure (i.e., satisfying Definition 5.1) while the symbol H
will stand for a generic discrimination measure used for splitting in a TDIDT
algorithm: in other terms the functions H∗’s are just a subset of the possible
functions H’s that can be used for splitting.

In next theorem we prove that a rank discrimination measure H∗ defined as
in Definition 5.1 reaches its minimum value 0 if and only if λ is monotone w.r.t.
aj .

Theorem 5.1. Let f∗, g∗ and h∗ be functions satisfying conditions (F1)–(F3),
(G1)–(G3) and (H1)–(H4), respectively, then H∗(λ|aj) = 0 if and only if λ
is monotone with respect to aj, that is for every ωi, ωh ∈ Ω,

aj(ωi) ≤ aj(ωh) ⇒ λ(ωi) ≤ λ(ωh).

Proof. Condition (H4) implies that the h∗-layer is 0 if and only if the g∗-layer
related to each ωi ∈ Ω is equal 0 and by virtue of conditions (G2) and (G3)
this can happen if and only if the corresponding f∗-layer is equal to 1. Finally,
by conditions (F1) and (F2) the f∗-layer is equal to 1 for every ωi if and only
if the local monotonicity constraint of λ w.r.t. aj is satisfied for every ωi.

Definition 5.1 enables us to introduce new rank discrimination measures, as
the two proposed in next example.

Example 5.1. Consider the functions

H∗
M (λ|aj) = max

i=1,...,|Ω|

{

1 − dsr(ωi)
2
}

;

H∗
Q(λ|aj) =

√

√

√

√

|Ω|
∑

i=1

1

|Ω|
(1 − avgdsr(ωi))

2
.

It is easily verified that both functions H∗
M and H∗

Q respect all the conditions
in Definition 5.1 and Table 6 lists the hierarchical decomposition of the two new
measures.
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Layer H∗
M H∗

Q

f∗ dsr(ωi) avgdsr(ωi)

g∗ 1− f∗(ωi)
2 1− f∗(ωi)

h∗ max
i=1,...,|Ω|

{g∗(f∗(ωi))}

√

|Ω|
∑

i=1

1
|Ω|

g∗(f∗(ωi))2

Table 6: Hierarchical construction model for measures H∗
M and H∗

Q

6. Computational aspects

Since a rank discrimination measure is supposed to be used for splitting at
each step of an inductive algorithm, it is crucial to evaluate the complexity
of the resulting splitting criterion in terms of time and space. The proposed
measures are essentially based on dominant sets, thus the most complex part
seems to be the construction and storage of such structures.

In the following we propose an algorithm to compute the splitting using one
between H∗

S , H∗
G or H∗

P . Suppose Ω = {ω1, . . . , ωn}, A = {a1, . . . , am} and λ
are given. For a fixed j ∈ {1, . . . ,m}, the collections of dominant sets related
to the attribute aj and the labelling function λ, respectively, can be stored into
two two-dimensional arrays A and D both of size n× 4. We assume to identify
the values in the range of aj and λ with their ordinal index, starting from 0,
moreover, arrays are indexed starting from 0 in Java-like fashion.

The structure of both A and D is as follows: the first column is used to
contain the row position of each object, the second column contains the index
of each object in Ω minus 1 (used as identifier), the third column contains the
corresponding value of aj (or λ), and the fourth column contains an integer
value that will simplify the computation of cardinalities.

We describe the initialization of A:

(a) The second and the third columns are filled, setting for h = 0, . . . , n− 1,
A[h][1] := h and A[h][2] = aj(ωh+1), while the first and fourth columns
are left empty.

(b) The rows are ordered increasingly with respect to the third column.

(c) The fourth column is filled searching for a change in the value reported in
the third column. Set A[0][3] := 0 and for h = 1, . . . , n − 1, if A[h][2] >
A[h− 1][2] then set A[h][3] := h, otherwise set A[h][3] := A[h− 1][3].

(d) The first column is filled with the row index of each object, i.e., for h =
0, . . . , n− 1, set A[A[h][1]][0] := h.

The points (a), (c) and (d) can be solved in O(n) steps, while point (b)
requires O(n log n) steps if executed with a comparison-based sorting algorithm
such as MergeSort (which will consider the third column, having index 2).

18



Hence, the construction of A requires O(n logn) steps, while the space complex-
ity is O(n). Algorithm 1 shows the initialization of A. The same procedure and
considerations can be applied to D.

Algorithm 1 Initialization of the two-dimensional array A

function InitDomSet(A, aj)
for h = 0 to n− 1 do

A[h][1] := h
A[h][2] := aj(ωh+1)

end for
MergeSort(A, 2)
A[0][3] := 0
for h = 1 to n− 1 do

if A[h][2] > A[h− 1][2] then A[h][3] := h
else A[h][3] := A[h− 1][3]

end for
for h = 0 to n− 1 do A[A[h][1]][0] := h

end function

Once A and D have been initialized we have |[ωi]
≤
aj
| = n− A[A[i − 1][0]][3]

and |[ωi]
≤
aj
| = n−D[D[i − 1][0]][3], hence the computation of |[ωi]

≤
aj
| or |[ωi]

≤
λ |

has complexity O(1).

To compute |[ωi]
≤
λ ∩ [ωi]

≤
aj
|, we assume to use an auxiliary array V of di-

mension n: notice that the space complexity is still O(n). If |[ωi]
≤
aj
| = n, then

no computation on V is needed since |[ωi]
≤
λ ∩ [ωi]

≤
aj
| = |[ωi]

≤
λ |. Analogously, if

|[ωi]
≤
λ | = n, it holds |[ωi]

≤
λ ∩ [ωi]

≤
aj
| = |[ωi]

≤
ai
|. Furthermore, if |[ωi]

≤
aj
| = 1 or

|[ωi]
≤
λ | = 1, then |[ωi]

≤
λ ∩ [ωi]

≤
aj
| = 1.

When previous conditions are not met, the auxiliary array V is initialized to
0 as well as a temporary counter count. Then for h = D[D[i−1][0]][3], . . . , n−1,
we set V [D[h][1]] := V [D[h][1]] + 1 and after, for h = A[A[i− 1][0]][3], . . . , n− 1,
if V [A[h][1]] > 0 we set count := count + 1. At the end of those operations we

have |[ωi]
≤
λ ∩ [ωi]

≤
aj
| = count, thus to determine |[ωi]

≤
λ ∩ [ωi]

≤
aj
| we need at most

O(n) steps. Algorithm 2 shows the computation of |[ωi]
≤
λ ∩ [ωi]

≤
aj
|.

The temporal complexity for calculating dsr(ωi) is determined by the com-

putation of |[ωi]
≤
λ ∩ [ωi]

≤
aj
|, and so requires O(n) steps. Since dsr(ωi) must be

computed for i = 1, . . . , n, the computation of H∗
S(λ|aj) or H∗

G(λ|aj) requires
O(n2) steps.

The computation of mindsr(ωi) for all i = 1, . . . , n, requires an auxiliary
array I of size n: also in this case the space complexity remains O(n). For a
fixed ωi, the equivalence class [ωi]aj

is located in rows from A[A[i − 1][0]][3]
to u, where u is the last row index for which A[A[i − 1][0]][2] = A[u][2], thus
mindsr(ωi) can be computed scanning these rows and once computed, it can be
stored in I for all the objects belonging to [ωi]aj

, as mindsr(ωi) = mindsr(ωh)
for all ωh ∈ [ωi]aj

. This shows that the construction of array I requires at most
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Algorithm 2 Computation of |[ωi]
≤
λ ∩ [ωi]

≤
aj
|

function CardInt(A, D, i)
if A[A[i − 1][0]][3] = n then return n−D[D[i− 1][0]][3]
if D[D[i− 1][0]][3] = n then return n−A[A[i− 1][0]][3]
if A[A[i − 1][0]][3] = 1 or D[D[i− 1][0]][3] = 1 then return 1
count := 0
for h = 0 to n− 1 do V [h] := 0
for h = D[D[i− 1][0]][3] to n− 1 do V [D[h][1]] := V [D[h][1]] + 1
for h = A[A[i− 1][0]][3] to n− 1 do

if V [A[h][1]] > 0 then count := count + 1
end for
return count

end function

O(n2) steps. Algorithm 3 copes with the construction of I. Finally, once I has
been built, the measure H∗

P (λ|aj) can be computed in O(n) steps, implying that
the computation of H∗

P (λ|aj) has global complexity O(n2).

Algorithm 3 Computation of the array I containing mindsr(ωi) for i = 1, . . . , n

function MinDsr(A, D, I)
temp := n
for h = 0 to n− 1 do

temp := min(temp, CardInt(A,D,A[h][1]))
if h = n− 1 or (h < n− 1 and A[h + 1][2] > A[h][2]) then

for u = A[h][3] to h do I[A[h][1]] := temp
temp := n

end if
end for

end function

Let us stress that the construction of D can be executed once and this two-
dimensional array can be preserved in memory until the end of the splitting
phase. Nevertheless, all the previous work related to the construction of A
and the computation of the rank discrimination measure must be repeated for
j = 1, . . . ,m.

