
A Novel Weighted Defence and Its Relaxation
in Abstract Argumentation

Stefano Bistarellia, Fabio Rossia, Francesco Santinia,˚

aDepartment of Mathematics and Computer Science, University of Perugia, Italy

Abstract

When dealing with Weighted Abstract Argumentation, having weights on at-
tacks clearly brings more information. The advantage, for instance, is the possi-
bility to define a di↵erent notion of defence, checking also if the weight associated
with it is stronger than the attack weight. In this work we study two di↵erent
relaxations, one related to the new weighted defence we propose, by checking the
di↵erence between the composition of inward and outward attack-weights. The
second one is related to how much inconsistency we are willing to tolerate inside
an extension; such amount is computed by aggregating the costs of the attacks
between any two arguments both inside an extension. These two relaxations are
strictly linked: allowing a small conflict may lead to have more arguments into
an extension, and consequently result in a stronger or weaker defence. Weights
are represented by a semiring structure, which can be instantiated to di↵erent
metrics used in the literature (e.g., costs, probabilities, fuzzy levels).

Keywords: Abstract Argumentation Frameworks, Weighted attacks,
Inconsistency tolerance, Relaxation, Semirings.

1. Introduction

An Abstract Argumentation Framework (AAF ) [1] is represented by a pair
xArgs , Ry consisting of a set of arguments and a binary relationship of attack
defined among them. Given a framework, it is possible to examine the ques-
tion on which set(s) of arguments can be accepted, hence collectively surviving
the conflict defined by R. Answering this question corresponds to defining an
argumentation semantics. The key idea behind extension-based semantics is
to identify some sets of arguments (called extensions) that survive the conflict
“together”. A very simple example of AAF is xta, bu, tRpa, bq, Rpb, aquy, where
two arguments a and b attack each other. In this case, each of the two positions
represented by either tau or tbu can be intuitively valid, since no additional
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information is provided on which of the two attacks prevails. However, having
weights on attacks results in such additional information, which can be fruitfully
exploited in this direction. For instance, in case the attack Rpa, bq is stronger
than (or preferred to) Rpb, aq, taking the position defined by a may result in a
better choice for an intelligent agent, since it can be defended better.

The aim of this work is to first i) propose a new notion of weighted defence
and, from this, relax classically exact and sharp concepts in Weighted Abstract

Argumentation Frameworks (WAAFs, see Section 11). This is accomplished by
allowing ii) an internal conflict inside extensions satisfying a given extension-
based semantics, and iii) by relaxing the defence of arguments w.r.t. the attacks
coming from outside an extension. These are the three main results of the work.

The first goal is to provide a new definition of defence for WAAFs, here
called w-defence, which encompasses weights in the style of similar works, as
[2] and [3]. In our proposal, an extension B Ñ Args defends an argument b P

Args from a P Args , if the composition (a parametric b operation from a c-

semiring structure [4]) of all the attack weights from B to a is stronger than
the composition of all the attacks from a to B. Di↵erently from [2], where the
arithmetic sum of all attack weights from B to a needs to be only stronger than
the attack from a to b, we also consider the set of attacks from a to B. Therefore,
both our proposal and the one given by [2] suggest a collective defence from B
to a, but, di↵erently, in this paper we consider the group of attacks from a to
B as a single entity, i.e., with a single global weight. We believe such a choice
provides a more coherent view: in the literature, defence is usually checked by
considering all the counter-attacks from a set B to a (e.g., in order to satisfy
admissibility), but each attack from a to B is treated separately (however, in
case of fuzzy aggregation of weights, the two approaches are equivalent). Our
intent is to normalise such dis-homogeneity.

Once having defined w-defence, we then proceed with the relaxation of the
framework. Such two issues represent orthogonal relaxations, concerning either
only internal arguments, or the relationship between the set of acceptable and
not-acceptable arguments (interval versus external arguments). In this way,
an autonomous reasoning-agent has more instruments to understand, for in-
stance, whether tolerating a small conflict among its arguments considerably
changes its point of view. As a possible scenario, a debate can be permeated
by arguments advanced by trolls [5], which can accordingly generate noise in
an abstract framework. Mitigating the inconsistency produced by them may
let other arguments grow in strength (see Section 9). Internal inconsistency
arises in many areas of AI and computing: merging information from hetero-
geneous sources, negotiation in multi-agent systems, or understanding natural
language dialogues [6]. On the other hand, an agent could also be interested in
defending its arguments with a higher or lower level of strength, in order to re-
spectively strengthen the defence or increase the number of satisfied extensions.
For instance, increasing both ↵ and �, something close to a stable extension can
appear (there are AAF where the stable semantics is not satisfied).

In the end, we design ↵�-semantics (Section 6), where ↵ is the amount of
weight tolerated inside an extension satisfying it, and � is the weight di↵erence
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between a “full” defence (i.e., w-defence) and the “weaker” defence implemented
by an ↵�-extension. We obtain them from classical formulations [1], hence we
call them ↵�-conflict-free and ↵�-admissible sets, ↵�-complete, ↵�-preferred,
and ↵�-stable semantics. These two parameters strictly influence each other:
by relaxing ↵ one can allow one or more new arguments be accepted into an ex-
tension, but, at the same time, their attacks contribute to the defence strength,
i.e., to the computation of �: if a is accepted in B because ↵ is increased, BYtau

could be not �-defensible anymore, or, on the other hand, it could become de-
fensible even with a stricter �. An agent can play with these two parameters
with the purpose to “explore the neighbourhoods” of classical extensions, and
take di↵erent decisions.

To have a general and formal representation of weights and operations on
them (i.e., aggregation and preference), in this work we instead adopt a para-
metric algebraic framework based on c-semirings [4]. Hence, it is possible to
consider di↵erent metrics within the same computational framework, as fuzzy
or probabilistic scores, and model di↵erent kinds of AAFs in the literature (see
Section 10). This represents a further result of the paper.

This paper elaborates on [7] and extends the works in [8] and [9]. All these
papers are here integrated to o↵er an thorough view on the topic, by provid-
ing proofs, extended examples, and tests, which are not present in the single
contributions; for instance, the case-study in Section 9.2 is new. The paper is
structured as follows: Section 2.1 recollects the basic definitions of AAF given
by [1], while in Section 2.2 we introduce c-semirings. Section 3 presents WAAFs,
w-defence, and Section 4 reports a comparison with related notions in the liter-
ature [2, 3]. Section 5 relaxes w-defence by proposing �-defence, where � is the
amount by which defence is weakened. In Section 6 we propose ↵�-semantics
(e.g., ↵�-stable), which extend classical ones by considering ↵ and � at the same
time. Section 7 collects some formal results concerning such new semantics, e.g.,
inclusion relations. In Section 8 we briefly describe an implementation of the
proposed framework, together with some tests on random WAAFs. Section 9
presents two di↵erent case-studies to better motivate the formal results in the
paper: one example is based on a real-world case-study, where the considered
WAAF is directly extracted from Amazon.com reviews on a chosen product (a
ballet tutu for kids). In Section 10 we describe related work, and, finally, Sec-
tion 11 wraps up the paper by drawing final conclusions and suggesting future
work.

2. Background

In the following of this section we first recollect the main definitions at the
basis of AAFs [1] (Section 2.1), and then introduce c-semirings (Section 2.2). C-
semirings represent a parametric framework where to deal with attack-weights.
By changing the underlying c-semiring instantiation, it is possible to capture
di↵erent metrics (e.g., fuzzy or probabilistic ones).
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Figure 1: An example of AAF.

2.1. Abstract Argumentation Frameworks

In his pioneering work [1], Dung proposed Abstract Frameworks for Argu-
mentation, where an argument is an abstract entity whose role is solely deter-
mined by its relations to other arguments:

Definition 1. An Abstract Argumentation Framework (AAF) is a pair xArgs, Ry

of a set Args of arguments and a binary relation R on Args, called attack re-

lation. @ai, aj P Args, aiRaj (or Rpai, ajq) means that ai attacks aj (R is

asymmetric).

An argumentation semantics is the formal definition of a method (either
declarative or procedural) ruling the argument evaluation process. In the ex-

tension-based approach, a semantics definition specifies how to derive from an
AAF a set of extensions, where an extension B of an AAF xArgs, Ry is simply
a subset of Args. In Definition 2 we define conflict-free sets:

Definition 2 (Conflict-free sets). A set B Ñ Args is conflict-free i↵ no two

arguments a and b in B exist such that a attacks b.

All the following semantics rely (explicitly or implicitly) upon the concept
of defence:

Definition 3 (Defence (D0)). An argument b is defended by a set B Ñ Args (or

B defends b) i↵ for any argument a P Args, if Rpa, bq then Db P B s.t., Rpb, aq.

An admissible set of arguments [1] must be a conflict-free set that defends
all its elements. Formally:

Definition 4 (Admissible sets). A conflict-free set B Ñ Args is admissible i↵

each argument in B is defended by B.

