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Abstract1

This paper situates itself in the theory of variable length codes and2

of finite automata where the concepts of completeness and synchro-3

nization play a central role. In this theoretical setting, we investigate4

the problem of finding upper bounds to the minimal length of synchro-5

nizing words and incompletable words of a finite language X in terms6

of the length of the words of X. This problem is related to two well-7

known conjectures formulated by Černý and Restivo, respectively. In8

particular, if Restivo’s conjecture is true, our main result provides a9

quadratic bound for the minimal length of a synchronizing pair of any10

finite synchronizing complete code with respect to the maximal length11

of its words.12
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1 Introduction15

The concepts of completeness and synchronization play a central role in For-16

mal Language Theory since they appear in the study of several problems on17

variable length codes and on finite automata [5]. According to a well-known18

result of Schützenberger, the property of completeness provides an algebraic19

characterization of finite maximal codes, which are the objects used in Infor-20

mation Theory to construct optimal sequential codings.21

Let X be a set of words on an alphabet A and let X∗ be its Kleene22

closure. The set X is complete if any word on the alphabet A is a factor of23

some word belonging to X∗, otherwise it is incomplete. In the latter case,24

any word which is factor of no word of X∗ is said to be incompletable in X.25

In [21], Restivo conjectured that a finite incomplete set X has always an26

incompletable word whose length is quadratically bounded by the maximal27

length of the words of X. Results on this problem have been obtained in28

[6, 17, 18, 21]. The property of synchronization plays a natural role in Infor-29

mation Theory where it is relevant for the construction of decoders that are30

able to efficiently cope with decoding errors caused by noise during the data31

transmission. A set X is synchronizing if there are two words u, v of X∗ such32

that whenever ruvs ∈ X∗, r, s ∈ A∗, one has also ru, vs ∈ X∗. The pair of33

words (u, v) is called a synchronizing pair of X.34

In the study of synchronizing sets, the search for synchronizing words of35

minimal length in a prefix complete code is tightly related to that of syn-36

chronizing words of minimal length for synchronizing complete deterministic37

automata and the celebrated Černý Conjecture [15] (see also [2, 3, 4, 7, 8,38

9, 10, 11, 12, 15, 19, 20, 23] for some results on the problem). In particular,39

in [3] (see also [4]), Béal and Perrin have proved that a complete synchro-40

nizing prefix code X on an alphabet of d letters with n code-words has a41

synchronizing word of length O(n2).42

In this paper we are interested in finding upper bounds to the minimal43

lengths of incompletable and synchronizing words of a finite set X in terms44

of the size of X.45

We recall that the size of X is the parameter `(X) defined as the maximal46

length of the words of X.47

Let L be a class of finite languages. For all n, d > 0, we denote by48

RL(n, d) the least positive integer r satisfying the following condition: any49

incomplete set X ∈ L on a d-letter alphabet such that `(X) ≤ n has an50

incompletable word of length r. Similarly, we denote by CL(n, d) the least51

positive integer c satisfying the following condition: any synchronizing set52

X ∈ L on a d-letter alphabet such that `(X) ≤ n has a synchronizing pair53

(u, v) such that |uv| ≤ c.54

2



In this context, the main result of this paper provides a bridge between55

the parameters RL(n, d) and CL(n, d). More precisely, denoting by F and by56

M the classes of finite languages and of complete finite codes respectively,57

we show that, for all n, d > 0,58

CM(n, d) ≤ 2RF(n, d+ 1) + 2n− 2.

In particular, if Restivo’s conjecture is true, the latter bound gives59

CM(n, d) = O(n2),

thus providing a quadratic bound in the size of the set for the minimal length60

of a synchronizing pair of a finite synchronizing complete code.61

In the second part of the paper, we study the dependence of the param-62

eters RL(n, d) and CL(n, d) upon the number of letters d of the considered63

alphabet, by showing that both the parameters have a low rate of growth.64

More precisely, we show that, for the class L of finite languages (resp., codes,65

prefix codes), we have66

RL(n, d) ≤
⌈
RL(dlog2 den, 2)

blog2 dc

⌉
,

and, for the class L of finite complete languages (resp., codes, prefix codes),67

we have68

CL(n, d) ≤
⌈
CL(dlog2(d+ 1)en, 2)

blog2(d− 1)c

⌉
.

A similar result is obtained also when L is the class of finite (not necessarily69

complete) languages (resp., codes, prefix codes).70

All the latter results were presented with a sketch of the proof in [13, 14].71

The paper is structured as follows. In Section 2, some basic results about72

complete and synchronizing codes as well as synchronizing automata and73

Černý Conjecture are given. In Section 3 we describe our main result. In74

Section 4, a study of the dependence of the parameters RL(n, d) and CL(n, d)75

from the number d of letters of the alphabet is presented. Finally, in Section76

5, some open questions about Restivo Conjecture are formulated.77

2 Preliminaries78

In this section we shortly recall some basic results of the theory of automata79

and of the theory of codes which will be useful in the sequel and we fix the80

corresponding notation used in the paper. The reader can refer to [5, 16] for81

more details.82
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2.1 Complete and synchronizing sets83