In conclusion the global time complexity for splitting with H∗
S , H∗

G or H∗
P

is O(m(n log n + n2)) = O(mn2) while the space complexity is O(n).
The following example shows the two-dimensional arrays used to store the

collections of dominant sets and their use in the computation of the rank dis-
crimination measure H∗

S , H∗
G and H∗

P .

Example 6.1. Consider the dataset of Example 3.1. The two-dimensional
arrays A and D corresponding to a1 and λ are reported in Table 7.

We have that:
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A =

0 0 0 0
1 1 1 1
4 3 1 1
2 4 1 1
3 2 2 4

D =

0 0 0 0
3 2 0 0
1 4 0 0
4 1 1 3
2 3 1 3

Table 7: Two-dimensional arrays A and D representing dominant sets related
to a1 and λ

• |[ω1]|≤a1
= 5 − A[A[0][0]][3] = 5 − 0 = 5 and |[ω1]|≤λ = 5 −D[D[0][0]][3] =

5 − 0 = 5, which implies |[ω1]≤λ ∩ [ω1]≤a1
| = |[ω1]≤a1

| = 5, thus it follows
dsr(ω1) = 1;

• |[ω2]|≤a1
= 5 − A[A[1][0]][3] = 5 − 1 = 4 and |[ω2]|≤λ = 5 −D[D[1][0]][3] =

5 − 3 = 2, and since V = 〈0, 1, 0, 1, 0〉 we have that |[ω2]≤λ ∩ [ω2]≤a1
| = 2,

thus dsr(ω2) = 1
2 ;

• |[ω3]|≤a1
= 5 − A[A[2][0]][3] = 5 − 4 = 1 and |[ω3]|≤λ = 5 −D[D[2][0]][3] =

5 − 0 = 5, which implies |[ω1]≤λ ∩ [ω1]≤a1
| = 1, thus it follows dsr(ω3) = 1;

• |[ω4]|≤a1
= 5 − A[A[3][0]][3] = 5 − 1 = 4 and |[ω4]|≤λ = 5 −D[D[3][0]][3] =

5 − 3 = 2, and since V = 〈0, 1, 0, 1, 0〉 we have that |[ω1]≤λ ∩ [ω1]≤a1
| = 2,

thus dsr(ω1) = 1
2 ;

• |[ω5]|≤a1
= 5 − A[A[4][0]][3] = 5 − 1 = 4 and |[ω5]|≤λ = 5 −D[D[4][0]][3] =

5 − 0 = 5, which implies |[ω1]≤λ ∩ [ω1]≤a1
| = 4, thus dsr(ω5) = 1.

It is easily verified that I = 〈5, 2, 1, 2, 2〉, hence it follows that H∗
S(λ|a1) = 2

5 ,
H∗

G(λ|a1) = 1
5 and H∗

P (λ|a1) = 6
5 .

7. RDMT(H) classifier

In order to make a comparison of the introduced measures with other pro-
posal present in the literature we wrote a binary decision tree classifier in Java
relying on the WEKA package [37]. Our algorithm is essentially based on REMT
classifier [17], differing from it for the use of a user-specified discrimination mea-
sure H to minimize for splitting, instead of the rank mutual information. We
call it RDMT(H) classifier, where the acronym RDMT stands for Rank Dis-
crimination Measure Tree since it is mainly thought to work with H∗

G, H∗
S or

H∗
P . RDMT(H) is a simple classifier parametrized by the choice of a discrimi-

nation measure H in a (possible enlargeable) set comprising H∗
G, H∗

S and H∗
P ,

and by other three pre-pruning parameters. No post-pruning is executed on the
resulting tree.

Our classifier can deal with both numeric and ordinal attributes while the
class is required to be ordinal. In case of numeric attributes the standard nu-
meric order is considered, while for ordinal attributes (which are treated as
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nominal attributes by WEKA) the order is determined by the writing order of
values in the @attribute statement of the .arff file (extension of WEKA input
files). Missing values are not allowed.

As common practice in tree induction [6], the RDMT(H) algorithm is com-
pletely specified once are known the following parts: splitting rule, stopping rule
and labelling rule. The algorithm proceeds recursively applying this three rules,
working at each step on a local set of objects Ωα where Ω0 = Ω.

For the splitting rule, since we restrict to binary trees, each attribute aj
must be binaryzed as it is done in [31] for numeric attributes. In detail, if
Xj = {xj1 , . . . , xjtj

}, we denote with a
xjs

j the binary attribute defined as

a
xjs

j (ωi) =

{

0 aj(ωi) ≤ xjs

1 otherwise
.

Now the splitting rule consists simply in finding the binary attribute ax∗
∗ mini-

mizing H(λ|a
xjs

j ), where a∗ is the attribute for splitting and x∗ is the splitting
value, in symbol

x∗ = arg min{H(λ|a
xjs

j ) : j = 1, . . . ,m, s = 1, . . . , tj − 1}.

Then the local object set Ωα is partitioned into two subsets, defined as

{ωi ∈ Ωα : a∗(ωi) ≤ x∗} and {ωi ∈ Ωα : a∗(ωi) > x∗}, (21)

and the procedure is repeated on these two subsets.
We stop growing the tree in the case λ is constant on Ωα, moreover, to avoid

overfitting, three pre-pruning parameters determine further stopping conditions.
The parameter measureThreshold sets a lower bound for the discrimination
measure H , the parameter maxDepth sets the maximum length of a path from
the root to a leaf node and the parameter percMinSize sets the minimum size
of the current object set Ωα, which is computed as percMinSize · |Ω|. Notice
that, since the discrimination measures H ’s that can be used in RDMT(H) have
different range, the parameter measureThreshold is deeply tied to the chosen
measure and so it must be properly tuned.

Once a stopping condition is reached a leaf node is created and is properly
labelled [17]. If λ is constant on Ωα then the constant value is chosen as label,
otherwise if λ is not constant, then the median value is taken. In the particular
case λ assumes only two values cl1 < cl2 , both on the same number of objects
of Ωα, then cl1 is chosen in the case of a left leaf node, while cl2 is chosen in the
case of a right leaf node.

Concerning the measures proposed in this paper, we underline that, gener-
ally, even if the training dataset is monotone consistent, the greedy tree induc-
tion with H∗

G, H∗
S and H∗

P (or, more generally, any rank discrimination measure
H∗ satisfying Definition 5.1) does not guarantee a globally monotone classifier.

Hence, it is important to investigate if RDMT(H∗) can assure at least a
weaker form of monotonicity. Algorithm REMT is shown to guarantee a weak
kind of monotonicity that we call rule monotonicity [17]. Let T = (N,A) be
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the decision tree generated by the induction procedure, where N = {r} ∪ I ∪L
is the set of nodes (partitioned in the singleton formed by the root r, the set of
internal nodes I and the set of leaves L) and A is the set of directed arcs. It is
known (see, e.g., [31]) that each path r  l with l ∈ L induces a decision rule
Rl, thus we denote with RT the set of decision rules generated by T .

Given l1, l2 ∈ L, Rl1 and Rl2 are comparable (see [17]) only in the case they
are generated by the same attributes, in this case we say that Rl1 < Rl2 if and
only if attribute values of Rl1 are less than Rl2 . We simply denote with λT (l)
the label attached to leaf node l. Then we say that T is rule monotone if and
only if for each Rl1 , Rl2 ∈ RT :

Rl1 < Rl2 ⇒ λT (l1) < λT (l2). (22)

In [17] it is proven that in the case the dataset is monotone consistent, then al-
gorithm REMT guarantees rule monotonicity. The following proposition states
that the same also holds for RDMT(H∗), where H∗ is an arbitrary rank dis-
crimination measure.

Proposition 7.1. Let D = {(a1(ωi), . . . , am(ωi), λ(ωi)) : i = 1, . . . , n} be
a dataset of examples and T a binary decision tree built with RDMT(H∗) on
D, where H∗ is rank discrimination measure satisfying Definition 5.1. If D is
monotone consistent (i.e., it satisfies (3)) then T is rule monotone.

Proof. The proof follows by Theorem 5.1 proceeding on the same line of the
proof of Property 1 in [17].

The following Example 7.1 shows the construction of a tree with RDMT(H)
for different H ’s, starting from a monotone consistent dataset. A first con-
struction is executed using standard discrimination measures HG and HS , and
a second one is carried on using rank discrimination measures H∗

G, H∗
S and

H∗
P . In the first case a non-globally monotone tree classifier is obtained while

in the second case we get a rule monotone tree classifier which is also globally
monotone.