Three classical semantics [1] refining admissibility are defined in the following
definitions:

Definition 5 (Complete semantics). An admissible set B Ñ Args is a complete

extension i↵ each argument which is defended by B is in B.

Definition 6 (Preferred semantics). A preferred extension is a maximal (w.r.t.

set inclusion) admissible subset of Args.

Definition 7 (Stable semantics). A conflict-free set B Ñ Args is a stable ex-

tension i↵ for each argument which is not in B, there exists an argument in B
that attacks it.
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If � “ tcf , adm, com, prf , stbu respectively stand for conflict-free and admis-
sible sets, complete, preferred, and stable semantics, and ⇠�pF q is the set of
extensions satisfying � on a framework F , then we have ⇠stbpF q Ñ ⇠prf pF q Ñ

⇠compF q Ñ ⇠admpF q Ñ ⇠cf pF q. Moreover, for each � except stb we have that
⇠�pF q ‰ H holds.

The justification state of an argument can be conceived in terms of its exten-
sion membership: justified if it belongs to all the extensions satisfying a given
semantics, defensible if it is in some extensions but not all of them, overruled if
it does not belong to any of such extensions.

Definition 8 (Argument acceptance [10]). Given any of the semantics � “

tadm, com, stb, prf u and a framework F , an argument a is i) justified i↵ @E P

�pF q (also E�pF q), a P E, ii) a is defensible if DE P �pF q, a P E and a is not

justified, iii) a is overruled i↵ EE P �pF q, a P E.

Consider the AAF F “ xA,Ry in Figure 1, with A “ ta, b, c, d, eu and R “

tpa, bq, pc, bq, pc, dq, pd, cq, pd, eq, pe, equ. We have that admpF q corresponds to
tH, tau, tcu, tdu, ta, cu, ta, duu, compF q “ ttau, ta, cu, ta, duu, prf pF q “ tta, cu,
ta, duu, and stbpF q “ tta, duu. Given such results, a is defensible in adm(F),
while it is justified in com(F), prf(F), and stb(F).

2.2. C-semirings

In practice, c-semirings [4] are commutative (b is commutative) and idem-

potent semirings (i.e., ‘ is idempotent), where ‘ defines a complete lattice:
every subset of elements have a least upper bound, or lub, and a greatest lower

bound, or glb. In fact, c-semirings are semirings where ‘ is used as a preference
operator, while b is used to compose preference-values together.

Definition 9 (C-semirings [4]). A commutative semiring is a tuple S “ xS,‘,b,
K,Jy such that S is a set, J,K P S, and ‘,b : S ˆS Ñ S are binary operators

making the triples xS,‘,Ky and xS,b,Jy commutative monoids (semi-groups

with identity), satisfying i) @s, t, u P S.sbpt‘uq “ psbtq‘psbuq (distributivity),

and ii) @s P S.sb K “ K (annihilator). If @s, t P S.s‘ psb tq “ s, the semiring

is said to be absorptive. In short, c-semirings are defined as commutative and

absorptive semirings.

The idempotency of ‘ leads to the definition of a partial ordering §S over
the set S (S is a poset). Such partial order is defined as s §S t if and only if
s ‘ t “ t, and ‘ returns the lub of s and t (defined also as \, while the glb

is defined by [). This intuitively means that t is “better” than s. Some more
properties can be derived on c-semirings [4]: i) both ‘ and b are monotone
over §S, ii) b is intensive (i.e., sb t §S s), and iii) xS,§Sy is a complete lattice.
K and J respectively are the bottom and top elements of such lattice. When
also b is idempotent, i) ‘ distributes over b, ii) b returns the glb of two values
in S, and iii) xS,§Sy is a distributive lattice.
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Well-known instances of c-semirings are: Sboolean “ xtfalse, trueu,_,^, false,
truey

1, Sfuzzy “ xr0, 1s,max,min, 0, 1y, Sbottleneck “ xR`
Y t`8u,max,min,

0,8y, Sprobabilistic “ xr0, 1s, max,ˆ, 0, 1y (or Viterbi semiring), Sweighted “

xR`
Y t`8u,min,`,`8, 0y.

Furthermore, it is also possible to consider several optimisation criteria at
the same time: the Cartesian product of semirings is still a semiring. Clearly,
in this case the ordering induced by ‘ is partial. For instance, the two couples
xs1, s2y and xs3, s4y with s1, s3 P S1, s2, s4 P S2, and s1 §S1 s3 while s2 •S2 s4,
are not directly comparable.

Although c-semirings have been historically used as monotonic structures
where to aggregate costs (and find best solutions), the need of removing values
has raised in local consistency algorithms and non-monotonic algebras using
constraints (e.g., [11]). A solution comes from residuation theory [12], a standard
tool on tropical arithmetics that allows for obtaining a division operator that
represents a “weak” inverse of b.

Definition 10 (Residuation [11]). Let S be a tropical semiring. S is residuated

if the set tx P S | t b x §S su admits a maximum for all elements s, t P S, such
that s §S t.

The maximal element among solutions is denoted denoted as s m t. Since
a complete2 tropical-semiring is also residuated, we have that all the classical
instances of c-semiring presented above are residuated. A semiring is invertible
if there exists an element r P S such that tb r “ s for all elements s, t P A such
that s §S t. S is uniquely invertible if r is unique whenever t ‰ K.

Definition 11 (Unique invertibility [11]). If S is absorptive and invertible, then

it is uniquely invertible i↵ it is cancellative, i.e., @s, t, u P S.psbu “ tbuq^pu ‰

0q ñ s “ t.

Since all the previously listed instances of c-semirings are cancellative, they
are uniquely invertible as well. For instance,

mintx | b ` x • au “

#
0 if b • a

a ´ b if a ° b
weighted

maxtx | minpb, xq § au “

#
1 if b § a

a if a † b
fuzzy

3. Weighted Abstract AFs

In this section we rephrase some of the classical definitions given in Sec-
tion 2.1, with the purpose to parametrise them with the notion of weighted at-

1
Boolean c-semirings can be used to model crisp problems and classical Argumentation [1].

2S is complete if it is closed with respect to infinite sums, and the distributivity law holds

also for an infinite number of summands [11].
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tack and c-semiring. Such notions, e.g., the one of w-defence, are the premises
behind the new semantics we then propose in Section 6. The following definition
reshapes the notion of WAAF into semiring-based WAAF [7], called WAAF S:

Definition 12 (Semiring-based WAAF [7]). A semiring-based Weighted AAF

(WAAF S) is a quadruple xArgs, R,W, Sy, where S is a c-semiring xS,‘,b,K,Jy,

Args is a set of arguments, R the attack binary-relation on Args, and W :
Args ˆ Args ›Ñ S is a binary function. Given a, b P Args and Rpa, bq, then

W pa, bq “ s means that a attacks b with a weight s P S. Moreover, we require

that Rpa, bq i↵ W pa, bq †S J.

In Figure 2 we provide an example of a weighted AAF describing theWAAF S
defined by Args “ ta, b, c, d, eu, R “ tpa, bq, pc, bq, pc, dq, pd, cq, pd, eq, pe, equ, with
W pa, bq “ 7,W pc, bq “ 8,W pc, dq “ 9,W pd, cq “ 8,W pd, eq “ 5,W pe, eq “ 6,
and S “ xR`

Y t8u,min,`,8, 0y (i.e., the weighted semiring).
Therefore, each attack is associated with a semiring value that represents the

“strength” of an attack between two arguments. We can consider the weights
in Figure 2 as supports to the associated attack, as similarly suggested in [13].
A semiring value equal to the top element of the c-semiring J (e.g., 0 for the
weighted semiring) represents a no-attack relation between two arguments: for
instance, pa, cq R R in Figure 2 corresponds to W pa, cq “ 0. Note that, whenever
there is an attack between two arguments, its weight is di↵erent from J: for
example, W pa, bq “ 7 in Figure 2. On the other side, the bottom element, i.e.,
K (e.g., 8 for the weighted semiring), represents the strongest attack possible.

In Definition 13 we define the attack strength for a set of arguments that
attacks an argument, a di↵erent set of arguments, or an argument that attacks a
set of arguments; the former and the latter are what we need to define w-defence.
In the following, we will use

Â
to indicate the b operator of the c-semiring S

on a set of values:

Definition 13 (Attacks to/from sets of arguments). Given a WAAF S, WF “

xArgs, R,W, Sy,

• a set of arguments B attacks an argument a with a weight of k P S if

W pB, aq “

â

bPB
W pb, aq “ k

• an argument a attacks a set of arguments B with a weight of k P S if

a b c d e
7 8 5

9

8

6

Figure 2: An example of WAAF, adding weights to Figure 1.
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W pa,Bq “

â

bPB
W pa, bq “ k

• a set of arguments B attacks a set of arguments D with a weight k P S if

W pB,Dq “

â

bPB,dPD
W pb, dq “ k

For example, looking at Figure 2 we have thatW pta, cu, bq “ 15,W pc, tb, duq “

17, and W pta, cu, tb, duq “ 24.
We are now ready to define our version of weighted defence, i.e., w-defence:

Definition 14 (w-defence (Dw)). Given a WAAF S, WF “ xArgs, R,W, Sy,

B Ñ Args w-defends b P Args i↵ @a P Args such that Rpa, bq, we have that

W pa,B Y tbuq •S W pB, aq

As previously advanced, a set B Ñ Args w-defends an argument b from a, if
the b of all attack weights from B to a is worse3 (w.r.t. §S) than the b of the
attacks from a to B Y tbu.