Let A be a finite alphabet and let A∗ be the free monoid of words over the84

alphabet A. The identity of A∗ is called the empty word and is denoted by ε.85

The length of a word w ∈ A∗ is the integer |w| inductively defined by |ε| = 0,86

|wa| = |w|+ 1, w ∈ A∗, a ∈ A. Given w ∈ A∗ and a ∈ A, we denote by |w|a87

the number of occurrences of the letter a in w. For any finite set of words88

W we denote by `(W ) the maximal length of the words of W . The number89

`(W ) will be called the size of W . Given words u,w ∈ A∗, u is said to be90

a factor of w if w = αuβ, for some α, β ∈ A∗. The set of all factors of w is91

denoted by Fact(w). Given a set of words W , the set of the factors of all the92

words of W is denoted by Fact(W ). Similarly, given a word w, a word u is93

said to be a prefix of w if w = uβ, for some β ∈ A∗. A set X is said to be94

prefix if no word of X is a prefix of another word of X.95

Definition 1 Let X be a subset of A∗. A pair of words (r, s) is an X-96

completion of a word w if rws ∈ X∗. A word having an X-completion97

is a completable word of X; conversely, a word with no X-completion is98

an incompletable word of X. The set X is complete if all words of A∗ are99

completable words of X; X is incomplete, otherwise.100

Another crucial notion of this paper is that of synchronizing set.101

Definition 2 Let X be a subset of A∗. A pair (u, v) ∈ X∗ × X∗ is a syn-102

chronizing pair of X if for every X-completion (r, s) of uv, one has103

ru, vs ∈ X∗ .

The set X is synchronizing if it has a synchronizing pair.104

Example 1 Consider the set105

X = {aa, ab, ba, baa, bbb}

on the alphabet A = {a, b}. The pair (b, aa) is a X-completion of the word106

bbabb. Indeed, one has b bbabb aa ∈ X∗.107

One easily verifies that all words of A∗ of length 6 have an X-completion.108

On the contrary, the word v = abbabba has no X-completion. Thus, v is an109

incompletable word of X of minimal length.110

It is not difficult to verify that the pair (ab, ba) is a synchronizing pair of111

the set X. Thus, X is a synchronizing set.112

The notion of synchronizing pair of a set is strictly related to that of con-113

stant. A word c of X∗ is said to be a constant of X if, for every u1, u2, u3, u4 ∈114

A∗ such that u1cu2, u3cu4 ∈ X∗, one has u1cu4, u3cu2 ∈ X∗. The following115

result holds.116
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Lemma 1 Let X be a subset of A∗. If (u, v) is a synchronizing pair of X,117

then uv is a constant of X. Conversely, if c is a constant of X, then (c, c)118

is a synchronizing pair of X.119

2.2 Complete and synchronizing codes120

The notions of complete and synchronizing sets provide a rich structure in the121

case that the set is a code. It is worth to shortly describe some fundamental122

results on such sets. A set X of words over an alphabet A is said to be a123

(variable length) code over A if it fulfills the unique factorization property,124

that is, for every word u ∈ X∗, there exists a unique sequence x1, . . . , xk of125

words of X such that u = x1 · · ·xk. A well-known example of codes is given126

by all prefix set which are distinct from {ε}.127

The notion of code is strictly related to the one of monomorphism of128

free monoids. Indeed, let A and B be two alphabets. As is well known, a129

morphism h : A∗ → B∗ is injective if and only if the letters of A have distinct130

images and h(A) is a code.131

In the sequel, a monomorphism h : A∗ → B∗ such that h(A) is a prefix132

code will be called prefix encoding.133

The notion of complete code is related to that of maximal code. Indeed,134

a regular code X is complete if and only if it is maximal (that is, it is not a135

subset of another code on the same alphabet). Moreover, a prefix code Y on136

an alphabet A is complete if and only if any word of A∗ is a prefix of a word137

of X∗ (see, e.g., [5]).138

2.3 Synchronizing automata and the Černý conjecture139

As usually, by finite non-deterministic automaton we mean a 5-tuple A =140

〈Q,A, δ, I, F 〉, where Q is a finite set of elements called states, A is the input141

alphabet, δ : Q × A −→ P(Q) is the transition function, and I, F ⊆ Q are142

the sets of initial and terminal states (here, P(Q) denotes the power set of143

Q).144

With any automaton A is naturally associated a directed labelled finite145

multigraph G(A) = (Q,E), where the set E of edges is defined as146

E = {(p, a, q) ∈ Q× A×Q | q ∈ δ(p, a)}.

However, in this paper, we will consider only automata such that I =147

F = {1}, that is, with a unique initial and final state denoted 1. Such an148

automaton will be simply identified by the 4-tuple A = 〈Q,A, δ, 1〉. The149

language accepted by such an automaton is L(A) = X∗, where X is the set150
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of the labels of the paths in the graph G(A), with origin and goal in the state151

1, but with no intermediate vertex equal to 1.152

The canonical extension of the map δ to the set Q × A∗ will be still153

denoted by δ. Moreover, if P is a subset of Q and u is a word of A∗, we154

denote by δ(P, u) and δ(P, u−1) the sets:155

δ(P, u) = {δ(s, u) | s ∈ P}, δ(P, u−1) = {s ∈ Q | δ(s, u) ∈ P}.