Example 7.1. Consider the set of objects Ω = {ω1, ω2, ω3, ω4} described by
attributes a1, a2 and a3 ranging in {0, 1}, and the labelling function λ ranging
in {0, 1, 2}, defined as in Table 8.

a1 a2 a3 λ
ω1 0 0 1 0
ω2 0 1 0 1
ω3 0 1 1 1
ω4 1 0 1 2

Table 8: Definition of a1, a2, a3 and λ

Considering measures HG and HS we compute HG(λ|a1) = 0.3333,HG(λ|a2) =
0.25, HG(λ|a3) = 0.5, HS(λ|a1) = 0.6887, HS(λ|a2) = 0.5 and HS(λ|a3) =
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1.1887. Then both measures agree to select a2 for splitting. For the next step,
the right branch allows to add a leaf node having label λ = 1, while for the left
branch the only possible split is on a1 for which HG(λ|a1) = HS(λ|a1) = 0, so
also in this case both measures agree to select a1 for splitting. At this point a
left leaf node with label λ = 0 and a right leaf node with label λ = 2 are added.
The resulting tree T1 is shown in Figure 1.

a1 a2 a3 λT1

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 2
1 0 1 2
1 1 0 1
1 1 1 1

Figure 1: Non-globally monotone decision tree classifier

It is easily verified that the obtained classifier λT1 : X → C is not glob-
ally monotone, since for example (1, 0, 1) ≤ (1, 1, 1) and 2 = λT1(1, 0, 1) >
λT1(1, 1, 1) = 1.

If we take into account measures H∗
G, H∗

S and H∗
P , we have H∗

G(λ|a1) =
0.125, H∗

G(λ|a2) = 0.1875, H∗
G(λ|a3) = 0.3125, H∗

S(λ|a1) = 0.2075, H∗
S(λ|a2) =

0.5, H∗
S(λ|a3) = 0.6462, H∗

P (λ|a1) = 0.4150, H∗
P (λ|a2) = 4 and H∗

P (λ|a3) =
3.7045. Hence, all the measures agree to select a1 for splitting. At this point, for
the right branch it is possible to create a leaf node labelled with λ = 2, while for
the left branch we compute H∗

G(λ|a2) = 0, H∗
G(λ|a3) = 0.2777, H∗

S(λ|a2) = 0,
H∗

S(λ|a3) = 0.5283, H∗
P (λ|a2) = 0 and H∗

P (λ|a3) = 1.6258. Again all the
measures agree to select a2 for splitting and the construction is stopped adding
a left leaf node labelled with λ = 0 and a right leaf node labelled with λ = 1.
Figure 2 displays the built tree T2.

a1 a2 a3 λT2

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 2
1 0 1 2
1 1 0 2
1 1 1 2

Figure 2: Globally monotone decision tree classifier

In this second case, the obtained tree is easily seen to be rule monotone,
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moreover, the corresponding classifier λT2 : X → C is also globally monotone.

Let us stress that Proposition 7.1 provides only a sufficient condition for the
rule monotonicity of a binary decision tree T . In fact, one can observe that also
the first decision tree built in previous example (by using HS and HG) is rule
monotone.

8. Quantification of non-monotonicity

We already mentioned that no hypothesis of monotonicity is asked on the
datasets we deal with in this paper. At the same time, the rank discrimination
measures we proposed do not allow, in general, to guarantee a globally monotone
classifier even in presence of a monotone consistent dataset.

In this environment, in order to provide meaningful comparisons, it is of cru-
cial importance to quantify to which degree a dataset is not monotone consistent
or a tree is not globally monotone.

The quantification of non-monotonicity in a dataset has been recently inves-
tigated in [28]. A dataset D = {(a1(ωi), . . . , am(ωi), λ(ωi)) : i = 1, . . . , n} is
not monotone consistent if it contains at least a pair ωi, ωh ∈ Ω satisfying one
of the following conditions:

(i) a1(ωi), . . . , am(ωi)) ≤ (a1(ωh), . . . , am(ωh)) and λ(ωi) > λ(ωh);

(ii) a1(ωi), . . . , am(ωi)) ≥ (a1(ωh), . . . , am(ωh)) and λ(ωi) < λ(ωh).

For each pair ωi, ωh ∈ Ω we denote with NMP (ωi, ωh) the function which is
1 if (i) or (ii) are satisfied and 0 otherwise. Notice that NMP (ωi, ωi) = 0 for
i = 1, . . . , n.

In [28] the following index of non-monotonicity is proposed (in our notation)

NMI1(D) =

∑n
i=1

∑n
h=1 NMP (ωi, ωh)

n2 − n
, (23)

which is easily seen to be a number in [0, 1], equal to 0 whenever the dataset is
monotone consistent. In next sections we remove the reference to the dataset
D, if the dataset we are referring to is clear from the context.

Now we cope with measuring non-monotonicity in trees, focusing on binary
decision trees with discrete ordinal attributes, which are the target of present
work.

Given such a tree T , the corresponding set L = {l1, . . . , lq} of leaves induces
a partition of the description space X generated by the Xj ’s. It is known
[30] that such a partition can be expressed as a collection of disjoint closed
intervals {[a1, b1], . . . , [aq, bq]}, where [au, bu] = {x ∈ X : au ≤ x ≤ bu} and
au, bu ∈ X , u = 1, . . . , q. With a little abuse of notation we identify the leaf
lu with the corresponding interval [au, bu], moreover, we denote min(lu) = au
and max(lu) = bu, while λT (lu) stands for the label of leaf lu. A tree T is not
monotone if it contains at least a pair lu, lv ∈ L satisfying one of the following
conditions:
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(i’) min(lu) < max(lv) and λT (lu) > λT (lv);

(ii’) max(lu) > min(lv) and λT (lu) < λT (lv).

This allows to build a symmetric q × q non-monotonicity matrix M = [mu,v]
where mu,v is 1 if leaves lu, lv satisfy (i’) or (ii’) and 0 otherwise.

In [2] the following non-monotonicity index I(T ) has been introduced in
order to quantify the non-monotonicity of T

I(T ) =

∑q
u=1

∑q
v=1 mu,v

q2 − q
. (24)

In next sections we remove the reference to the tree T , if the tree we are referring
to is clear from the context.

It is easily verified that I(T ) ranges in [0, 1], and is 0 whenever the tree
gives rise to a globally monotone classifier. In the same paper, the following
transformation of I(T ) is proposed with the name order-ambiguity score

A(T ) =







0 if I(T ) = 0,
+∞ if I(T ) = 1,
− 1

log2(I(T )) otherwise.
(25)

The function A(T ) will play an important role in next section.

Example 8.1. Consider the tree T1 displayed in Figure 1. To simplify notation
we denote a vector in the description space X by juxtaposing its elements. The
tree T1 induces the partition {[000, 001], [100, 101], [010, 111]} of X, with labels
λT1([000, 001]) = 0, λT1([100, 101]) = 2 and λT1([010, 111]) = 1. In order to
compute I(T1) and A(T1) we introduce the non-monotonicity matrix M

λ = 0 λ = 2 λ = 1
[000, 001] [100, 101] [010, 111]

λ = 0 [000, 001] 0 0 0
λ = 2 [100, 101] 0 0 1
λ = 1 [010, 111] 0 1 0

for which I(T1) = 2
32−3 = 1

3 and A(T1) = − 1

log2( 1
3 )
.

We stress that, since both indices NMI1 and I range in the unit interval,
they can be conveniently expressed as percentages.

9. Other splitting rules for monotone decision trees

In the last decades, there have been some proposals concerning monotone
classification with decision trees. The most known methods are the Monotone
Induction of Decision trees (MID) algorithm [2], the Isotonic Classification Tree
(ICT) algorithm [34], the Positive Decision Tree (P-DT) algorithm [23] and
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the Monotone Decision Tree (MDT) algorithm [29, 30] (see [7] for a careful
discussion of quoted algorithms).

Each of the above algorithms relies on some assumptions on the input dataset
which essentially influence the result of the classifier in terms of monotonicity.
Moreover, all of them have to face the intrinsic problem of partial observability
during tree induction, either during splitting or by adding exogenous information
via updating rules.

P-DT and MDT require a monotone consistent dataset and guarantee a
globally monotone classifier in output: P-DT is limited to two-class problems
while MDT has not this limitation. P-DT uses a modified version of binary
Shannon entropy (due to the hypothesis of two-class problems), while MDT
relies on standard discrimination measures. Both algorithms are essentially
based on an updating rule which alters the input dataset by adding artificial
data with the only purpose of enforcing monotonicity.

MID and ICT, instead, are able to work with non-monotone datasets but
MID does not guarantee any form of monotonicity on the final classifier, while
ICT always results in a globally monotone classifier. They differ in the dis-
crimination measure used for growing trees, which in both cases tries to enforce
“somehow” monotonicity. Furthermore, ICT post-processes the resulting tree
coping with relabelling of non-monotone leaves.

Since we do not limit to two-class problems, discrimination measures used in
MID and ICT represent possible alternatives to rank discrimination measures
presented in this paper, besides classical discrimination measures used in MDT.

The MID algorithm is based on the following discrimination measure called
total ambiguity score (in our notation)

Hγ
MID(λ|aj) = HS(λ|aj) + γ ·A(T aj

α ) (26)

where γ ∈ [0,+∞) and A(T
aj
α ) is the order-ambiguity score (25) evaluated on

the tree T
aj
α , which is obtained by adding to the current tree Tα the test node

aj and labelling the terminal nodes (if not already labelled).
The Hγ

MID measure is essentially tied to the choice of the parameter γ and
the labelling rule adopted in the formation of T

aj
α . We stress that, even if Hγ

MID

takes into account all the “history” that led to the tree T
aj
α , this measure is

deeply influenced by the order of expansion of the tree nodes which is, evidently,
a cause of partial observability. Previous claim implies that, also Hγ

MID is not
able to enforce global monotonicity and, moreover, also the enforcing of local
monotonicity is not guaranteed. The next example shows that, starting from a
monotone consistent dataset, Hγ

MID produces a non-globally monotone classifier
while each of our rank discrimination measures produces a globally monotone
classifier.