For example, the set tcu in Figure 2 defends c from d because W pd, tcuq •S
W ptcu, dq, i.e., (8 § 9). On the other hand, tdu in Figure 2 does not w-defend
d because W pc, tduq ßS W ptdu, cq.

As defined, w-defence implies the classical Dung’s defence in Definition 3:

Proposition 1 (Dw ñ D0). Given a WAAF S, WF “ xArgs, R,W, Sy, a subset

of arguments B, and b P Args, “B w-defends b” (Definition 14) ñ “B defends

b” (Definition 3) in the corresponding not-weighted xArgs, Ry.

Proof. As hypothesis we have Rpa, bq (from Definition 14), then W pa,BYtbuq ‰

J. Therefore, if W pa,B Y tbuq •S W pB, aq is true (i.e., B w-defends b from a),
this implies that W pB, aq ‰ J. This can be also read as “B attacks a”, which
exactly corresponds to the original definition of defence (see Definition 3).

Moreover, the following proposition equates defence and w-defence in case
we adopt the boolean c-semiring (see Section 2.2):

Proposition 2. Given a WAAFS, WF “ xArgs, R,W, Sy, where S “ xttrue,
falseu,_,^, false, truey (i.e., the boolean semiring), “B w-defends a” ñ “B
defends a”.

Proof. This holds because, B defends b corresponds to, “if W pa, bq ‰ J then
W pB, aq ‰ J”. But, since we are using the boolean semiring, this statement can
only correspond to, “if W pa, bq “ false then W pB, aq “ false”, since the set of

3
Note that, when considering the partial order of a generic semiring, we will often use

“worse” or “better” because “greater” or “lesser” would be misleading: in the weighted semi-

ring, 7 §S 3, i.e., lesser means better.
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preferences only contains J (true) and K (false). Therefore, W pa, bq •S W pB, aq

is always true (in this case, false •S false), and B w-defends b from a.

4. Two Related Definitions

Two of the most related definitions of weighted defence (i.e., Definition 14)
are presented in [2] and [3]. In the following we condense their main features
and we show how our approach di↵ers.

In [3] attacks are relatively ordered by their force, i.e., Rpa, bq " Rpb, aq

means that the former attack is stronger than the latter (vice-versa, a weaker at-
tack). Equivalent and incomparable classes are considered as well, i.e., Rpa, bq «

Rpb, aq and Rpa, bq?Rpb, aq, respectively. This is accordingly reflected by the de-
fence definition, where considering Rpa, bq and Rpc, aq we can have that c is a
strong, weak, normal, or unqualified defender of b. Therefore, an argument b is
defended by B if, and only if, for any argument a such that Rpa, bq, there is an
argument c P B such that Rpc, aq, and according to the desired defence strength,
Rpc, aq " Rpa, bq, Rpc, aq ! Rpa, bq, Rpc, aq « Rpa, bq, and Rpc, aq?Rpa, bq. For
instance, when requiring a level r",«s, for each attacker a of b there must must
be either a strong or a normal defender c P B. In Definition 15 we exactly
rephrase such defence by modelling the total order defined by r",«s with a
c-semiring S:

Definition 15 (Defence D1 [3]). Given WF “ xArgs, R,W, Sy, a, b, c P Args,

B Ñ Args, then b is defended by B if @Rpa, bq, Dc P B s.t. W pa, bq •S W pc, aq.

In [2] the authors define �b-extensions, where � is one of the given semantics
(e.g., admissible), and b is an aggregation function (b in a c-semiring). b needs
to satisfy non-decreasingness, minimality, and identity:4 two examples in the
paper are the arithmetic sum and max. Even the notion of defence is refined:
in Definition 16 we cast it in the same semiring-based framework.

Definition 16 (Defence D2 [2]). Given WF “ xArgs, R,W, Sy, an argument b
is defended by a subset of arguments B if @a P Args s.t. Rpa, bq, we have that

W pa, bq •S W pB, aq.

Thus, an argument b is b-acceptable if for each attack from a against b, the
aggregated weight of the collective defence of b is greater thanW pa, bq, according
to D2. Such phrasing of defence is also equivalent to what presented in [7].

By using the same semiring-based framework, it is now possible to relate
such notions of defence together (we remind that Dw stands for w-defence).

Theorem 4.1. Dw ñ D2.

Proof. If W pa,B Y tbuq •S W pB, aq (i.e., Definition 14 holds) then W pa, bq •S
W pB, aq (also Definition 16 holds), due to W pa, bq •S W pa,B Y tbuq, because of
the monotonicity of b operator (see Section 2.2).

4
Such properties are satisfied by a c-semiring (see Section 2.2).
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Moreover, we can link D1 and D2 as well:

Theorem 4.2. D1 ñ D2.

Proof. This is equivalent to prove that @Rpa, bq, Dc P B s.t. W pa, bq •S W pc, aq ñ

W pa, bq •S W pB, aq. If such c exists, we also know that W pc, aq •S W pB, aq

holds, given Definition 13 and monotonicity of b; transitivity leads toW pa, bq •S
W pB, aq, proving ñ.

In case the c-semiring we use is the fuzzy one, i.e., xr0, 1s,max,min, 0, 1y,
then D2 collapses into D1, as Theorem 4.3 states.

Theorem 4.3. If S “ xr0, 1s,max,min, 0, 1y, then D1 ô D2.

Proof. This is equivalent to prove that @Rpa, bq, Dc P B s.t. W pa, bq •S W pc, aq ô

W pa, bq •S W pB, aq. ñ can be proved for any semiring S (see Theorem 4.2). In
order to prove , W pB, aq is computed by using Definition 13 and min, hence
there exists at least one c P B s.t. W pa, bq •S W pc, aq.

This result permits to relate Dw and D1 when using the fuzzy c-semiring:

Corollary 4.4. If S “ xr0, 1s,max,min, 0, 1y, then Dw ñ D1.

Proof. This directly follows from Theorem 4.1 when using a fuzzy c-semiring,
i.e., Theorem 4.3.

To conclude, we show that all the three Dw, D1, and D2 collapse to the
classical defence D0 [1] when considering the framework without weights.

Theorem 4.5. If S “ xttrue, falseu,_,^, false, truey, then Dw ô D0 ô D1 ô

D2.

Proof. Dw ô D0 is proved in Proposition 2. To show Dw ô D2 we only need to
prove D2 ñ Dw ( holds from Theorem 4.1): this holds because if W pa, bq •S
W pB, aq it means that if W pa, bq is false then W pB, aq is false (due to •S);
hence, W pa,B Y tbuq •S W pB, aq, i.e., Dw, holds as well. To show D1 ô D2 we
only need to prove D2 ñ D1 ( holds from Theorem 4.2): similarly, if W pB, aq

is false, than Dc P B s.t. W pa, bq •S W pc, aq, since Dc P B s.t. W pc, aq “ false

(i.e., c attacks a).

An example on how Dw, D1, and D2 di↵erently work is provided in Figure 3.
We read this example by considering the weighted c-semiring, i.e., S “ xR`

Y

t`8u,min,`,`8, 0y. Argument b is defended by B “ tb, c, d, eu according to
Dw and D2 (consequently, according to Theorem 4.2), since W pa,B Y tbuq •S
W pB, aq (0.7 § 0.8). It is not defended according to D1, since W pd, aq •S
W pa, bq (0.6 § 0.7) and W pc, aq •S W pa, bq (0.2 § 0.7).

On the other hand, considering the attacks from f to B instead, Dw does
not hold: W pf, dq b W pf, eq ßS W pd, fq b W pc, fq (i.e., 0.8 ¶ 0.7). However,
D2 holds because W pf, dq •S W ptd, cu, fq (i.e., 0.5 § 0.7) and W pf, eq •S

10
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Figure 3: An example of WAAF where tb, c, d, eu are defended by B according to D2 (using

the weighted semiring).

W ptd, cu, fq (i.e., 0.3 § 0.7). Therefore, considering the WAAF in Figure 3, B
defends itself from a and f according to only D2 (Dw and D1 do not hold).

Reading the same example in Figure 3 with S “ xr0, 1s,max,min, 0, 1y in-
stead, D2 collapses to D1 (Theorem 4.3) and D1 does not hold due to Rpa, bq.
According to Theorem 4.4, since D1 is not valid then Dw cannot hold as well.

This example introduces us to relating admissible sets (at the core of all the
extensions in [1]) using Dw, D1, and D2.