If no ambiguity arises, the sets δ(P, u) and δ(P, u−1) are denoted Pu and156

Pu−1, respectively.157

An automaton A = 〈Q,A, δ, 1〉 is said to be transitive if the graph G(A)158

is strongly connected. It is not difficult to verify that any automaton A is159

equivalent to a transitive automaton whose graph is the strongly connected160

component of G(A) containing the state 1. For this reason, in the sequel, we161

will consider only transitive automata.162

An automaton A = 〈Q,A, δ, 1〉 is said to be unambiguous if for all u, v ∈163

A∗ there is at most one state q ∈ Q such that q ∈ δ(1, u) and 1 ∈ δ(q, v).164

This is equivalent to say that any word of L(A) is the label of a unique path165

of G(A) with origin and goal in the state 1.166

We say that an unambiguous automaton A = 〈Q,A, δ, 1〉 is synchronizing167

if there exist two words w1, w2 ∈ A∗ such that Qw1 ∩Qw−12 = {1}.168

The automaton A is deterministic if for all q ∈ Q and for all a ∈ A,169

Card(qa) ≤ 1.170

The automaton A is complete if for all u ∈ A∗, the set Qu is non-empty.171

The properties of automata defined above reflects some properties of the172

minimal generating set X of the accepted language X∗. Some of them are173

summarized in the following lemma.174

Lemma 2 Let X ⊆ A∗ be the minimal generating set of X∗ (that is, X ∩175

X2X∗ = ∅).176

1. The set X is a regular code if and only if X∗ is accepted by an unam-177

biguous automaton A = 〈Q,A, δ, 1〉.178

2. The set X is a prefix code if and only if X∗ is accepted by a deterministic179

automaton A = 〈Q,A, δ, 1〉.180

3. The set X is incomplete if and only if X∗ is accepted by a transitive181

incomplete automaton A = 〈Q,A, δ, 1〉. Moreover, in such a case, a182

word w ∈ A∗ has an X-completion if and only if Qw 6= ∅.183

4. The set X is a regular synchronizing code if and only if X∗ is accepted184

by a transitive synchronizing unambiguous automaton A = 〈Q,A, δ, 1〉.185
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Moreover, in such a case, a pair (u, v) ∈ X∗ × X∗ is a synchronizing186

pair of X if and only if Qu ∩Qv−1 = {1}.187

As is well known, a deterministic automaton A is synchronizing if and188

only if there is a word u such that the set Qu is reduced to a single state.189

Such a word is said to be a synchronizing word of A. The following cele-190

brated conjecture has been raised in [15].191

Černý Conjecture. Each synchronizing and complete deterministic au-192

tomaton with n states has a synchronizing word of length (n− 1)2.193

Let us recall an important problem related to the Černý Conjecture. Let194

G be a finite, directed multigraph with all its vertices of the same outdegree.195

Then G is said to be aperiodic if the greatest common divisor of the lengths196

of all cycles of the graph is 1. The graph G is called a AGW-graph if it197

is aperiodic and strongly connected. The reason why such graphs take this198

name is due to the fact that these structures were first introduced and studied199

in the context of Symbolic Dynamics by Adler, Goodwyn and Weiss in [1].200

A synchronizing coloring of G is a labeling of the edges of G that trans-201

forms it into a complete, deterministic and synchronizing automaton. The202

Road coloring problem asks for the existence of a synchronizing coloring for203

every AGW-graph. In 2007, Trahtman proved the following remarkable re-204

sult [22].205

Theorem 1 Every AGW-graph has a synchronizing coloring.206

We recall that by the well known Kraft-McMillan Theorem (see, e.g.,207

[5]), integers k1, . . . , kn, d > 0 are the code-word lengths of a maximal (or,208

equivalently, complete) prefix code over d letters if and only if they satisfy209

the condition210
n∑

i=1

d−ki = 1. (1)

We conclude this section with an application of Trahtman Road-coloring211

Theorem, which furnishes a characterization of the code-word lengths of finite212

complete synchronizing codes.213

Proposition 1 Let k1, . . . , kn, d > 0 be such that214

gcd(k1, k2, . . . , kn) = 1 ,
n∑

i=1

d−ki = 1.

Then k1, . . . , kn are the code-word lengths of a synchronizing complete prefix215

code over d letters.216

7



Proof Let A be a d-letter alphabet. By Kraft-McMillan Theorem, there217

exists a prefix code X = {x1, . . . , xn} over A such that, for every i = 1, . . . , n,218

|xi| = ki. Moreover, such a code is maximal and, consequently, complete.219

By Lemma 2, X∗ is accepted by a complete deterministic automaton AX .220

Let G be the underlying graph of AX , i.e., the graph obtained from AX221

by ripping off all the labels of its edges. Since gcd(k1, k2, . . . , kn) = 1, G is222

an AGW-graph. By Theorem 1, there exists a synchronizing coloring A′ of223

G. Let L be the language recognized by A′. Again by Lemma 2, L = Y ∗ for224

a suitable prefix complete synchronizing code Y . Moreover, by construction,225

one has Y = {y1, . . . , yn} with |yi| = |xi| = ki for every i = 1, . . . , n, |yi| = ki.226

2227

Remark 1 It is worth noticing that the code-word lengths of any finite228

synchronizing complete code over d letters satisfies both the conditions of229

Proposition 1.230

Indeed, as a straightforward consequence of Kraft-McMillan Theorem,231

the second condition is verified by any maximal (or, equivalently, complete)232

finite prefix code over d letters.233

In order to verify the first one, let X be a finite synchronizing complete234

code, (u, v) ∈ X∗ ×X∗ be a synchronizing pair of X, a ∈ A be a letter, and235

(r, s) be an X-completion of the word uvauv. Then, one has ruvauvs ∈ X∗236

and, consequently, ru, vau, vs ∈ X∗. One derives that the greatest common237

divisor m of the code-word lengths of X has to divide |u|, |v|, |vau| and also238

|vau| − |u| − |v| = 1. Thus, m = 1.239

3 The main result240

The main result of this paper is related to a problem that was formulated in241

[21] by Restivo. Let L be a class of finite languages. For all n > 0 we set242

RL(n) = sup
d≥1

RL(n, d) , CL(n) = sup
d≥1

CL(n, d) .