Example 9.1. Consider the dataset of Example 7.1 and denote with T0 the
empty tree. In order to compute Hγ

MID(λ|aj), for j = 1, 2, 3, we need to consider
the possible trees T

aj

0 obtainable by adding a test node involving aj, for j =
1, 2, 3. By considering the RDMT’s labelling rule we get the trees reported in
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Figures 3a–3c. Let us stress that the obtained labelling is consistent also with
the majority class criterion.

(a) Tree T a1
0 (b) Tree T a2

0 (c) Tree T a3
0

Figure 3: Trees T
aj

0 for computing Hγ
MID(λ|aj), for j = 1, 2, 3

It is easily verified that A(T
aj

0 ) = I(T
aj

0 ) = 0, for j = 1, 2, 3, thus for
every γ ∈ [0,+∞) it holds Hγ

MID(λ|a1) = HS(λ|a1) = 0.6887, Hγ
MID(λ|a2) =

HS(λ|a2) = 0.5 and Hγ
MID(λ|a3) = HS(λ|a3) = 1.1887. This implies that the

attribute a2 is selected for splitting. Trivial computations show that the final
tree built using Hγ

MID coincides with the non-globally monotone tree built using
either HS or HG, which is reported in Figure 1.

Another ensuing problem with the Hγ
MID measure is the estimation of pa-

rameter γ. In a naive analysis one could argue that the higher the value of γ,
the more monotone is the final tree. Nevertheless, the following example shows
that a higher value of γ can lead to worse results in terms of monotonicity.

Example 9.2. Consider the object set Ω = {ω1, . . . , ω9} described by the at-
tributes a1, a2, a3 ranging in {0, 1, 2} and the labelling function λ ranging in
{0, 1, 2, 3}, defined as in Table 9. Applying RDMT(Hγ

MID) with γ = 1, the tree

a1 a2 a3 λ
ω1 0 0 0 0
ω2 0 0 1 1
ω3 1 1 1 2
ω4 2 0 2 1
ω5 2 1 1 3
ω6 0 1 0 1
ω7 0 2 0 1
ω8 1 1 0 2
ω9 2 1 0 3

Table 9: Definition of a1, a2, a3 and λ

T1 shown in Figure 4a is obtained, while for γ ∈ {10, 100, 100} we get the tree
T2 shown in Figure 4b.

Even if the dataset is monotone consistent, both T1 and T2 are non-globally
monotone, nevertheless, it holds I(T1) = 0.0666 < 0.0952 = I(T2), i.e., T1
can be considered better than T2 in terms of monotonicity. On the other hand,
applying RDMT(H∗

G) we get the globally monotone tree T3 shown in Figure 4c,
for which we have I(T3) = 0.
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(a) Tree T1 with I(T1) = 0.0666, built using H
γ
MID

for γ = 1

(b) Tree T2 with I(T2) = 0.0952, built using H
γ
MID

for γ ∈ {10, 100, 1000}

(c) Tree T3 with I(T3) = 0, built using H∗
G

Figure 4: Trees T1, T2 and T3
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Assuming that aj is a binary attribute ranging in {xj1 , xj2} and that the
set of classes C = {c1, . . . , ck} is indexed by {1, . . . , k}, the Gini discrimination
measure can be expressed as

HG(λ|aj) =

2
∑

s=1

ps

(

1 −

k
∑

q=1

(

pq,s
ps

)2
)

=

2
∑

s=1

ps





∑

u6=v

(

pu,s
ps

)(

pv,s
ps

)



 .

The ICT algorithm builds binary trees and is based on a modified version of
the Gini measure, incorporating the L1 distance which is referred to as GiniL1

impurity [34]. Here we report the conditional version of this measure (in our
notation)

HICT (λ|aj) =

2
∑

s=1

ps





∑

u6=v

|u− v|

(

pu,s
ps

)(

pv,s
ps

)



 (27)

Remark 9.1. In [34] the splitting criterion consists in maximizing the gain in
GiniL1 impurity. Notice that this is equivalent to minimize HICT .

The following example shows that HICT can produce a globally non-monotone
tree classifier even in presence of a monotone consistent dataset, for which also
rule monotonicity may fail.

Example 9.3. Consider the object set Ω = {ω1, ω2, ω3, ω4} described by at-
tributes a1, a2 and a3 ranging in {0, 1}, and the labelling function λ all ranging
in {0, 1, 2}, defined as in Table 10. The corresponding dataset is monotone
consistent.

a1 a2 a3 λ
ω1 0 1 0 1
ω2 0 1 1 2
ω3 1 0 0 0
ω4 1 0 1 1

Table 10: Definition of a1, a2, a3, and λ

Using HICT in RDMT for splitting we have HICT (λ|a1) = HICT (λ|a2) =
HICT (λ|a3) = 0.5, i.e., all attributes are judged the same thus the first is se-
lected. By trivial computations it follows that the final result is the tree T1 shown
in Figure 5a which is not globally monotone as I(T1) = 0.3333. It is easily seen
that T1 is neither rule monotone since, denoting with l1, . . . , l4 its leaves from
left to right, it holds Rl1 < Rl3 and λT1(l1) > λT1(l3).

On the contrary, using H∗
G, H

∗
S or H∗

P the rule monotone tree T2 in Figure 5b
is obtained, which is also globally monotone.
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(a) Tree T1 with I(T1) = 0.3333, built using HICT

(b) Tree T2 with I(T2) = 0, built using H∗
G, H∗

S , or H∗
P

Figure 5: Trees T1 and T2

10. Experimental analysis

The goal of this section is to compare the splitting criteria obtained using
H∗

G, H∗
S and H∗

S , with other splitting criteria relying on different discrimination
measures.

More in detail, we are interested in evaluating the impact of the sole splitting
criteria on the final classifiers both in terms of accuracy and monotonicity. We
also want to investigate the response of the different measures to datasets with
increasing degree of non-monotonicity.

We used RDMT(H) varying the discrimination measure H among H∗
G, H∗

S ,
H∗

P , HG, HS , H10
MID and HICT , on classification tasks involving artificial and

real datasets. Recall that for different discrimination measures H1 and H2,
RDMT(H1) and RDMT(H2) can be formally viewed as different algorithms.

Remark 10.1. For Hλ
MID the value 10 has been chosen for λ: this value re-

vealed to be a good compromise between accuracy and monotonicity in some
preliminary tests we did.

Each test has been executed performing a stratified 10-folds cross-validation
with the same seed (equal to 1) for the pseudo-random number generator: the
WEKA environment guarantees all the folds are equal for each tested discrimi-
nation measure.
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For each test we measured the classification accuracy, the monotonicity and
the size of the resulting trees in the 10 folds.

The classification accuracy has been measured through the percentage of
Correctly Classified Instances (denoted CCI for short), the Kappa statistic
(denoted K for short), and the Mean Absolute Error (denoted MAE for short).

Remark 10.2. Recall that K ranges in [−1, 1] and is a measure of accuracy cor-
rected for random successes [4]. In detail, a classifier is as much more accurate
as K is close to 1.

For what concerns the measurement of monotonicity of the generated trees,
we considered both the non-monotonicity index I of trees, and the NMI1 index
of the classified instances on each test set: both this two indices have been
averaged through the 10 folds and the resulting performance indices have been
denoted as avgI and avgNMI1.

We also measured the size of trees in terms of number of leaves, averaging
through the 10 folds: the resulting performance index has been denoted as
avgLeaves.

In order to execute a fair comparison between the tested measures we set
maxDepth = 100, measureThreshold = 0 and percMinSize = 0.01 for all the
tests. Indeed, since measures H∗

G, H∗
S , H∗

P , HG, HS , H10
MID and HICT have

different ranges, setting measureThreshold > 0 could favour some measures
and penalize the others.

Remark 10.3. The decision to set measureThreshold = 0 came after a pre-
liminary experimental analysis where we observed that this parameter has a
significant impact on the performance of the classifier, depending both on the
chosen dataset and the chosen discrimination measure. Moreover, we verified
that its tuning is particularly difficult in a comparative study as the one presented
in this section. Indeed, for suitable choices of this parameter (possibly differ-
ent values for the different discrimination measures) it is possible to produce a
better behaviour of some measures to the detriment of the others. This unpleas-
ant effect could render the comparison quite arbitrary, so we decided to turn off
such parameter. We want to stress that measureThreshold is a pre-pruning
parameter of RDMT(H) which acts on the different H’s while the parameter γ
discussed in previous section is an intrinsic parameter of the measure Hγ

MID.

The main difficulty when comparing monotone classifiers is the fact that real
datasets are generally not monotone consistent and, furthermore, it is difficult
to find a real dataset with a specified value of NMI1 index. This is why in [28]
an algorithm to generate artificial datasets with a fixed value of NMI1 index is
introduced. The same authors suggest to use the proposed algorithm as a test
bed for comparing different monotone classification algorithms on sensitivity to
different degrees of non-monotone noise.