Admissibility with Dw, D1, D2, and D0. In the following we study how admis-
sible sets are related considering Dw, D1, and D2. We focus on this semantics
because it is at the core of the other ones proposed by [1] (see Section 2.1),
explicitly (i.e., complete, preferred), or implicitly (i.e., stable). We respectively
call adm1 and adm2 the set of admissible sets using D1 and D2, admw is our
proposal (Section 6), and adm0 is the classical definition [1].

Theorem 4.6. Given WF “ xArgs, R,W, Sy where S “ xr0, 1s,max,min, 0, 1y,

then admwpWF q “ adm1pWF q “ adm2pWF q Ñ adm0pWF q.

Proof. adm1pWF q “ adm2pWF q directly derives from D1 ô D2 (see Theo-
rem 4.3). In order to prove admwpWF q “ adm1pWF q “ adm2pWF q, since we
have already proved Theorem 4.4, we only need to show that D1 ñ Dw, i.e.,
@Rpa, bq, Dc P B s.t. W pa, bq •S W pc, aq ñ W pa,B Y tbuq •S W pB, aq. There-
fore, Dc P B s.t. W pa, bq •S W pa,Bq •S W pc, aq, since W pa,Bq is the worst
(min) of the attacks from a to B. Given W pc, aq •S W pB, aq (see Corollary 4.4),
consequently we have W pa,Bq •S W pB, aq. Finally, due to Proposition 1, we
have the last inclusion of the theorem, i.e., admwpWF q Ñ adm0pWF q.

5. Relaxing w-defence

The notion of w-defence given in Definition 14 can be relaxed in order to
meet the one in [2] (see Definition 16) and, ultimately, the classical defence
given by [1]. The result is here called �-defence, and it is parametrised on a

11



threshold-value �: such � is used to consider arguments that are not “fully”
w-defended, i.e., for which W pa,B Y tbuq ßS W pB, aq:

Definition 17 (�-defence (D�)). Given xArgs, R,W, S “ xS,‘,b,K,Jyy and

� P S, B Ñ Args �-defends b P Args i↵ @a P Args such that Rpa, bq we have that

W pB, aq ‰ J and ´
W pa,B Y tbuq m W pB, aq

¯
•S �

Considering the example in Figure 3, for instance B 1-defends d from f (i.e.,
� “ 1): ´

W pa,B Y tbuq ´ W pB, aq

¯
§ 1,

since 8 ´ 7 “ 1 and 1 § 1.

Remark 5.1. Note that, not considering the comparison against �, Defini-

tion 17 is identical to Definition 14 except for an additional condition, i.e.,

W pB, aq ‰ J, which means that B has to attack a, i.e., Db P B s.t. Rpb, aq.

This attack is automatically implied in Definition 14, but it has to be explicitly

stated in Definition 14. Otherwise, B1 “ tbu and B2 “ tdu in Figure 4 would

be treated in the same way and 1-defend b and d respectively. B2 has not to

defend d instead, since there is not any attack from B2 to c. We opt for this

choice because we want to reconnect to the classical defence of Dung (D0 [1])

when � “ K (see Proposition 4).

Next proposition links �-defence to w-defence.

Proposition 3. J-defence (� “ J) is equivalent to w-defence, i.e., DJ ô Dw.

Proof. B J-defends b if W pa,BYtbuqmW pB, aq •S J, which is true i↵ W pa,BY

tbuq •S W pB, aq, which corresponds to the definition of w-defence (see Defini-
tion 14).

Next proposition shows how it is possible to reconnect �-defence to Dung’s
original definition of defence.

Proposition 4. K-defence (� “ K) is equivalent to the original definition of

defence given by Dung [1], i.e., DK ô D0.

Proof. In �-defence (see Definition 17), B has to defend all its arguments as for
[1]. Moreover, using � “ K allows us to forget weights of attacks and counter-
attacks, since they can freely range from J to K.

a b c d

9

8
1

B1 B2

Figure 4: A visual explanation of Remark 5.1.
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� P S

Dw or DJ (Definition 14) D0 or DK [1]

D�̄ in Proposition 6

Figure 5: The range of �-defence worsening � from J to K, given a semiring S “ xS,‘,b,K,Jy.

In the following two propositions we respectively relate D� and D2 when all
the arguments attack at most one other argument (Proposition 5), and when
there are more attacks (Proposition 6).

Proposition 5. Given a P Args , we define Ta as
î

bPArgs
Rpa, bq. If @Ta the

cardinality is |Ta| § 1, then D2 ô DJ (by Proposition 3, also D2 ô Dw holds).

Proof. If all a P Args attack one argument at most (i.e., |Ta| § 1), thenW pa,BY

tbuq in Definition 14 is always equal to W pa, bq in Definition 16.

Given xArgs , Ry, next proposition finds a �̄ such that D2 always implies D�̄ .

Proposition 6 (D2 ñ D�̄). With Ta defined as in Proposition 5, if DTa.|Ta| •

2, we find the n subsets T i
a of Ta with cardinality |Ta| ´ 1. Then we define

�a “
ñ

i“1..np
Â

Rpa,bqPT i
a
W pa, bqq, and �̄ “

ñ
�a ([ is the glb of S). Finally,

we obtain that D2 ñ D�̄ holds.

Proof. The construction of �a finds, for every argument a, the worst compositionÂ
of all its subsets of attack weights with cardinality |Ta| ´ 1, where |Ta| is

the number of attacks from a. Hence, W pa, bq •S W pB, aq ñ W pa,B Y tbuq m

W pB, aq •S �a. If �̄ “
ñ

�a, the previous implication is true for any a P Args ,
and consequently D2 ñ D�̄ .

Finally, we can define an implication relation with respect to di↵erent �:

Proposition 7. If B �1-defends b and �1 •S �2, then B �2-defends b.

Proof. If pW pa,B Y tbuq m W pB, aqq •S �1 and �1 •S �2, then pW pa,B Y tbuq m

W pB, aqq •S �2.

A graphical representation of �-defence summarising Proposition 3, Proposi-
tion 4, and Proposition 6 and their ordering (Proposition 7) is given in Figure 5:
by worsening � we can switch from w-defence to Dung’s defence [1] (at the two
ends of Figure 5), and we can also exactly model D2 [2] for a given K §S �̄ §S J.

6. ↵�-semantics

In light of what advanced in the previous section, we are now ready to re-
define some of the classical semantics in Abstract Argumentation by exploiting
both the notion of i) an inconsistency amount ↵ inside an extension (to be toler-
ated), and ii) the concept of �-defence. In the following, for the sake of simplicity
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we will generically call these new semantics as ↵�-semantics. However, � con-
cerns all but the ↵-conflict-free semantics, since it is the only semantics (covered
in this paper) not making use of the defence notion (directly or indirectly).

In Definition 18 we redefine the notion of conflict-freedom: conflicts can be
now part of the solution up to a cost-threshold ↵. Such sets are now called
↵-conflict-free:

Definition 18 (↵-conflict-free sets). Given a WAAF S, WF “ xArgs, R, W, Sy,

a subset of arguments B Ñ Args is ↵-conflict-free i↵ W pB,Bq •S ↵.

With respect to the WAAF S in Figure 2, while the set ta, b, cu is not conflict-
free in the crisp version of the problem (since it includes the attacks between a
and b, and between c and b), ta, b, cu is instead 15-conflict-free becauseW pa, bq `

W pc, bq “ 15 (as a a reminder, we are using the weighted semiring).
Hence, by raising ↵ we further relax the requirements behind conflict-freedom.

This is highlighted by Proposition 8, since
±

S “ K.

Proposition 8. Given any xArgs, R,W, Sy, the set of K-conflict free sets cor-

respond to the power-set of Args.

No constraint is given on the amount of conflict internal to a set, thus all
the arguments can coexist together.

We now define two propositions that derive from Definition 18 and from the
semiring properties explained in Section 2.2.

Proposition 9. If a set is ↵1-conflict-free and ↵1 •S ↵2, then the same set is

also ↵2-conflict-free.

Proof. If W pB,Bq •S ↵1 and ↵1 •S ↵2, then W pB,Bq •S ↵2.

For instance, ta, b, cu is also 16-conflict-free because it is a 15-conflict-free
(15 •S 16 in the weighted semiring).5 Therefore, this states than in ↵-conflict-
free sets we tolerate an internal inconsistency-amount better than ↵.

We now introduce ↵�-admissible sets:

Definition 19 (↵�-admissible sets). Given WF “ xArgs, R,W, Sy, an ↵-conflict-
free set B Ñ Args is ↵�

-admissible i↵ the arguments in B are �-defended by B
from the arguments in ArgszB.