In [21], it was conjectured that if F is the class of all finite languages, then243

RF(n) ≤ 2n2.If we restrict ourselves to prefix codes, we get244

Proposition 2 ([21]) Let P be the class of finite prefix codes. Then245

RP(n) ≤ 2n2.

However, in the general case, the previous bound was disproved in [17]. A246

more general and larger counterexample is given in [18]. We can thus state247

a slightly weaker version of the problem as follows.248
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Conjecture 1 (Restivo’s Conjecture) Let F be the class of all finite lan-249

guages. Then RF(n) = O(n2).250

In this context, the main result of this paper is the following.251

Proposition 3 LetM be the class of complete finite codes. For all n, d > 0,252

CM(n, d) ≤ 2RF(n, d+ 1) + 2n− 2.

Before proving Proposition 3, it is convenient to discuss some interesting253

consequences of this result. First, if Restivo’s conjecture is true, we get254

CM(n) = O(n2).

Moreover, the bound above would be sharp, as we explain below. Consider255

the prefix code Xn = aAn−1 ∪ bAn−2 on the alphabet A = {a, b}. The256

minimal automaton accepting X∗n has been studied in [2], where it has been257

proved that the minimal length of its synchronizing words is n2 − 3n + 3.258

From this, one derives that any synchronizing pair (w1, w2) of Xn verifies259

|w1w2| ≥ (n − 1)2. In particular, a synchronizing pair of Xn of minimal260

length is ((abn−2)n−1, ε). This provides the lower bound261

CM(n, 2) ≥ CP(n, 2) ≥ (n− 1)2,

for the parameter CM(n, 2).262

It is also worth to do a remark on a recent result by Béal and Perrin. In [3]263

(cf. also [4]), it is proved that a synchronizing complete prefix code X with n264

code-words has a synchronizing word of length 2(n−2)(n−3)+1. This result265

is derived from an upper bound to the length of shortest synchronizing words266

of synchronizing one-cluster automata. However, in view of Proposition 3267

and Restivo’s conjecture, this bound seems of no help in obtaining a good268

evaluation of the parameter CP(n, 2), as one may have n ' 2`(X). This269

suggests that a bound in term of the size of X may be more informative than270

a bound in terms of the cardinality.271

3.1 Proof of Proposition 3272

Let us now proceed to prove Proposition 3. For this purpose, let X be a finite273

complete synchronizing code over a d-letter alphabet A and let n = `(X).274

Let AX = 〈Q,A, δ, 1〉 be the unambiguous automaton that accepts X∗ (see275

Lemma 2). The proof of Proposition 3 is based upon the following lemma.276
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Lemma 3 Let (v1, v2) be a synchronizing pair of X. There exist words277

w1, w2 ∈ A∗ such that278

|w1|, |w2| ≤ RF(n, d+ 1), Qw1 ⊆ Qv1, Qw2
−1 ⊆ Qv−12 .

Indeed, assume that Lemma 3 holds. As X is complete, the word w1w2 has279

an X-completion (r, s). With no loss of generality, we may suppose that280

|r|, |s| ≤ n − 1. Since (v1, v2) is a synchronizing pair, in view of Lemma 2,281

one has282

Q(rw1) ∩Q(w2s)
−1 ⊆ Qw1 ∩Qw2

−1 ⊆ Qv1 ∩Qv2−1 = {1}.

Moreover, the word rw1w2s ∈ X∗ is accepted by AX and therefore there283

is a state q ∈ Q such that q ∈ 1rw1 and 1 ∈ qw2s. Thus, q ∈ Q(rw1) ∩284

Q(w2s)
−1 ⊆ {1}, that is, q = 1. This proves that rw1, w2s ∈ X∗ and by285

Lemma 2 (rw1, w2s) is a synchronizing pair of X. Moreover |rw1w2s| ≤286

2RF(n, d+1)+2n−2. By the arbitrary choice of the maximal synchronizing287

code X, one derives Proposition 3.288

Now, our main goal is to prove Lemma 3. For the sake of simplicity, we289

will prove the existence of the word w1 that fulfills the conditions of Lemma290

3 since the proof of the existence of the word w2 can be obtained by using a291

symmetric construction. The main tool of this proof is a new automaton we292

construct below.293

Let (v1, v2) be a synchronizing pair of X. If v1 = ε, the statement is294

trivially verified by w1 = v1. Thus we assume v1 6= ε and set v1 = ua, with295

u ∈ A∗ and a ∈ A.296

Let a′ be a symbol not belonging to A and let A′ = A∪{a′}. We consider297

a new automaton A′ = 〈Q,A′, δ′, 1〉 where the transition map δ′ is defined as298

follows: for every q ∈ Q and a ∈ A, δ′(q, a) = δ(q, a) and299

δ′(q, a′) =

{
δ(q, a) ∪ {1} if q /∈ δ(Q, u),

δ(q, a) \ {1} if q ∈ δ(Q, u).
(2)