The algorithm in [28] essentially consists in generating n m-tuples of values
for attributes a1, . . . , am, where each aj is assumed to be a uniform random
variable on the first vj non-negative integers, i.e., ranging in {0, . . . , vj − 1}.
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The n m-tuples are then ordered according to the value of a monotone function
f(a1, . . . , aj). After that, considering the first c non-negative integers as class
labels, i.e., the set {0, . . . , c − 1}, the n m-tuples are divided in n/c groups
according to the ordering given by f and an increasing class label is associated
to the elements of each group. This assures a balanced distribution of class
labels. The obtained dataset is then manipulated until it is monotone consistent,
i.e., the corresponding NMI1 is equal to 0. This is done with an iterative
search of non-monotone labels of pairs of m-tuples which are resolved by a class
relabelling. Finally, a further iterative manipulation introduces non-monotone
noise through non-monotone class relabelling of pairs of m-tuples, until the
desired value of NMI1 is reached.

We used the algorithm reported in [28] to generate 11 artificial datasets with
increasing NMI1 from 0% to 10% with 1% steps. Each dataset consists of 500
examples described by five attributes a1, a2, a3, a4, a5 ranging in {0, . . . , 4},
and classes also taken from {0, . . . , 4}. The underlying monotone function is

f(a1, a2, a3, a4, a5) =
∑5

j=1 aj .
Figure 6 displays plots of CCI, K and MAE for each tested discrimination

measure. Observing Figure 6 it is possible to see a general decrease in perfor-
mance of all measures for CCI, K and MAE as NMI1 increases. The decrease
is quite fast in the first values of NMI1 and then it tends to a much slower
rate until reaching a sort of stability with some fluctuations. We stress that
in plots related to CCI, K and MAE there is no measure whose performance
dominates the others. Hence, tests on artificial datasets do not single out any
significant difference between the tested measures for what concerns accuracy
indices.

Figure 7 displays plots of avgI, avgNMI1 and avgLeaves for each tested
discrimination measure. Also in this case the performances concerning avgI and
avgNMI1 decrease as NMI1 increases (recall that, the higher the value of avgI
and avgNMI1 the worse are the generated trees in terms of monotonicity). In
this case, avgI and avgNMI1 tend to increase almost linearly with NMI1: this
clearly shows the link of this two performance indices with non-monotone noise
in the dataset. Nevertheless, H∗

S , H∗
G and H∗

P are always dominated by other
measures for avgI and a similar phenomenon realizes also for avgNMI1. For
avgNMI1, in particular, H∗

S and H∗
G are quite far from other measures. This

puts in evidence that in the aforementioned tests our measures always produced
better trees in terms of monotonicity, especially for increasing NMI1.

The plot of avgLeaves shows that our measures always dominate the oth-
ers in average number of leaves, thus a relation between avgLeaves, avgI and
avgNMI1 comes to the fore. We notice that, also for avgLeaves the value of
the index increases rapidly on the first values of NMI1 and then has a much
slower rate until reaching a sort of stability with some fluctuations.

We conclude this section reporting results of tests executed on real datasets
taken from UCI [33] and WEKA [37] repositories. We pre-processed all the
datasets, removing all the examples with missing values and discretizing real
attributes applying WEKA filter Discretize, moreover, integer attributes have
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Figure 6: CCI, K, and MAE on artificial data with increasing NMI1
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Figure 7: avgI, avgNMI1 and avgLeaves on artificial data with increasing
NMI1
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been converted to ordinal ones by using WEKA filter NumericToNominal, both
contained in weka.filters.unsupervised.attribute.

We collected 15 datasets with NMI1 less than 12%, whose description (tak-
ing into account the pre-processing phase) is given in Table 11.

Dataset Instances Attributes Classes NMI1
Breast Cancer 277 9 2 0.6958%
Contraceptive Method Choice (CMC) 1473 9 3 2.5875%
Contact Lenses 24 4 3 11.9565%
CPU 209 6 8 0.2300%
German Credit 1000 20 2 0.4904%
Dermatology 358 34 6 0.1564%
Employee Rejection Acceptance (ERA) 1000 4 9 3.3493%
Employee Selection (ESL) 488 4 9 0.9467%
Haberman 306 3 2 3.6129%
Lectures Evaluation (LEV) 1000 4 5 1.3309%
Lymphography 148 18 4 0.8273%
Monks-1 Train 124 6 2 5.2058%
Monks-3 Train 122 6 2 9.7412%
Postoperative 87 8 3 5.6134%
Social Workers Decisions (SWD) 1000 10 4 0.9491%

Table 11: Tested real datasets

Tables 12 and 13 show the obtained results for tests on real datasets. Our
goal is to establish if for each performance index, the tested discrimination
measures produce statistically different results.

For this, the performance rank of each discrimination measure with respect
to each performance index is reported in square brackets. According to [11], the
variance of the value of each performance index (in case the index is an average,
as avgI, avgNMI1 and avgLeaves) is not recorded.

In Table 14 are listed the average performance ranks of each tested discrimi-
nation measure, with respect to the considered performance indices. As pointed
out in [11], the average performance ranks themselves provide a fair comparison
of the different tested measures. Indeed, observing the average performance
ranks we can see that standard measures such as HG and HS perform better for
what concerns accuracy, both positioning in the first two places for CCI, K and
MAE, while H∗

P occupies the third position for CCI and MAE. Nevertheless,
the differences of the average performance ranks for CCI, K and MAE do not
largely differ among the tested measures. Hence, we could argue that the tested
measures are not significantly different for what concerns accuracy.

On the other hand, in the performance indices related to monotonicity, our
measures H∗

S , H∗
G and H∗

P rank in first, second and fourth positions for avgI,
and in the first three positions for avgNMI1. We also observe that both for avgI
and avgNMI1 the differences in the average performance ranks is quite large
among the tested measures so, in this case, we could argue that our measures
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Dataset H∗
G

H∗
S

H∗
P

HG HS H10
MID

HICT

Breast Cancer

CCI 67.148% [2.5] 67.509% [1] 67.148% [2.5] 66.4259% [4] 65.7039% [6] 62.8158% [7] 66.0649% [5]
K 0.2032 [3] 0.2148 [1] 0.1974 [4] 0.2087 [2] 0.1621 [6] 0.1358 [7] 0.1973 [5]
MAE 0.3285 [2.5] 0.3249 [1] 0.3285 [2.5] 0.3357 [4] 0.3429 [6] 0.3718 [7] 0.3393 [5]
avgI 0.0575% [1] 0.0609% [2] 0.0732% [3] 0.1311% [7] 0.1211% [5] 0.0936% [4] 0.1302% [6]
avgNMI1 0.0018% [2.5] 0.0018% [2.5] 0.0013% [1] 0.004% [7] 0.0023% [4] 0.0026% [5] 0.0037% [6]
avgLeaves 123.6 [7] 121.1 [6] 107.7 [5] 90.4 [3] 88.1 [1] 97 [4] 90.3 [2]

CMC

CCI 46.2321% [7] 46.3% [6] 46.6395% [5] 51.7311% [1] 51.5274% [2] 49.7623% [4] 49.8302% [3]
K 0.1914 [7] 0.1957 [5] 0.1922 [6] 0.2642 [1] 0.2603 [2] 0.2381 [3] 0.2372 [4]
MAE 0.3584 [7] 0.3579 [6] 0.3557 [5] 0.3217 [1] 0.3231 [2] 0.3349 [4] 0.3344 [3]
avgI 0.0758% [1] 0.0782% [2] 0.1109% [3] 0.1956% [5] 0.1984% [6] 0.1129% [4] 0.2005% [7]
avgNMI1 0.0087% [2] 0.0086% [1] 0.0125% [3] 0.0235% [6] 0.0242% [7] 0.0191% [4] 0.0233% [5]
avgLeaves 234.6 [5] 242.9 [7] 237.6 [6] 187.2 [2] 185.2 [1] 192.9 [4] 188 [3]

Contact Lenses

CCI 62.5% [5] 62.5% [5] 62.5% [5] 83.3333% [2] 83.3333% [2] 58.3333% [7] 83.3333% [2]
K 0.4016 [4.5] 0.4016 [4.5] 0.325 [6] 0.6903 [2] 0.6903 [2] 0.2258 [7] 0.6903 [2]
MAE 0.25 [5] 0.25 [5] 0.25 [5] 0.1111 [2] 0.1111 [2] 0.2777 [7] 0.1111 [2]
avgI 0.1732% [1] 0.1763% [2] 0.1853% [4] 0.2899% [6] 0.2899% [6] 0.1838% [3] 0.2899% [6]
avgNMI1 0.1666% [2.5] 0.1666% [2.5] 0.1333% [1] 0.2666% [6] 0.2666% [6] 0.2333% [4] 0.2666% [6]
avgLeaves 17.1 [6] 17.2 [7] 14.8 [4] 6.6 [2] 6.6 [2] 14.9 [5] 6.6 [2]