Considering the framework in Figure 2 as unweighted (i.e., the one in Fig-
ure 1), Dung’s admissible sets are: tau, tcu, tdu, ta, cu, ta, du. J

J-admissible
sets (i.e., 00-sets in the weighted semiring) are tau, tcu, and ta, cu instead: tau

because is not attacked by any other argument, tcu and ta, cu because they
both w-defends c from the attack performed by d, i.e., W pd, cq •S W pc, dq (i.e.,
8 § 9). For instance tdu is not 00-admissible because it is not able to 0-defend

5
In the weighted semiring, §S is equivalent to • over Real numbers, while in the proba-

bilistic and fuzzy semirings, •S corresponds to • over Real numbers in the interval r0..1s.
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B

Figure 6: An example of 2
0
-complete extension, B “ tb, c, du; B Y tfu is 4

0
-complete, while

B Y tfu and B Y teu are two 5
0
-complete extensions (using the weighted semiring).

(or w-defend, see Proposition 3) itself from the attack of c. For the same reason,
ta, du is not 00-admissible. As we can see from this example, w-defence restrain
Dung’s defence, and, accordingly the number of sets satisfying admissibility: in
this case we drop tdu and ta, du w.r.t. [1].

Considering an example with an internal inconsistency ↵ ‰ J, the set ta, b, cu
is 150-admissible: it is 15-conflict-free, and ta, b, cu 0-defends its arguments, i.e.,
c from d. All the 150-admissible sets are H, tcu, tc, eu, tau, ta, cu, ta, c, eu, and
ta, b, cu. In order to provide an example with both ↵ ‰ J and � ‰ J (still
considering Figure 2), the set td, eu is 111-admissible, since it is 11-conflict-
free, and d defends itself (and the whole td, eu) from c by paying a penalty of
9 ´ 8 § 1.

Three semantics that refine ↵�-admissibility are introduced from Defini-
tion 20 to Definition 22:

Definition 20 (↵�-complete semantics). Given xArgs, R,W, Sy, an ↵�
-admissible

B Ñ Args is ↵�
-complete i↵ each argument b P Args that is �-defended by B and

s.t. W pB Y tbu,B Y tbuq •S ↵ is in B (i.e., b P B).

For instance, the set ta, du in Figure 2 is complete according to [1] (i.e.,
not considering weights), but it is not 00-complete because d is not able to w-
defend ta, du from c. However, ta, du is 01-complete by considering the weighted
semiring and allowing � “ 1. Note that ta, du also 1-defends argument e, but
ta, d, eu is not 01-complete if we keep ↵ “ 0: bringing e inside would lead to an
internal conflict of W pd, eq ` W pe, eq “ 11.

Therefore, in the ↵�-complete semantics we need to bring in all the �-
defended arguments while respecting the ↵-threshold at the same time. An
example is given in Figure 6 (we suppose to use the weighted semiring), where
B “ tb, c, du is the only 20-complete extension: even if B 0-defends f from e, it
is not possible to bring f in B because we can tolerate only 2 as internal conflict
(and W pb, cq ` W pc, dq “ 2 already). However, by relaxing the problem to find
40-complete extensions, tb, c, d, eu is the single solution, while both tb, c, d, eu

and tb, c, d, fu are two 50-complete extensions.

Definition 21 (↵�-preferred). An ↵�
-preferred extension is a maximal (with

respect to set inclusion) ↵�
-admissible subset of Args.
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Still considering Figure 2, ta, cu and ta, du are the two preferred extensions
according to [1] (i.e., not considering weights). However, ta, cu is the only 00-
preferred extension, while tta, cu, ta, duu is the set of 01-preferred extensions.

Definition 22 proposes Dung’s stable semantics revisited in a WAAF S.

Definition 22. (↵�-stable semantics) Given xArgs, R,W, Sy, an ↵�
-admissible

set B is also an ↵�
-stable extension i↵ @a R B, Db P B.W pb, aq ‰ J, and B Y tau

is not ↵�
-admissible.

Therefore, each argument a left outside B needs to be attacked (W pb, aq ‰

J), and it is not possible to bring a in B without exceeding ↵ as internal inconsis-
tency. For example, considering the problem in Figure 2 as unweighted (i.e., as a
classical AAF), the set ta, du corresponds to the only stable extension. However,
considering weights, this set is not 00-stable, because W pc, dq ßS W pta, du, cq,
i.e., 9 ¶ 8. However, it is 01-stable, since W pc, dq m W pta, du, cq “ 9 ´ 8 § 1
satisfies � “ 1. Thus, in such example there is no 00-stable extension.

7. Some Formal Results on ↵�-semantics

In this section we provide general considerations on ↵-semantics, as their
properties and inclusion relations. The first result we present is that classical
inclusion-relations [1] among the newly-defined ↵-semantics are still valid:

Theorem 7.1 (↵�-semantics inclusions). Given any xArgs, R,W, Sy, with S “

xS,‘,b, K,Jy, and ↵, � P S,

1. each ↵�
-admissible set is also ↵-conflict-free.

2. each ↵�
-complete extension is also an ↵�

-admissible set.

3. each ↵�
-preferred extension is also ↵�

-complete.

4. each ↵�
-stable extension is also ↵�

-preferred.

Proof. 1 ) and 2) are straightforwardly proved by definition (see Definition 18,
Definition 19, and Definition 20): to be ↵-conflict-free (or, ↵�-admissible) is a
necessary condition to be also ↵�-admissible (or, ↵�-complete). 3), if B is a
maximal set such that each argument in B is �-defended by B, then each argu-
ment which is �-defended by B is in B (i.e., B is also ↵�-complete). Concerning
4), by definition an ↵�-stable extension is also an ↵�-admissible set (see Defini-
tion 22); in addition, it is also maximal with respect to set inclusion because it
is not possible to bring one more element inside (without exceeding the internal
inconsistency-threshold given by ↵).

Theorem 7.1 leads to Corollary 7.2, which states that the classical implica-
tion chain between semantics [1] also holds for ↵-semantics.

Corollary 7.2. By setting ↵, � P S, the following implications hold between ↵�
-

semantics and sets: ↵�
-stable ñ ↵�

-preferred ñ ↵�
-complete ñ ↵�

-admissible

ñ ↵-conflict-free.
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Theorem 7.3 shows when ↵�-semantics can be used to exactly obtain the
original semantics [1].

Theorem 7.3. Given F “ xArgs, Ry, and WF “ xArgs, R,W, Sy, with S as

desired, then

1. the set of J-conflict-free sets in WF is equal to the set of conflict-free sets

in F .

2. the set of J
K
-admissible sets in WF is equal to the set of admissible sets

in F .

3. the set of J
K
-complete extensions in WF is equal to the set of complete

extensions in F .

4. the set of J
K
-preferred extensions in WF is equal to the set of preferred

extensions in F .

5. the set of J
K
-stable extensions in WF is equal to the set of stable exten-

sions in F .

Proof. The proof can be straightforwardly achieved by considering that ↵ “ J

leads to not allowing any attack in an extension (as in [1]), and K-defence is
equivalent to the original definition of defence [1] (see Proposition 4).

Theorem 7.4 relates ↵�-semantics using a non-relaxed defence (i.e., w-defence
or J-defence) and no internal conflict (i.e., ↵ “ J) to their counterpart in the
classical ones [1]. The result is the semantics we have presented in [8]. Note that
the results obtained in Theorem 7.4 di↵er from those in Theorem 7.3. Having
� “ J noticeably impacts on the hierarchy obtained in Theorem 7.3, since four
out of five points change between the two theorems.

Theorem 7.4. Given F “ xArgs, Ry, and WF “ xArgs, R,W, Sy, with S as

desired, then

1. the set of J-conflict-free sets in WF is equal to the set of conflict-free sets

in F .

2. the set of J
J
-admissible sets in WF is a subset of the set of admissible

sets in F .

3. for each J
J
-complete extension BWF in WF, there exists a complete ex-

tension BF in F , s.t., BWF Ñ BF .

4. for each J
J
-preferred extension BWF in WF, there exists a preferred ex-

tension BF in F , s.t. BWF Ñ BF .

5. for each J
J
-stable extension BWF in WF, there exists a stable extension

BF in F , s.t. BWF Ñ BF .
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Proof. The two notions of w-defence and �-defence are interchangeable when
� “ J (see Proposition 3). Concerning 1), a semiring-value equal to J represents
a no-attack relation, so J-conflict-free sets do not include any attack. 2) holds
because the notion of w-defence implies the classical notion of defence (Dw ñ

D0), but not vice versa (see Proposition 1). 4) follows from Definition 6, and
Definition 21: the maximal J

J-admissible sets w.r.t. set inclusion are computed
over a subset of the admissible ones (Dw ñ D0 in Proposition 1). Therefore,
each of them is a subset of at least one preferred extension in the corresponding
unweighted framework. In order to visually understand the proof of this item,
Figure 7 shows an example of inclusion hierarchy among admissible sets, where
maximal ones (i.e., preferred extensions) are G, H, E, I, L. Since J

J-admissible
sets are a subset of admissible sets (see Theorem 7.4), the inclusion hierarchy
in Figure 7 can change to Figure 8. Accordingly, each J

J-preferred extension
(i.e., B, I) is a subset of a preferred extension. Same considerations hold for 3)
and 5), since Dw ñ D0 less arguments need to be taken in order to have a valid
J

J-complete extension.