It is useful to remark that, for all q ∈ Q and for any word w ∈ A∗, δ′(q, w) =300

δ(q, w). It is also useful to remark that, by construction, the automaton A′ is301

still transitive. Let Y be the minimal generating set of the language accepted302

by A′. Thus, LA′ = Y ∗ and Y ∩ Y 2Y ∗ = ∅.303

Now we prove some combinatorial properties of the set Y .304

Lemma 4 The set Y is incomplete.305
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Proof By (2) one has δ′(Q, ua′) = δ(Q, ua) \ {1} = δ(Q, v1) \ {1} and306

δ′(Q, v−12 ) = δ(Q, v−12 ). Taking into account that (v1, v2) is a synchronizing307

pair of X, one derives308

δ′(Q, ua′) ∩ δ′(Q, v−12 ) = δ(Q, v1) ∩ δ′(Q, v−12 ) \ {1} = ∅ .

It follows that δ′(Q, ua′v2) = ∅. This equation proves that the automaton A309

is not complete. Thus, by Lemma 2, Y is an incomplete set. 2310

Lemma 5 It holds that `(Y ) ≤ `(X).311

Proof In order to prove the statement, it is enough to show that, for every312

y ∈ Y, there exists x ∈ X with |y| ≤ |x|.313

Let y = a1 · · · ak ∈ Y , with ai ∈ A′, for i = 1, . . . , k. Since Y ∩Y 2Y ∗ = ∅,314

in the graph of A′ there is a path315

c′ = 1
a1−→ q1

a2−→ q2
a3−→ · · · ak−1−→ qk

ak−→ 1,

where, for every i = 1, . . . , k, qi 6= 1. Let us now construct a path c in the316

graph of AX such that ||c|| = x ∈ X, with |x| ≥ |y|, so completing the proof.317

By the definition of A′, any edge p
b−→ q of the graph of A′ with b 6= a′318

is also an edge of the graph of A. Moreover, if p
a′−→ q is an edge of the319

graph of A′ with q 6= 1, then p
a−→ q is an edge of the graph of A. Thus, by320

replacing in c′, every transition qi
a′−→ qi+1, by qi

a−→ qi+1 and deleting the321

last edge qk
ak−→ 1, we find a path322

d = 1
b1−→ q1

b2−→ q2
b3−→ · · · bk−1−→ qk

bk−→ 1,

of the graph of A. Since A is transitive, one can catenate d with a simple323

path from qk to 1. In such a way, we obtain a path c of the graph of A324

starting and ending in 1, with all intermediate states distinct from 1 and325

length ≥ k+ 1. As is well known, as A is unambiguous, the label x of such a326

path is a word of the minimal generating set X of X∗. Since |x| ≥ k+1 = |y|,327

this completes the proof. 2328

Lemma 6 Let v be an incompletable word of Y of minimal length. There329

exists a word w1 ∈ A∗ such that330

|w1| ≤ |v|, Qw1 ⊆ Qv1.
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Proof Let v be an incompletable word of Y of minimal length, with the331

number |v|a′ as small as possible. Then, by Lemma 2, one has δ′(Q, v) = ∅.332

The letter a′ necessarily occurs in v, since by the completeness of A, one333

has δ′(Q, r) = δ(Q, r) 6= ∅ for all r ∈ A∗. Thus, we can write v = u1a
′u2,334

with u1 ∈ A∗ and u2 ∈ A′∗.335

Recall that v1 = ua, with u ∈ A∗, a ∈ A. Let us verify that δ(Q, u1) ⊆336

δ(Q, u). Indeed, suppose the contrary. Then, by (2), one has337

δ′(Q, u1a
′) = δ(Q, u1a) ∪ {1} = δ′(Q, u1a) ∪ {1}

and consequently, δ′(Q, u1au2) ⊆ δ′(Q, u1a
′u2) = ∅. Thus, u1au2 is an in-338

completable word of Y , but this contradicts the minimality of |v|a′ .339

We conclude that δ(Q, u1) ⊆ δ(Q, u) and therefore taking w1 = u1a and340

recalling that v1 = ua, one has δ(Q,w1) ⊆ δ(Q, v1) and |w1| ≤ |v|. The341

statement follows. 2342

Let us finally remark that Lemma 5 and Lemma 6 yield343

|w1| ≤ RF(n, d+ 1), Qw1 ⊆ Qv1.

The proof of Lemma 3 is thus complete.344

If we restrict ourselves to prefix codes, we obtain a tighter bound.345

Proposition 4 Let MP be the class of complete finite prefix codes. For all346

n, d > 0,347

CMP(n, d) ≤ RF(n, d+ 1) .