CPU

CCI 83.732% [2] 82.7751% [4.5] 84.6889% [1] 82.7751% [4.5] 81.8181% [7] 82.7751% [4.5] 82.7751% [4.5]
K 0.5793 [2] 0.5512 [6] 0.611 [1] 0.5652 [4] 0.5413 [7] 0.5654 [3] 0.561 [5]
MAE 0.0325 [2] 0.0344 [4.5] 0.0306 [1] 0.0344 [4.5] 0.0363 [7] 0.0344 [4.5] 0.0344 [4.5]
avgI 0.0196% [2] 0.0162% [1] 0.0328% [4] 0.0407% [7] 0.0361% [5] 0.0253% [3] 0.0396% [6]
avgNMI1 0.0004% [3.5] 0.0004% [3.5] 0% [1.5] 0.001% [7] 0.0009% [5.5] 0% [1.5] 0.0009% [5.5]
avgLeaves 36.6 [6] 37 [7] 34.4 [1] 35.6 [4] 34.8 [2] 35.7 [5] 34.9 [3]

German Credit

CCI 62.7% [6] 63.3% [5] 60.6% [7] 71.5% [1] 70.1% [3] 67% [4] 71.3% [2]
K 0.0937 [6] 0.1083 [5] 0.0794 [7] 0.3271 [1] 0.2968 [3] 0.2216 [4] 0.3224 [2]
MAE 0.373 [6] 0.367 [5] 0.394 [7] 0.285 [1] 0.299 [3] 0.33 [4] 0.287 [2]
avgI 0.0833% [1] 0.0934% [2] 0.1207% [3] 0.2251% [7] 0.2146% [5] 0.1415% [4] 0.2248% [6]
avgNMI1 0.0003% [2] 0.0001% [1] 0.0019% [3] 0.0038% [6] 0.0042% [7] 0.0033% [4] 0.0038% [5]
avgLeaves 188.6 [7] 186.3 [6] 158.7 [5] 120.8 [1] 124.6 [3] 136.5 [4] 120.9 [2]

Dermatology

CCI 89.3854% [6] 84.6368% [7] 93.5754% [3] 94.4134% [1] 93.8547% [2] 92.1787% [5] 93.296% [4]
K 0.867 [6] 0.8069 [7] 0.9192 [3] 0.9298 [1] 0.923 [2] 0.9017 [5] 0.9159 [4]
MAE 0.0353 [6] 0.0512 [7] 0.0214 [3] 0.0186 [1] 0.0204 [2] 0.026 [5] 0.0223 [4]
avgI 0.172% [3] 0.1612% [1] 0.2238% [4] 0.3532% [6] 0.3127% [5] 0.1699% [2] 0.3663% [7]
avgNMI1 0.0009% [3] 0.0003% [1] 0.0009% [3] 0.0011% [6] 0.0011% [6] 0.0009% [3] 0.0011% [6]
avgLeaves 26 [5] 56.2 [7] 25.4 [4] 16.3 [1] 18.1 [2] 30.9 [6] 18.5 [3]

ERA

CCI 23% [4] 23% [4] 23% [4] 23% [4] 23% [4] 23% [4] 23% [4]
K 0.0904 [4] 0.0904 [4] 0.0904 [4] 0.0904 [4] 0.0904 [4] 0.0904 [4] 0.0904 [4]
MAE 0.1711 [4] 0.1711 [4] 0.1711 [4] 0.1711 [4] 0.1711 [4] 0.1711 [4] 0.1711 [4]
avgI 0.0068% [1] 0.0103% [2] 0.061% [7] 0.0223% [4] 0.0223% [5] 0.0192% [3] 0.026% [6]
avgNMI1 0.0007% [4] 0.0007% [4] 0.0007% [4] 0.0007% [4] 0.0007% [4] 0.0007% [4] 0.0007% [4]
avgLeaves 44 [4] 44 [4] 44 [4] 44 [4] 44 [4] 44 [4] 44 [4]

ESL

CCI 68.2377% [1] 66.3934% [4.5] 65.9836% [6] 65.7786% [7] 67.0081% [2] 66.8032% [3] 66.3934% [4.5]
K 0.6011 [1] 0.5777 [5] 0.5727 [6] 0.5705 [7] 0.5859 [2] 0.5828 [3] 0.5786 [4]
MAE 0.0705 [1] 0.0746 [4.5] 0.0755 [6] 0.076 [7] 0.0733 [2] 0.0737 [3] 0.0746 [4.5]
avgI 0.0092% [2] 0.0085% [1] 0.0102% [4] 0.0139% [7] 0.0128% [5] 0.0093% [3] 0.0129% [6]
avgNMI1 0.0017% [3] 0.0014% [1] 0.0014% [2] 0.0033% [7] 0.0032% [6] 0.0029% [5] 0.0021% [4]
avgLeaves 131 [6] 131.7 [7] 129.9 [5] 122.4 [1.5] 122.4 [1.5] 122.8 [3] 123.3 [4]

Table 12: Results concerning CCI, K, MAE, avgI, avgNMI1 and avgLeaves of tests on first eight real datasets (performance
ranks are reported in square brackets, averaging the ties)
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Dataset H∗
G H∗

S H∗
P HG HS H10

MID HICT

Haberman

CCI 70.915% [1] 70.5882% [2] 68.9542% [3] 64.7058% [4.5] 64.379% [6] 63.7254% [7] 64.7058% [4.5]
K 0.2377 [2] 0.2384 [1] 0.173 [3] 0.1211 [4.5] 0.0956 [7] 0.1001 [6] 0.1211 [4.5]
MAE 0.2908 [1] 0.2941 [2] 0.3104 [3] 0.3529 [4.5] 0.3562 [6] 0.3627 [7] 0.3529 [4.5]
avgI 0.0783% [4] 0.0741% [3] 0.0648% [1] 0.0875% [6.5] 0.0856% [5] 0.0675% [2] 0.0875% [6.5]
avgNMI1 0.0216% [2] 0.0203% [1] 0.0278% [4] 0.0318% [6.5] 0.0303% [5] 0.0258% [3] 0.0318% [6.5]
avgLeaves 117.6 [6] 117.8 [7] 108.4 [5] 90.2 [1.5] 90.3 [3] 97.6 [4] 90.2 [1.5]

LEV

CCI 63.1% [3.5] 62.9% [6] 62.8% [7] 63.1% [3.5] 63.2% [2] 63.3% [1] 63% [5]
K 0.4694 [3] 0.466 [6] 0.4649 [7] 0.4689 [4] 0.4702 [2] 0.4717 [1] 0.4675 [5]
MAE 0.1476 [3.5] 0.1484 [6] 0.1488 [7] 0.1476 [3.5] 0.1472 [2] 0.1468 [1] 0.148 [5]
avgI 0.005% [2] 0.0045% [1] 0.0141% [7] 0.0096% [5] 0.011% [6] 0.0055% [3] 0.0091% [4]
avgNMI1 0.0003% [3] 0.0003% [6.5] 0.0003% [6.5] 0.0003% [3] 0.0003% [3] 0.0003% [3] 0.0003% [3]
avgLeaves 91.6 [6] 91.4 [4] 91.9 [7] 90.8 [1] 91 [3] 91.5 [5] 90.9 [2]

Lymphography

CCI 72.9729% [7] 76.3513% [4] 80.4054% [1] 75.6756% [5.5] 78.3783% [2] 77.027% [3] 75.6756% [5.5]
K 0.4896 [7] 0.5473 [4] 0.6236 [1] 0.5436 [5] 0.5833 [2] 0.5634 [3] 0.5271 [6]
MAE 0.1351 [7] 0.1182 [4] 0.0979 [1] 0.1216 [5.5] 0.1081 [2] 0.1148 [3] 0.1216 [5.5]
avgI 0.1003% [2] 0.0889% [1] 0.1293% [4] 0.2105% [7] 0.1587% [5] 0.1241% [3] 0.1725% [6]
avgNMI1 0.001% [1.5] 0.001% [1.5] 0.002% [3] 0.0093% [5] 0.0166% [7] 0.008% [4] 0.0109% [6]
avgLeaves 51.3 [6] 52.6 [7] 41.5 [5] 28.1 [2] 27.5 [1] 33.8 [4] 29.4 [3]

Monks-1 Train

CCI 70.9677% [6.5] 70.9677% [6.5] 77.4193% [5] 92.7419% [2] 92.7419% [2] 84.6774% [4] 92.7419% [2]
K 0.4193 [6.5] 0.4193 [6.5] 0.5483 [5] 0.8548 [2] 0.8548 [2] 0.6935 [4] 0.8548 [2]
MAE 0.2903 [6.5] 0.2903 [6.5] 0.2258 [5] 0.0725 [2] 0.0725 [2] 0.1532 [4] 0.0725 [2]
avgI 0.1368% [1] 0.1375% [2] 0.1644% [3] 0.2404% [5.5] 0.2407% [7] 0.2034% [4] 0.2404% [5.5]
avgNMI1 0.0177% [1.5] 0.0177% [1.5] 0.0277% [4] 0.0379% [6.5] 0.0354% [5] 0.0268% [3] 0.0379% [6.5]
avgLeaves 54.2 [7] 53.3 [6] 40 [5] 19.6 [2.5] 17.7 [1] 27.7 [4] 19.6 [2.5]