A

C

F

LI

E

B

D

HG

Figure 7: An example of inclusion hierar-

chy among admissible sets: maximal, i.e.,

preferred ones, are G, H, E, I, L.

A

C

F

I

B

Figure 8: Since JJ
-admissible sets are a

subset of admissible ones, the hierarchy in

Figure 7 becomes as in this figure. JJ
-

preferred extensions are B and I.

Theorem 7.5 shows what happens to ↵-semantics when ↵ and � are worsened.

Theorem 7.5. Given xArgs, R,W, S “ xA,‘,b,K,Jyy, and ↵1,↵2, �1, �2 P A
s.t. ↵1 •S ↵2 and �1 •S �2, then

1. the set of ↵1-conflict-free sets is a subset of the set of ↵2-conflict-free sets,

2. the set of ↵�1
1 -admissible sets is a subset of the set of ↵�2

2 -admissible sets,

3. for each ↵�1
1 -complete extension B1, there exists an ↵�2

2 -complete extension

B2, such that B1 Ñ B2.

4. for each ↵�1
1 -preferred extension B1, there exists an ↵�2

2 -preferred extension

B2, such that B1 Ñ B2.

5. for each ↵�1
1 -stable extension B1, there exists an ↵�2

2 -stable extension B2,

such that B1 Ñ B2.
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Proof. Points 1) and 2) can be proved by using Proposition 9 and Proposi-
tion 7. To prove 3), 4), and 5) is identical to prove the respective items in
Theorem 7.3, since ↵�2

2 -semantics represent a relaxation of ↵�1
1 -semantics, as

classical semantics in [1] are a relaxation of J
J-semantics.

From Theorem 7.5 we can also derive some results on the justification of
arguments (see Definition 8) when ↵ and � are increased.

Corollary 7.6. Given xArgs, R,W, S “ xA,‘,b,K,Jyy, ↵1,↵2, �1, �2 P A s.t.

↵1 •S ↵2 and �1 •S �2, and given any semantics � P tadm, com, prf , stbu, the

set of defensible arguments in ��1
↵1

is a subset of the defensible arguments in ��2
↵2
.

Proof. The proof consists in showing that the union of all the extensions with
a given semantics � is non-decreasing if ↵ and/or � increase:

î
E��1

↵1
Ñ

î
E��2

↵2
.

This is trivially true for item 2 in Theorem 7.5. In addition, it holds also for
item 3, item 4, and item 5: for all B1 there exists B2 such that B1 Ñ B2, hence
this inclusion also holds for their union.

8. Implementation and Tests

We have implemented ↵�-semantics in ConArg
6 [14], which is a tool that

exploits Gecode
7 (a constraint-programming library) to solve several problems

related to Argumentation. All the following tests have been collected on a
benchmark of 100 graphs (25 arguments each) generated according to the Erdős-
Rényi random model [15]: a generator in the NetworkX library8 has been used.
Each directed edge is added to a graph with an independent probability p. With
each edge we associate a random natural number in the interval r1..10s (in order
to test Sweighted), and r1..10s{10 (to test Sfuzzy), using a uniform distribution.

Figure 9 and Figure 10 respectively show the average number (on 100 graphs)
of ↵�-admissible and ↵�-stable extensions (other semantics are omitted for the
sake of space) for all the 78 combinations of ↵ “ t0, 1, 2, 4, 6, 8, 9, 10, 11, 12u and
� “ t0, 1, 2, 4, 6, 8u, using Sweighted : from these figures, we can see what happens
when both ↵ and � change. The two sets]grow in the same way, even if they
reach a cardinality of 525 and 21 respectively.

Figure 11 shows the same using Sfuzzy , for all the 121 combinations of ↵, � “

t0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1u. Figure 12 presents the same results in
Figure 11 with a focus on the interval ↵, � “ t0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1u

to show what happens before reaching the maximum relaxation for both ↵, �
(i.e., these images do not show values when ↵, � P t0, 0.1u)

Figure 13, Figure 14, Figure 15, and Figure 16 visually present the result in
Corollary 7.6: the set of defensible arguments is non-decreasing while increasing
↵ and/or �. Figure 13 (↵�-admissible) and Figure 14 (↵�-stable) show this for

6http://www.dmi.unipg.it/conarg/.
7http://www.gecode.org.
8https://networkx.github.io.
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Figure 12: Same results in Figure 11 with

a focus on the interval ↵, � “ t0.2, . . . , 1u.

Sweighted , while Figure 15 (↵�-admissible) and Figure 16 (↵�-stable) show the
same for Sfuzzy .

Figure 17 reports instead the average number of ↵�-admissible sets, ↵�-
complete, ↵�-preferred, and ↵�-stable extensions using Sweighted (Figure 17a
and Figure 17b) and Sfuzzy (Figure 17c and Figure 17d). In Figure 17a and
Figure 17c we change ↵ while we keep � “ J. In Figure 17b and Figure 17d
we change � while we keep ↵ “ J. From these figures we see that semantics
implications are respected (see also Corollary 7.2). We also see that the number
of extensions remains quite stable (except for ↵�-admissible sets). Note that
a report of (time) performance is outside the scope of this work: however, for
instance, the average time to find all J

K-admissible sets is very close to the time
to find all admissible sets.

9. Applications

In this section we present two di↵erent applications of our framework. The
first one (Section 9.1) concerns removing the e↵ect of troll arguments: the exam-
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ple is directly taken from the work in [5]. The second application (Section 9.2)
concerns a real-world scenario based on arguments taken from an Amazon.com
review. A di↵erent approach to this case-study has been already presented in
[16], where the goal was to show that negative arguments increasingly permeate
positive reviews over time.

9.1. Trolls

Relaxing a framework allows us to mitigate the disturbing e↵ect of poorly
specified or unsound attacks (e.g., from trolls) [5]. In Figure 18 we show
exactly the same framework (with the same weights) reported in [5], where
several participants argue about the role of the government in what banning
smoking is concerned. Arguments are:

a. Governments should ban smoking.

b. Governments shan’t interfere with the right to smoke.

c. Smoking is a matter of freedom of choice and governments ought to pro-

tect the rights of their citizens. Therefore, banning smoking would be a

violation of rights.
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d. Time after time, clinical research has proved that smoking is highly addictive.

Thus, the issue may not be considered as a matter of freedom of choice,

and governments are supposed to ban these practices.

e. I like turtles.

Weights in Figure 18 represent a strength score for each attack. The attack
from e to a is meant to represent a troll attack (its strength is very low, i.e., 1).
In [5] the authors show how their computational framework is able to mitigate
the disturbing e↵ect of such attack: e is not attacked, thus, with the classical
semantics [1], it is capable of always ruling a out (its impact is strong).

However, we can mitigate it also by using our framework: if we compute
the J

K-stable extensions (by using � “ K we consider classical defence [1]) we
obtain td, eu as the sole solution: in [5] these are the same two most preferred
arguments before mitigating the troll attack. If we instead relax the problem
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H, tdu, teu, td, eu ta,d, eu
tc,du,
tc,d, eu

tb, c,du,
tb, c,d, eu

ta, c,d, eu ta,b,d, eu ta,b, c,d, eu

Figure 19: The ↵ to obtain the represented ↵J
-admissible sets on the WAAF in Figure 18 is

0, 1, 9, 17, 18, 25, 42, from inner to outer sets.

by computing the 1K-stable semantics, the solution becomes ta, d, eu. This
extension contains the same three most preferred arguments in [5] (i.e., a, d,
and e) after mitigating the troll attack: thus, we remove the e↵ect of e on a in
the framework. Note that e is a “good” argument in [5], thus it is not surprising
it can be part of a “good” extension. It is the attack from e to a to be fake: the
aim is to remove the e↵ect of the attack from e, not e itself.

In Figure 19 we show as the slices of an onion the set of all ↵K-admissible
sets that can be obtained over Figure 18: tH, tdu, teu, td, eu, ta, d, eu, tc, du,
tc, d, eu, tb, c, du, tb, c, d, eu, ta, c, d, eu, ta, b, d, eu, ta, b, c, d, euu, which can be ob-
tained by varying ↵ “ 0, 1, 9, 17, 18, 25, 42 respectively. The inner slice con-
tains only 0J-admissible sets; all the other sets respectively contain (from inner
to outer) 1J-admissible, 9J-admissible, 17J-admissible, 18J-admissible, 25J-
admissible, and 42J-admissible sets. 0J-admissible are also 1J-admissible sets,
and so on. By fixing ↵ “ J and changing � for the same example in Figure 19,
it is instead not possible to obtain more slices as for changing only ↵, since the
admissible sets are always tH, teu, tdu, td, euu, as for ↵ “ J.