Proof Let X be a maximal prefix code. Then, X is accepted by a complete348

deterministic automaton AX . Moreover, X has a synchronizing pair (v1, v2)349

with v2 = ε. Thus, Qv1 = Qv1 ∩Qv−12 = {1}. By Lemma 3, there is a word350

w1 ∈ A∗ such that351

|w1| ≤ RF(n, d+ 1) , Qw1 = {1} .
This implies that w1 ∈ X∗ and (w1, ε) is a synchronizing pair of the prefix352

code X. This proves the statement. 2353

Example 2 Consider the prefix code354

X = {a, baaa, baab, bab, bb} .
The automata AX and A′ are represented in Figure 2. One obtains355

Y = {a, ba′, bb, baa′, bab, ba′a′, ba′b, baaa, baab,
baa′a, baa′b, ba′aa, ba′ab, ba′a′a, ba′a′b},

so that `(Y ) = `(X) = 4. The word aaa′ is Y -incompletable and, conse-356

quently, (aaa, ε) is a synchronizing pair of the code X.357
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Figure 1: Automata of Example 2

4 Reduction to the binary case358

The aim of this section is to study how much the parameters RL(n, d) and359

CL(n, d) vary according to the number d of letters of the alphabet. We start360

to analyze the parameter RL(n, d). In the sequel, B denotes the binary361

alphabet B = {a, b}. The following lemma will be useful in the sequel. It362

gives an interesting insight on the structure of the completions of words in a363

complete regular set. As far as we know, it seems to be a new result.364

Lemma 7 Let Y ⊆ A∗ be a complete regular set. Then any word w of A∗365

has a Y -completion (y, s) with y ∈ Y ∗.366

Proof We define an infinite sequence ((un, vn))n≥0 as follows: (u0, v0) is a367

Y -completion of w; for all n > 0, (un, vn) is a Y -completion of the word368

wv0wv1 · · ·wvn−1w.

By Myhill-Nerode Theorem (see, e.g., [5]), Y ∗ is union of congruence classes369

of a congruence of finite index ≡ . Thus, one has uh ≡ uk for some h, k with370

k > h ≥ 0. By construction,371

x = ukwv0wv1 · · ·wvk ∈ Y ∗ and z = uhwv0wv1 · · ·wvh ∈ Y ∗.

One can write x = yws, with y = ukwv0wv1 · · ·wvh and s = vh+1wvh+2 · · ·wvk,372

so that (y, s) is a Y -completion of w. Moreover, one has y ≡ z and, conse-373

quently, y ∈ Y ∗. This concludes the proof. 2374

Lemma 8 Let h : A∗ → B∗ be a prefix encoding and Y ⊆ A∗. The set h(Y )375

is complete if and only if Y and h(A) are complete.376
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Proof (⇐) Let w ∈ B∗. Since h(A) is complete, one has rws = h(u) ∈377

h(A∗), for some r, s ∈ B∗ and u ∈ A∗. Since Y is complete, one has puq ∈378

Y ∗, where p, q ∈ A∗, thus yielding h(puq) = h(p)rwsh(q) ∈ h(Y ∗). Hence379

(h(p)r, sh(q)) is a h(Y )-completion of w.380

(⇒) The fact that h(A) is complete follows straightforwardly from the381

inclusion B∗ ⊆ Fact(h(Y ∗)) ⊆ Fact(h(A∗)).382

Let us prove that Y is complete. Let w ∈ A∗. Since h(Y ) is complete, by383

Lemma 7, one has h(u)h(w)s = h(v), for some u, v ∈ Y ∗ and s ∈ B∗. Since384

h is a prefix encoding, one has v = uwr, for some r ∈ A∗. The latter implies385

that (u, r) is a Y -completion of w. 2386

By encoding a d-letter alphabet on a suitable complete binary prefix code387

one obtains388

Proposition 5 Let L be the class of finite languages (resp., codes). Then389

RL(n, d) ≤
⌈
RL(dlog2 den, 2)

blog2 dc

⌉
. (3)

Proof Let A be a d-letter alphabet and let X be a finite incompletable390

language over A of size n. Set m = dlog2 de, γ = 2m+1 − d and let k1, . . . , kd391

be the positive integers defined by392

ki =

{
m if i ≤ γ ,

m+ 1 if γ < i ≤ d .
(4)

One easily checks that393

d∑
i=1

ki = 1. (5)

Thus, by Kraft-McMillan Theorem, k1, . . . , kd are the code-word lengths of a394

synchronizing prefix code Y over a binary alphabet B. Moreover, (5) ensures395

that Y is maximal and, consequently, complete.396

Now, let h : A∗ → B∗ be a monomorphism such that h(A) = Y . Then,397

for every a ∈ A, we have398

blog2 dc ≤ |h(a)| ≤ dlog2 de. (6)

By (6) the size of h(X) is not greater than ndlog2 de. By Lemma 8, since X399

is incompletable, h(X) is incompletable as well. Let v be an incompletable400

word in h(X) of minimal length. Hence we have401

|v| ≤ RL(dlog2 den, 2). (7)
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Since Y = h(A) is a complete prefix code, the word v is a prefix of a word402

of Y ∗. Thus, vs = h(u) for some u ∈ A∗ and s ∈ B∗. Moreover, taking u403

of minimal length, one may assume that u = u′a, with u′ ∈ A∗, a ∈ A, and404

|h(u′)| < |v|. In view of (6), one derives405

|u| ≤
⌈
|v|

blog2 dc

⌉
. (8)