Monks-3 Train

CCI 60.6557% [6] 59.836% [7] 81.1475% [4] 90.1639% [2.5] 91.8032% [1] 78.6885% [5] 90.1639% [2.5]
K 0.2107 [6] 0.1941 [7] 0.6223 [4] 0.8031 [2.5] 0.8359 [1] 0.5734 [5] 0.8031 [2.5]
MAE 0.3934 [6] 0.4016 [7] 0.1885 [4] 0.0983 [2.5] 0.0819 [1] 0.2131 [5] 0.0983 [2.5]
avgI 0.1424% [2] 0.1416% [1] 0.2145% [4] 0.3146% [6.5] 0.3142% [5] 0.2102% [3] 0.3146% [6.5]
avgNMI1 0.0341% [2] 0.0296% [1] 0.078% [3] 0.1104% [5.5] 0.112% [7] 0.1072% [4] 0.1104% [5.5]
avgLeaves 61.4 [6.5] 61.4 [6.5] 36.3 [5] 17.1 [2.5] 17 [1] 34.6 [4] 17.1 [2.5]

Postoperative

CCI 57.4712% [3] 58.6206% [2] 59.7701% [1] 55.1724% [4] 50.5747% [7] 52.8735% [5.5] 52.8735% [5.5]
K −0.0882 [4] −0.0726 [3] −0.1153 [7] −0.0353 [1] −0.0957 [5] −0.0565 [2] −0.1143 [6]
MAE 0.2835 [3] 0.2758 [2] 0.2681 [1] 0.2988 [4] 0.3295 [7] 0.3141 [5.5] 0.3141 [5.5]
avgI 0.1176% [1] 0.1191% [2] 0.1573% [4] 0.1831% [6] 0.2092% [7] 0.1517% [3] 0.1815% [5]
avgNMI1 0.0472% [6] 0.0416% [4] 0.0273% [1] 0.0365% [2.5] 0.0551% [7] 0.0428% [5] 0.0365% [2.5]
avgLeaves 46.9 [7] 46.6 [6] 41.5 [5] 35.5 [2] 34.5 [1] 39.3 [4] 36.2 [3]

SWD

CCI 58.8% [2] 58.3% [6] 58.5% [3.5] 58.4% [5] 58.5% [3.5] 59.5% [1] 58.2% [7]
K 0.3698 [2] 0.3624 [6] 0.3656 [3] 0.3633 [5] 0.3637 [4] 0.3804 [1] 0.36 [7]
MAE 0.206 [2] 0.2085 [6] 0.2075 [3.5] 0.208 [5] 0.2075 [3.5] 0.2025 [1] 0.209 [7]
avgI 0.013% [3] 0.0114% [2] 0.0195% [6] 0.0215% [7] 0.0179% [4] 0.0114% [1] 0.0193% [5]
avgNMI1 0.0006% [2] 0.0007% [3.5] 0.0007% [5.5] 0.0008% [7] 0.0007% [3.5] 0.0004% [1] 0.0007% [5.5]
avgLeaves 114.8 [7] 114.2 [6] 113.6 [5] 112.3 [2] 112.4 [3] 111.9 [1] 112.9 [4]

Table 13: Results concerning CCI, K, MAE, avgI, avgNMI1 and avgLeaves of tests on last seven real datasets (performance
ranks are reported in square brackets, averaging the ties)
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behave better than the others for what concern monotonicity.
Quite large differences are also observed for the average performance ranks

of avgLeaves, where our measures H∗
S , H∗

G and H∗
P occupy the last three posi-

tions of the related ranking. This comes from the fact that our discrimination
measures generally produce trees with a larger number of leaves, as already
observed in tests on artificial datasets.

CCI K MAE
HG [3.4333] HG [3.0666] HG [3.4333]
HS [3.4333] HS [3.4000] HS [3.4333]
H∗

P [3.8666] H10
MID [3.8666] H∗

P [3.9333]
HICT [4.0666] HICT [4.2000] HICT [4.0666]
H∗

G [4.1666] H∗
G [4.2333] H∗

G [4.1333]
H10

MID [4.3333] H∗
P [4.4000] H10

MID [4.3333]
H∗

S [4.7000] H∗
S [4.8333] H∗

S [4.6666]
avgI avgNMI1 avgLeaves
H∗

S [1.6666] H∗
S [2.3666] HS [1.9666]

H∗
G [1.8000] H∗

G [2.7000] HG [2.1333]
H10

MID [3.0000] H∗
P [3.0333] HICT [2.7666]

H∗
P [4.0666] H10

MID [3.5666] H10
MID [4.0666]

HS [5.4000] HICT [5.1333] H∗
P [4.7333]

HICT [5.9000] HS [5.5333] H∗
G [6.1000]

HG [6.1666] HG [5.6666] H∗
S [6.2333]

Table 14: Rankings for tests on real datasets according to average performance
ranks (reported in square brackets)

In order to give a statistical relevance of our previous observations, we fol-
lowed the procedure described in [11] selecting the Friedman test and the Ne-
menyi post-hoc test for pairwise comparisons of the average performance ranks
of each discrimination measure, with respect to each performance index.

For each performance index, the null-hypothesis of Friedman test is that
all the tested discrimination measures are equivalent in performance. Table 15
shows the values of the Friedman statistic χ2

F and the Iman and Davenport
correction FF , for each performance index.

Since the tests are related to 15 datasets and 7 algorithms (each correspond-
ing to a discrimination measure used for splitting), the FF statistic is distributed
according to the F -distribution with 6 and 84 degrees of freedom, whose critical
value for α = 0.05 is 2.2085.

For CCI, K and MAE since the FF statistic is less than 2.2085 we are not
able to reject the null hypothesis, i.e., we cannot say that there are differences
in performance among the tested discrimination measures.

For avgI, avgNMI1 and avgLeaves, instead, the FF statistic is greater
than 2.2085 thus we reject the null hypothesis, i.e., we can say that there are
differences in performance among the tested measures.

For these performance indices we can proceed with the Nemenyi post-hoc
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Friedman statistic χ2
F Iman and Davenport correction FF

CCI 4.1571 0.6779
K 7.0642 1.1924
MAE 3.9357 0.6402
avgI 69.2786 46.8066
avgNMI1 38.2286 10.3377
avgLeaves 61.3286 29.9462

Table 15: Friedman statistic χ2
F and Iman and Davenport correction FF for

average performance rank comparisons on real datasets

test, for which the critical difference is CD = 2.3262. Tables 16, 17 and 18 show
the pairwise differences (in absolute value) of average performance ranks, for
avgI, avgNMI1 and avgLeaves.

H∗
G H∗

S H∗
P HG HS H10

MID HICT

H∗
G — — — — — — —

H∗
S 0.1333 — — — — — —

H∗
P 2.2666 2.4000 — — — — —

HG 4.3666 4.5000 2.1000 — — — —
HS 3.6000 3.7333 1.3333 0.7666 — — —

H10
MID 1.2000 1.3333 1.0666 3.1666 2.4000 — —

HICT 4.1000 4.2333 1.8333 0.2666 0.5000 2.9000 —

Table 16: Pairwise differences of average performance ranks for avgI

H∗
G H∗

S H∗
P HG HS H10

MID HICT

H∗
G — — — — — — —

H∗
S 0.3333 — — — — — —

H∗
P 0.3333 0.6666 — — — — —

HG 2.9666 3.3000 2.6333 — — — —
HS 2.8333 3.1666 2.5000 0.1333 — — —

H10
MID 0.8666 1.2000 0.5333 2.1000 1.9666 — —

HICT 2.4333 2.7666 2.1000 0.5333 0.4000 1.5666 —

Table 17: Pairwise differences of average performance ranks for avgNMI1

The underlined values listed in Tables 16, 17 and 18, are the pairwise differ-
ences greater than the critical difference CD, i.e., those implying a statistically
significant difference in performance.

For what concerns avgI the Nemenyi test highlights that:

• H∗
G performs better than HG, HS and HICT ;

• H∗
S performs better than H∗

P , HG, HS and HICT ;
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H∗
G H∗

S H∗
P HG HS H10

MID HICT

H∗
G — — — — — — —

H∗
S 0.1333 — — — — — —

H∗
P 1.3666 1.5000 — — — — —

HG 3.9666 4.1000 2.6000 — — — —
HS 4.1333 4.2666 2.7666 0.1666 — — —

H10
MID 2.0333 2.1666 0.6666 1.9333 2.1000 — —

HICT 3.3333 3.4666 1.9666 0.6333 0, 8000 1.3000 —

Table 18: Pairwise differences of average performance ranks for avgLeaves

• H10
MID performs better than HG, HS and HICT ;

thus measures H∗
G, H∗

S and H10
MID form a group having better avgI performance,

even if we are not able to detect a statistical significant difference among them.
For what concerns avgNMI1, instead, the Nemenyi test highlights that:

• H∗
G performs better than HG, HS and HICT ;

• H∗
S performs better than HG, HS and HICT ;

• H∗
P performs better than HG and HS ;

thus measures H∗
G, H∗

S and H∗
P form a group having better avgNMI1 perfor-

mance, even if we are not able to detect a statistical significant difference among
them.