In Figure 21 we show instead all the sets of J
�-admissible sets with respect

to the WAAF in Figure 20, that is we only vary � by keeping ↵ “ J (i.e., not
allowing internal inconsistency). We obtain the same onion-slices representation
in Figure 19 (where instead � “ J and ↵ changes). If � “ 0 (i.e., using w-
defence), then the only J

J-admissible sets are H and tau. If � “ 1, tbu is the
single J

1-admissible set. If � “ 2, the J
2-admissible set is tcu, while if � “ 3

the J
3-admissible sets are tdu and tb, cu. Then, tb, du is J

4-admissible, tc, du is
J

5-admissible, and, finally, tb, c, du is J
6-admissible. By only further increasing
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H, tau tbu tcu tdu, tb, cu tb,du tc,du tb, c,du

Figure 21: The � to obtain the represented J�
-admissible sets on the WAAF in Figure 20 is

0, 1, 2, 3, 4, 5, 6, from inner to outer sets.

� it is not possible to obtain more admissible sets.
Finally, Figure 22 is presented to show how internal and defence relaxations

are strictly linked together: the set ta, du is J
3-admissible, since a is attacked

by c with weight of 8, but only a counter-attack with weight 5 is present from d
to c; hence, in the weighted semiring, the di↵erence to be tolerated is 8´ 5 “ 3.
However, if an internal inconsistency of 2 can be tolerated, the set ta, d, eu is 2J-
admissible: by allowing a small internal conflict, the defence of ta, d, eu becomes
stronger, since no � relaxation is needed. Therefore, we provide a means to an
agent to decide between ta, du, which has no internal conflict, or ta, d, eu, which
has a stronger defence: this naturally leads to defining a two-criteria ranking,
whose investigation is however outside the scope of this work (see future work
in Section 11).
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Figure 22: ta, du is J3
-admissible, ta, d, eu is 2

J
-admissible.
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9.2. A Study on an Amazon.com Review

The second application is based on a set of arguments extracted from an
Amazon.com review. Since automated tools performing argument mining [17]
still need to be refined to obtain excellent results, and since we need to extract
the whole WAAF also including attacks, we manually extracted all the argu-
ments from each review on one chosen product, and the attacks among them.

For our purposes, we retrieved the Amazon “Clothing and Accessories” sec-
tion from the SNAP project database.9 This dataset contains approximately
110k products and spans from 1999 to July 2014, for a total of more than one
million reviews. We looked for a product that had two characteristics: (a) it

has a quite large number of reviews; (b) such number of reviews is not too large
to be tracked down by hand. We randomly extracted products from the list,
discarding those that did not fit the bill. Eventually, we came across one that
fitted and which happened to be a ballet tutu for kids. We examined all of
the 240 reviews that this product received between 2009 and July 2014. From
the reviews, we collect a total of 24 positive (in favour of purchase) arguments
and 20 negative (against purchase) arguments, whose absolute frequencies are
reported in Table 1. Note we also aggregated arguments with the same mean-
ing into a single argument: at the moment, we are not aware of any automated
tool performing this aggregation step. The number of repetitions represents a
strength valued for that argument.

For some couples of arguments, posing attacks has been very easy: some
positive arguments are the exact negation of what stated in the relative negative
argument (and vice versa). For instance, looking at Table 1, the tutu has a good

quality (D) and the tutu has a bad quality (a), or the tutu fits well (B) and
the tutu does not fit (c). For the sake of completeness, such easy-to-detect
(bidirectional) attacks are tB Ø c, C Ø l,D Ø a,E Ø f, F Ø h, I Ø o, J Ø

d,M Ø e,N Ø k, P Ø m,S Ø b, T Ø g,X Ø ju. Note that we also have two
unidirectional attacks between two positive arguments (Q Ñ N and V Ñ J),
and one bidirectional attack between two negative arguments (s Ø h). Other
unidirectional and bidirectional attacks are p Ñ F , c Ñ O, c Ñ G, d Ñ O,
d Ñ G, M Ñ d, M Ñ o, e Ñ O, e Ñ J , e Ñ I, t Ñ P , j Ñ O, i Ñ D, S Ñ r,
S Ñ a, a Ñ N , a Ñ O, U Ñ b, n Ñ U , E Ñ a, o Ñ O, o Ñ G, s Ø F , f Ø L,
f Ø K, for a total of 58 attacks. The weight of each attack is represented by
the number of repetitions of its tail-argument in Table 1. The full WAAF, on
which we work by using the weighted semiring, can be found in [16].

On this WAAF we obtain 256 stable extensions, or equivalently 08-stable
extensions are 256 (see Theorem 7.3): this is quite a large number, due to the
fact that most of the attacks are symmetric, and for this reason it is not easy
to extract some results from such a large set of extensions.10 For this reason,
it can be useful to apply a more sceptical approach, which can be provided by

9
Courtesy of Julian McAuley and SNAP project (source: http://snap.stanford.edu/

data/web-Amazon.html and https://snap.stanford.edu).
10
Clearly, preferred or other extensions are even more in number.
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Table 1: Positive and negative arguments, with their number of appearances in reviews
between 2009 and July 2014.

ID Positive arguments #App. ID Negative arguments #App.
A the kid loved it 78 a it has a bad quality 18
B it fits well 65 b it is not sewed properly 17
C it has a good quality/price ratio 52 c it does not fit 12
D it has a good quality 44 d it is not full 11
E it is durable 31 e it is not as advertised 8
F it is shipped fast 25 f it is not durable 7
G the kid looks adorable 23 g it has a bad customer service 4
H it has a good price 21 h it is shipped slow 3
I it has great colors 21 i it smells chemically 3
J it is full 18 j you can see through it 3
K it did its job 11 k it cannot be used in real dance class 2
L it is good for playing 11 l it has a bad quality/price ratio 2
M it is as advertised 9 m it has a bad envelope 1
N it can be used in real dance classes 7 n it has a bad waistband 1
O it is aesthetically appealing 7 o it has bad colours 1
P it has a good envelope 2 p it has high shipping rates 1
Q it is a great first tutu 2 q it has no cleaning instructions 1
R it is easier than build your own 2 r it is not lined 1
S it is sewed properly 2 s it never arrived 1
T it has a good customer service 1 t it was damaged 1
U it is secure 1
V it is simple but elegant 1
W you can customize it 1
X you cannot see through it 1

tuning ↵ and � in a di↵erent way. At first, we look for 00-stable extensions,
trying to find stable extensions for which the defence weight of an extension is
greater or equal than the attack weight from outside to inside; however, we find
there is no subset of arguments with such a property on the considered WAAF.
Thus, we turn our attention to find the stable extensions with the best � (i.e.,
lowest) while keeping ↵ “ 0 (i.e., no internal conflict as in [1]): in this way, we
obtain 16 di↵erent 022-stable extensions.

The final step consists in also allowing a small internal conflict (increasing
↵) in order to reduce the relaxation on the defence (decreasing �). We can find
only a couple of 17-stable extensions, which correspond to:

tA,B,C,E, F,G,H, I,K,L,M,Q,R, T, V,W, b, i, j, k,m, n, p, q, r, tu

tA,B,C,E, F,G,H, I,K,L,M,Q,R, V,W, b, g, i, j, k,m, n, p, q, r, tu

This represents the most sceptical approach preserving some result: by fur-
ther reducing either ↵ or � we do not obtain ↵�-stable extensions anymore.
Therefore, by only allowing a small conflict of 1 (p is repeated only once in
Table 1), which corresponds to the attack p Ñ F , we find two stable extensions
that defend themselves better (i.e., with a lesser �) than the others, with only
� “ 7. Since only one reviewer out of 240 thinks shipping rates are expensive
(argument p), then including the conflict p Ñ F , where fast delivery of the
product (argument F ) has been experienced by 25 reviewers instead, can be
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tolerable in order to obtain stable extensions with a stronger defence.

10. Related Work and Comparison

Besides the technical comparison between the most related definitions of
weighted defence [2, 3] (see Section 4), in this section we introduce other frame-
works in the literature, which take into account weights or preference-values on
either arguments or attacks.

In [18], AAFs have been extended to Value-based AAFs (VAFs). A VAF is
a five-tuple xArgs,R,V , val ,Py, where Args is a finite set of arguments, R is
an irreflexive binary relation on A (i.e., xArgs, Ry is a standard AAF), V is a
non-empty set of values, val is a function which maps from elements of A to
elements of V , and P is the set of possible audiences (i.e., total orders on V ). We
say that an argument a relates to value v if accepting A promotes or defends
v: the value in question is given by val(a). For every a P Args, valpaq P V .
When the VAF is considered by a particular audience, the value ordering is
fixed. A Preference-based argumentation AAF [19] is a triplet xArgs, R,Pref y

where Pref is a partial pre-ordering (reflexive and transitive binary relation) on
Args ˆ Args. The notion of defence changes accordingly: let a and b be two
arguments, b attacks a i↵ Rpb, aq and not a ° b, i.e., a is not preferred in the
partial pre-ordering.

In [20] the author extends Dung’s theory of argumentation to integrate a
meta-level argumentation concerning preferences. Dung’s level of abstraction is
preserved, so that arguments expressing preferences are distinguished by being
the source of a second attack relation. This abstractly characterises the applica-
tion of preferences by attacking attacks between the arguments that are subject
to preference claims.