Let us check that u is incompletable in X. By contradiction, deny. Then406

r′us′ ∈ X∗, for some r′, s′ ∈ A∗. Consequently, h(r′us′) = h(r′)vsh(s′) ∈407

h(X∗), thus implying that v is completable in h(X).408

Now (3) easily follows from the latter, (7) and (8). 2409

Let us now analyze the parameter CL(n, d). The following lemma is useful410

for this purpose. It is algebraically similar to Lemma 8.411

Lemma 9 Let h : A∗ → B∗ be a monomorphism and let Y ⊆ A∗ be a412

complete set. The set h(Y ) is synchronizing if and only if Y and h(A) are413

synchronizing.414

Proof (⇐) By hypothesis and Lemma 1, there exists a word y ∈ Y ∗ which415

is a constant of Y ∗. Similarly, there exists a word h(u) ∈ h(A∗), with u ∈ A∗,416

which is a constant of h(A∗). Since Y is complete, there exist words r, s ∈ A∗417

such that rus ∈ Y ∗. Let ζ = h(rus) ∈ h(Y ∗). Obviously, ζ is a constant of418

h(A∗).419

Let us prove that ζh(y)ζ ∈ h(Y ∗) is a constant of h(Y ∗). For this purpose,420

let α1, α2, α3, α4 ∈ B∗ be such that α1ζh(y)ζα2, α3ζh(y)ζα4 ∈ h(Y ∗). Let421

us prove that (α1, α4) and (α3, α2) are h(Y )-completions of ζh(y)ζ. By the422

latter condition and since ζ is a constant of h(A∗), one has α1ζ ∈ h(A∗)423

so that α1ζ = h(β1), for some β1 ∈ A∗. Similarly, one has ζα2 = h(β2),424

α3ζ = h(β3), ζα4 = h(β4), for some β2, β3, β4 ∈ A∗. The previous two425

conditions now imply h(β1yβ2), h(β3yβ4) ∈ h(Y ∗). Since h is an injective426

map, the latter implies that β1yβ2, β3yβ4 ∈ Y ∗. Since y is a constant of427

Y ∗, one thus have β1yβ4, β3yβ2 ∈ Y ∗ so that h(β1yβ4), h(β3yβ2) ∈ h(Y ∗), so428

implying that (α1, α4) and (α3, α2) are h(Y )-completions of ζh(y)ζ.429

(⇒) Let (h(y1), h(y2)) be a synchronizing pair of h(Y ), with y1, y2 ∈430

Y ∗. One easily proves that (y1, y2) is a synchronizing pair of Y . Indeed,431

if ry1y2s ∈ Y ∗, with r, s ∈ A∗, one gets h(ry1y2s) ∈ h(Y ∗) which yields432

h(ry1), h(y2s) ∈ h(Y ∗). Since h is an injective map, from the latter we get433

ry1, y2s ∈ Y ∗. Thus Y is a synchronizing set.434

Let us prove now that h(A) is a synchronizing set of B∗ as well. More pre-435

cisely, let us prove that the pair (h(y1), h(y2)) above considered, is a synchro-436

nizing pair of h(A). For this purpose, let r, s ∈ B∗ such that rh(y1)h(y2)s ∈437
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h(A∗). Hence there exists t ∈ A∗ such that rh(y1y2)s = h(t). On the other438

hand, since Y is complete, there exist words t1, t2 ∈ A∗ such that t1tt2 ∈ Y ∗,439

which implies h(t1tt2) = h(t1)rh(y1)h(y2)sh(t2) ∈ h(Y ∗). Since (h(y1), h(y2))440

is a synchronizing pair of h(Y ∗), one derives h(t1)rh(y1), h(y2)sh(t2) ∈441

h(Y ∗). Thus, one has442

h(t1), h(t1)rh(y1), rh(y1)h(y2)s, h(y2)sh(t2), h(t2) ∈ h(A∗). (9)

Taking into account that h(A) is a code and, consequently, there is a unique443

factorization of the word h(t1)rh(y1)h(y2)sh(t2) as product of words of h(A),444

one derives445

rh(y1), h(y2)s ∈ h(A∗) .

Hence, (h(y1), h(y2)) is a synchronizing pair of the code h(A). This completes446

the proof. 2447

As an application of the two lemmas above, by encoding a d-letter al-448

phabet on a suitable complete binary synchronizing code, one obtains the449

following result:450

Proposition 6 Let L be the class of finite complete languages (resp., codes,451

prefix codes). Then452

CL(n, d) ≤
⌈
CL(dlog2(d+ 1)en, 2)

blog2(d− 1)c

⌉
. (10)

Proof Let A be a d-letter alphabet and let X be a finite complete synchro-453

nizing language over A of size n.454

First, we consider the case that d is not a power of 2. Set m = blog2 dc,455

γ = 2m+1 − d and let k1, . . . , kd be the positive integers defined by (4). One456

easily checks that both the conditions of Proposition 1 are satisfied. Thus,457

k1, . . . , kd are the code-word lengths of a synchronizing complete prefix code458

Y over a binary alphabet B.459

Now, let h : A∗ → B∗ be a monomorphism such that h(A) = Y . Then460

(6) is verified by every a ∈ A, so that the size of h(X) is not greater than461

ndlog2 de. Since X is a synchronizing and complete set and Y is a synchro-462

nizing and complete code, by Lemma 8 and Lemma 9, one has that h(X) is463

a synchronizing and complete set as well. Moreover, if X is a code (resp., a464

prefix code), then h(X) is a code (resp., a prefix code), too.465

Let (h(u), h(v)) be a synchronizing pair of h(X), u, v ∈ X∗. Hence we466

have467

|h(uv)| ≤ CL(ndlog2 de, 2). (11)
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It is easily checked that (u, v) is a synchronizing pair of X. Indeed, let ruvs ∈468

X∗, with r, s ∈ A∗. Hence h(ruvs) ∈ h(X∗) so that h(ru), h(vs) ∈ h(X∗).469

Since h is an injective mapping, we conclude that ru, vs ∈ X∗.470

Hence, by taking account of (6), (11), one gets (10).471

Finally, let us treat the case where d = 2m. Let k1, . . . , kd be the sequence472

of positive integers defined as: for every i = 1, . . . , d,473

ki =


m− 1 if i = 1 ,

m+ 1 if i = 2, 3 ,

m if i = 4, . . . , d .