Finally, for what concerns avgLeaves the Nemenyi test highlights that:

• HG performs better than H∗
G, H∗

S and H∗
P ;

• HS performs better than H∗
G, H∗

S and H∗
P ;

• HICT performs better than H∗
G and H∗

S ;

thus measures HG, HS and HICT form a group having better avgLeaves per-
formance, even if we are not able to detect a statistical significant difference
among them.

The executed experimental analysis on real datasets does not allow to deduce
a statistical significant difference among the tested measures in terms of indices
of accuracy CCI, K and MAE. On the other hand, measures H∗

S and H∗
G

have significantly better results than HG, HS and HICT in terms of avgI and
avgNMI1, while H∗

P has significantly better results than HG and HS in terms
avgNMI1.

We notice that also H10
MID has significantly better results than HG, HS and

HICT in terms of avgI, but the Nemenyi test does not allow to conclude that
it is worse or better than our measures H∗

S , H∗
G and H∗

P , even if H10
MID follows

H∗
S and H∗

G in the avgI ranking.
As already pointed out, the better performance of our measures in terms

of avgI and avgNMI1 comes with a higher average number of leaves of the
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constructed trees which, in turn, implies a finer partition of the description
space.

Measures H∗
S , H∗

G and H∗
P perform better in terms of monotonicity because

they are able to produce a finer partition of the description space and at the
same time they tend to minimize the non-monotone labels. This last fact has a
particular impact on the index avgI whose value strictly depends on the number
of leaves.

From a statistical point of view, the lager size of trees built with our measures
could be a cause of overfitting that must be properly treated. Actually, such
trees are not thought to be directly used in classification tasks but they should
serve as input of suitable post-processing algorithms.

Indeed, several algorithms for building globally monotone decision trees pro-
posed in the literature, essentially rely on a post-processing of an input tree,
usually grown with standard methods [6, 31]. For example, the ICT algorithm
[34] executes a recursive relabelling of the leaves with possible local pruning of
equal leaves, while the pruning-based algorithm described in [13] starts from a
large overfitted tree and applies repeatedly a suitable post-pruning rule: in both
cases the process stops once a globally monotone decision tree is reached.

Algorithms like those described above can surely benefit from an input tree
built with our measures, as the tree is from the beginning better in terms of
monotonicity than trees built with other measures. This is particularly relevant
in the ICT algorithm which alters the information extracted from the dataset
with the only purpose of achieving global monotonicity. Indeed, starting from
a better input tree in terms of monotonicity reduces the quantity of exogenous
information introduced by ICT during the post-processing.

In the case the globally monotone decision tree resulting from the chosen
post-processing is still too large (this is the case, for example, when the input
tree grown with our measures is globally monotone from the beginning and thus
the post-processing for enforcing global monotonicity does not take place) then
the post-pruning rule for globally monotone decision trees given in [5] can be
applied.

11. Conclusions and future works

In this paper, following the approach given in [18], we proposed a rank gen-
eralization of Gini discrimination measure and Yuan and Shaw discrimination
measure, moreover we directly introduced a third function inspired to the func-
tional structure of the second generalized measure.

Since the introduced measures share a common functional structure, a hierar-
chical construction model for rank discrimination measures has been developed
and the properties a function must satisfy to be a rank discrimination measure
(according to our conception) have been isolated. This hierarchical construction
model can serve also as a basis for creating new rank discrimination measures.

Computational aspects concerning splitting criteria based on rank discrimi-
nation measures have also been investigated.
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We presented a binary tree classifier RDMT(H) parametrized by a discrim-
ination measure H used for splitting and other three pre-pruning parameters.
Even if we cannot expect from it a globally monotone classifier in general,
RDMT(H) guarantees a weak form of monotonicity on the resulting tree, namely
rule monotonicity, in the case the dataset is monotone consistent and H is a
rank discrimination measure.

The present paper mainly focused on the effect of different discrimination
measures on the properties of the final trees with the goal of empirically showing
the effectiveness of rank discrimination measures.

RDMT(H) has been used to compare measures H∗
G, H∗

S , H∗
P , HG, HS ,

H10
MID and HICT , in terms of classification accuracy, monotonicity and size of

the constructed trees.
We executed tests on artificial datasets having an increasing degree of non-

monotone noise [28]. From these tests no significant difference in performance
concerning classification accuracy has emerged, while H∗

G, H∗
S and H∗

P could
be shown to produce trees with a higher degree of monotonicity especially for
increasing non-monotone noise, despite their larger number of leaves.

Tests on real datasets have been also executed, selecting 15 datasets from
UCI [33] and WEKA [37] repositories. The results of tests on real datasets
have been statistically validated through the Friedman test and the post-hoc
Nemenyi test [11]. Also in these tests the compared measures resulted not to
be significantly different in accuracy, while H∗

G, H∗
S and H∗

P (especially H∗
G and

H∗
S) showed to behave better with respect to monotonicity, despite, again, a

larger number of leaves in the built trees.
The trees grown with our measures are thought to serve as input to post-

processing algorithms for enforcing global monotonicity like ICT [34] or the
pruning-based algorithm described in [13]. In particular, algorithms like ICT
or any other post-processing algorithm altering the information extracted from
the dataset, could surely benefit from an input tree built using our measures.
Indeed, since such a tree has “naturally” a higher degree of monotonicity and is
solely based on the dataset information, the exogenous information introduced
during the post-processing of the tree seems to be surely less than starting from
a tree built using other measures.

The comparative analysis presented in this paper essentially focused on the
discrimination measures adopted by most known monotone decision tree induc-
tion algorithms. Of course, the chosen measures do not exhaust the plethora of
alternatives and we plan to enlarge the family of splitting criteria implemented
in RDMT for future comparisons. Among the possibilities we quote the modifi-
cation of Gini index given in [38]. Another promising alternative is represented
by deriving a discrimination measure based on stochastic monotonicity [32].

Other aspects of splitting with rank discrimination measures deserve future
investigations. First of all, in this paper no assumption has been made on the
class distribution, so it is important to study the behaviour of different measures
in case of unbalanced classes and also their response to sampling on the initial
dataset (see [10] for an analogous issue on standard decision trees).

Secondly, it is known [6] that standard discrimination measures like Gini in-
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dex or the conditional Shannon entropy suffer from the so-called selection bias,
i.e., they tend to select attributes with more values. Of course such circumstance
can affect also monotone classification problems, as they are indistinguishable to
standard discrimination measures from ordinary classification problems. Nev-
ertheless, discrimination measures sensitive to monotonicity are intentionally
biased in a way to select at each split the attribute “enforcing the most” a form
of monotonicity: the distinguishing feature of each measure is exactly the way
it realizes its bias toward monotonicity. For this we believe selection bias needs
a proper definition in case of monotone classification problems since here we do
not cope with only classification accuracy but also monotonicity enters in the
play.

As a further quite natural future development we mention the fuzzification of
the proposed rank discrimination measures in a way to deal with fuzzy decision
tree classifiers [20, 39].
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[1] J. Aczél and Z. Daróczy. On measures of information and their characteri-
zations, volume 115 of Mathematics in science and engineering. Academic
Press New York / San Francisco / London, 1975.

[2] A. Ben-David. Monotonicity maintenance in information-theoretic machine
learning algorithms. Machine Learning, 19:29–43, 1995.

[3] A. Ben-David, L. Sterling, and Y.H. Pao. Learning and classification of
monotonic ordinal concepts. Computational Intelligence, 5(1):45–49, 1989.

[4] A. Ben-David, L. Sterling, and T. Tran. Adding monotonicity to learning
algorithms may impair their accuracy. Expert Systems with Applications,
36(3, Part 2):6627–6634, 2009.

[5] J.C. Bioch and V. Popova. Monotone decision trees and noisy data. Tech-
nical Report ERS-2002-53-LIS, ERIM, Rotterdam School of Management,
Erasmus Universiteit Rotterdam, 2002.

[6] L. Breiman, J. Friedman, C.J. Stone, and R.A. Olshen. Classification and
Regression Trees. Chapman and Hall/CRC, Boca Raton, 1984.

44



[7] K. Cao-Van. Supervised ranking, from semantics to algorithms. PhD thesis,
Universiteit Gent, 2003.

[8] K. Cao-Van and B. De Baets. Consistent representation of rankings. In
H. de Swart, E. Orlowska, G. Schmidt, and M. Roubens, editors, Theory
and Applications of Relational Structures as Knowledge Instruments, vol-
ume 2929 of Lecture Notes in Computer Science, pages 1966–1967. Springer
Berlin / Heidelberg, 2003.

[9] K. Cao-Van and B. De Baets. Growing decision trees in an ordinal setting.
International Journal of Intelligent Systems, 18(7):733–750, 2003.

[10] D.A. Cieslak and N.V. Chawla. Learning decision trees for unbalanced data.
In W. Daelemans, B. Goethals, and K. Morik, editors, Machine Learning
and Knowledge Discovery in Databases, volume 5211 of Lecture Notes in
Computer Science, pages 241–256. Springer Berlin Heidelberg, 2008.
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