Hence, the first three presented references “weigh” arguments instead of
attacks, and, moreover, the proposed frameworks are qualitatively-oriented in-
stead of quantitatively-oriented (as in our proposal). To comment on the first
issue, we remind that it can be possible to aggregate the weights on the at-
tacks in order to obtain a problem with preferences/scores: examples of such
approaches are explained in [7, 20, 21]. Note that the semiring operator ‘

can represent both a partial [19] and a total [18] order among the arguments.
In addition, the b operator of the semiring can be used to aggregate prefer-
ences/weights together, as when we need to compute the internal inconsistency
of an extension (i.e., ↵ in ↵�-semantics).

A quantitative study is proposed in [21], where the authors define Social Ab-
stract Argumentation Frameworks, which basically associate positive and nega-
tive votes to each argument. Afterwards, it is defined how to aggregate these
votes together, and how to associate it with an unique social model. This frame-
work has been extend in [5] by considering weights on attacks as well.

An approach to use argumentation as voting methods is instead used in [22].
Here extensions represent a non-conflicting committee to be elected.

In [23] the authors review the works in [19], [24], [13], and [25], focusing on
how to relate preference-values and weights, on either arguments or attacks. In
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[7], if Rpa, bq and Rpb, cq, a defends c if W pa, bq is worse than W pb, cq (as in
[25]), thus the defence is not collective as instead in [2] and this paper, and the
attack is not collective as in this work. In [25] the di↵erence between the weight
associated with a is related to both the weights of b and c, with the purpose to
check how much a defends b (thus obtaining “varied-strength defeat relations”).

The two principles in [26] are, i) having fewer attackers is better than having
more, and ii) having more defenders is better than having fewer. The result
is the definition of a graded defence dm,npEq, which defines di↵erent levels of
defence-strength: if dm,npEq holds, E is a set of arguments for which each a P E
does not have at least m attackers that are not counter-attacked by at least n
arguments in E . Hence, the notions of defence in [25, 27, 26] follow a di↵erent
approach and cannot straightforwardly be represented by our framework.

One of the main advantages of the general semiring-based framework pro-
posed here is to be capable of modelling several di↵erent WAAFs. This results
into a comprehensive computational-model for Weighted Abstract Argumen-
tation. As shown by Theorem 7.3, even classical Dung’s semantics can be
modelled in the same framework. In the following of this section we report
di↵erent quantitatively-oriented WAAFs in literature [28, 29, 13], which are all
encompassed in our general approach.

For instance, an argument can be seen as a chain of possible events that
makes a hypothesis true [28]. The credibility of a hypothesis can then be mea-
sured by the total probability that it is supported by arguments. To solve this
problem we can use the probabilistic semiring xr0..1s,max,ˆ, 0, 1y, where the
arithmetic multiplication (i.e., ˆ) is used to compose the probability values to-
gether (assuming that the probabilities being composed are independent). In
[28] the authors associate probabilities with arguments and defeats. Then, they
compute the likelihood of some set of arguments appearing within an arbitrary
argument framework induced from the probabilistic framework.

Weights can be also interpreted as subjective beliefs [13]. For example, a
weight of w P p0, 1s on the attack of argument a1 on argument a2 might be
understood as the belief that (a decision-maker considers) a2 is false when a1 is
true. This belief could be modelled using probability [13] as well.

The Fuzzy Argumentation approach presented in [29] enriches the expressive
power of the classical argumentation model by allowing to represent the relative
strength of the attack relations between arguments, as well as the degree to
which arguments are accepted.

In addition, the weighted semiring xR`
Y t8u,min,`,8, 0y can model a

generic “cost” for the attacks: for example, the number of votes in support of
the attack [13], which consequently needs to be minimised.

For what concerns internal inconsistency ↵, besides [7] we took inspiration
from the works in [13], where the authors originally defined the notion of in-
consistency budget in an extension. Inconsistency is there considered with the
purpose to have a means to compute more (than one, as in [1]) grounded exten-
sions. Attacks are removed from the considered WAAF until the sum of their
weights amounts to a value greater than a budget �. The grounded semantics
is then computed over all the obtained AAFs (attacks can be removed in dif-
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ferent ways). In our approach, the internal inconsistency is used to relax all
the classical semantics, not just the grounded one. Our intent is to allow such
inconsistency in all of them.

As a reminder, two other notions of weighted defence have been already
presented and described in detail in Section 4, i.e., [2] and [3].

11. Conclusions and Future Work

In this work we have defined a new notion of defence for WAAFs. Since
defence is collective in the literature (i.e., it considers all the counter-attacks
from B as a whole), our main motivation is to provide a similar view also for
all the attacks from a to B, here considered by summing all the attacks weights
together. In addition, by casting similar proposals [2, 3] in the same parametric
algebraic-framework, it is possible to show all their relations in detail.

Then, we have also shown two di↵erent kinds of relaxations of classically crisp
concepts in (weighted) Abstract Argumentation. Arguments inside an extension
can include conflicts (i.e., they can attack each other), and a new notion of
weighted defence (i.e., w-defence) can be relaxed to �-defence, with the purpose
to be less restrictive: � can “slide” (that is, decrease or increase) with the
purpose to model di↵erent defences in the literature [2, 3]. Classical inclusions
still holds in this new framework, which can also be adopted to encompass
Dung’s original proposal [1]. An implementation of the framework has been
developed as well, and tests show that for small ↵ or � the average number of
extensions slowly increases, thus permitting to catch few very “close” solutions
characterised by a low amount of inconsistency.

Inconsistency between the beliefs and/or preferences of agents is ubiquitous
in everyday life. By increasing the inconsistency thresholds (both ↵ and � in
our case), we get progressively more solutions: finally, we can prefer solutions
obtained with a smaller inconsistency values. This approach permits a finer-
grained level of analysis of argument systems than is typically possible [6].

To summarise, we provide a new computational framework for Weighted
Abstract Argumentation: we start from a new defence (motivating it), and
show how to relax it and how to relax the internal conflict. The benefits of the
proposed framework can be summarised by the following points:

• Noise tolerance, through a small internal-threshold ↵, helps to mitigate
the disturbing e↵ects of poorly specified or unsound attacks (e.g., from
a troll) [5], or errors deriving from the automatic generation of attacks
among arguments (e.g., after the process of argument mining [17]).

• Relaxing a problem (↵ and �) helps to find more or larger solutions. For
instance this can be advantageous with the ↵�-stable semantics, since a
stable extension [1] is not required to always exist.

• Conversely, constraining a problem can result in a more sceptical approach
whose result is a more refined set of extensions, as the case-study in Sec-
tion 9.2 proves: for instance, stronger (and less) ↵�-stable extensions.
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• By defining �-defence we can soften or harden the impact of weight in the
notion of defence: defence may result to be more or less e�cacious. This
is not obtainable in unweighted frameworks.

• As shown in Section 9, ↵ and � are independent parameters but influence
each other. An agent may prefer to work with extensions either with a
better ↵ or a better �, thus preferring a better internal consistency or a
stronger defence.

• The presented framework preserves most of the features of [1], e.g., the
implications among semantics are the same ones. For specific values of ↵
and � (respectively, J and K), our framework exactly collapses onto [1].

• We adopt a parametric and general algebraic structure to model all the
weights and concepts in this paper. Di↵erent proposals (e.g., fuzzy, see
Section 10) can be unified by our proposal.

In the future we plan to extend such relaxations to coalitions of argu-
ments [30], and to perform a deeper analysis on real-world cases with weighted
networks as in [16]. In addition, as ↵ sums up to the total internal conflict, we
plan to count the total external conflict by extending �-defence to �-defence,
where � “

±
�a (for a any attacker of B).

Moreover, we will investigate the ↵�-grounded semantics, which deserves sep-
arate considerations: a straightforward definition, along the line presented in
Section 6, would lead to more than one grounded extension (as in [13]). To have
a single extension requires a definition alternative to the minimal set-inclusion of
↵�-complete extensions; e.g., we can consider the set of all sceptically accepted
arguments (in the ↵�-complete semantics). In the presented framework it is pos-
sible to define a single grounded extension that coincides with the intersection
of all the ↵�-complete extensions (and with the union of all sceptically-accepted
arguments). Under specific conditions, this also corresponds to the minimal
↵�-complete extension (unique in this case). First results in this direction are
reported in [31].

We will study how the performance change on di↵erent semantics with re-
spect to di↵erent graph databases [32, 33]. We will also study two-criteria (↵
and �) decision-making procedures to help an agent choose between internal or
defence relaxations (as for Figure 22), as introduced at the end of Section 9.

Finally, we will study how the presented framework can be used to model
ranking-based semantics [34], where a (partial) preference order is defined among
the arguments of an AAF. A first step in this direction has been already moved
in [35], but our plan is to generalise di↵erent ranking-based functions by using
our semiring-based framework with weights computed as Shapely values.
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