As before, one easily checks that the sequence of lengths k1, . . . , kd defined474

above satisfy both the conditions of Proposition 1. Thus, k1, . . . , kd are the475

code-word lengths of a synchronizing complete prefix code Y over a binary476

alphabet B. Moreover, for every a ∈ A, we have477

blog2(d− 1)c ≤ |h(a)| ≤ dlog2(d+ 1)e.

From that point on, one proceeds by using the same argument of the previous478

case. The proof of the statement is now complete. 2479

A similar bound can be found also in the case where completeness is not480

required:481

Proposition 7 Let L be the class of finite languages (resp. codes, prefix482

codes). Then483

CL(n, d) ≤
⌈
CL(dlog2(d+ 1)en, 2)

dlog2(d+ 1)e

⌉
. (12)

Proof Let X ⊆ Bm, with m ≥ 1 such that am /∈ X and am−1b, bam−1 ∈ X.484

It is easily checked that X is a prefix synchronizing code endowed with the485

synchronizing pair (bam−1, am−1b). Let A be a d-letter alphabet and let Y be486

a synchronizing set over A such that `(Y ) ≤ n. We will find a synchronizing487

pair of Y .488

We may suppose that Y 6⊆ a∗ since otherwise it has a synchronizing pair489

(u, v) with |uv| ≤ CL(n, 1) ≤ CL(n, 2). Let (y1, y2) be a synchronizing pair490

of Y . With no loss of generality, we may assume that ab ∈ Fact(y1y2), for491

two suitable distinct letters a, b. Let m = dlog2(d + 1)e and let us consider492

the monomorphism h : A∗ → B∗ generated by a bijective mapping between493

A and a subset of the set X defined above such that494

h(a) = bam−1, h(b) = am−1b.
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Let us prove that (h(y1), h(y2)) is a synchronizing pair of h(Y ) so that h(Y )495

is a synchronizing set. For this purpose, let rh(y1)h(y2)s ∈ h(Y ∗) with496

r, s ∈ B∗. By costruction, we know that y1y2 = αabβ, where α, β ∈ A∗. The497

latter implies that498

rh(y1)h(y2)s = rh(α)bam−1am−1bh(β)s ∈ X∗ .

Since (bam−1, am−1b) is a synchronizing pair of X and X is a uniform length499

code, from the latter equation one has r, s ∈ X∗ and thus r = h(r′) and500

s = h(s′) with r′, s′ ∈ A∗. Hence rh(y1)h(y2)s = h(r′y1y2s
′) ∈ h(Y ∗). By the501

injectivity of h, one has r′y1y2s
′ ∈ Y ∗. Since (y1, y2) is a synchronizing pair502

of Y , one derives r′y1, y2s
′ ∈ Y ∗ and thus rh(y1), h(y2)s ∈ h(Y ∗).503

Now, using an argument similar to that used in the proof of Proposition504

6 and by remarking that, for every w ∈ A∗, |h(w)| = |w|dlog2(d + 1)e, one505

proves (12). 2506

5 Conclusions507

In this paper we have studied the minimal lengths of incompletable and508

synchronizing words of a finite set X in terms of the size of X. In particular,509

we have shown some relations among the parameters RF(n, d) and CM(n, d)510

bounding, respectively, the minimal lengths of incompletable words in sets511

of size n and the minimal lengths of synchronizing pairs in maximal codes of512

size n.513

As we have seen, Restivo conjectured a quadratic bound to the minimal514

length of incompletable words of any finite incompletable set. However, up515

to now, such a bound has been found only for prefix codes. Thus, we may516

consider the following unanswered questions, most of which may be viewed517

as weaker versions of Restivo’s Conjecture. We recall that with F we have518

denoted the class of all finite sets.519

1. Does RF(n) <∞ for all n holds true?520

2. Find a polynomial upper bound to RF(n).521

3. Find a polynomial upper bound to RF(n, 2).522

4. Let Fk be the class of all k-word languages (k ≥ 2). Evaluate RFk
(n).523

5. Does RFk
(n) = RFk

(n, 2) holds true?524

6. Let C be the class of finite codes. Find a polynomial upper bound to525

RC(n).526
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7. Let P be the class of finite prefix codes. Find the exact value of RP(n)527

for all n.528
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and Hamiltonian paths, in: Y. Gao, H. Lu, S. Seki, S. Yu eds., DLT 2010561

Developments in Language Theory, Lecture Notes in Comput. Sci., Vol.562

6224, pp. 124–135, Springer, Berlin, 2010.563

[12] A. Carpi, F. D’Alessandro, Independent sets of words and the synchro-564

nization problem, Advances in Applied Mathematics, 50, 339–355, 2013.565
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