The Pace code, the Mathieu group M_{12} and the small Witt design $S(5,6,12)$

Jürgen Bierbrauer Department of Mathematical Sciences Michigan Technological University Houghton, Michigan 49931 (USA)

S. Marcugini and F. Pambianco Dipartimento di Matematica e Informatica Universit`a degli Studi di Perugia Perugia (Italy)

March 29, 2022

Abstract

A ternary $[66, 10, 36]_3$ -code admitting the Mathieu group M_{12} as a group of automorphisms has recently been constructed by N. Pace, see Pace (2014). We give a construction of the Pace code in terms of M_{12} as well as a combinatorial description in terms of the small Witt design, the Steiner system $S(5,6,12)$. We also present a proof that the Pace code does indeed have minimum distance 36.

Published as:

J. Bierbrauer, S. Marcugini, F. Pambianco The Pace code, the Mathieu group M_{12} and the small Witt design $S(5,6,12)$ Discrete Mathematics 340 (2017) 1187–1190. doi: 10.1016/j.disc.2016.12.018

1 Introduction

A large number of important mathematical objects are related to the Mathieu groups. For some general information see the ATLAS [2] and [3]. It came as a surprise when N. Pace found yet another such exceptional object, a [66, 10, 36]₃-code whose group of automorphisms is $Z_2 \times M_{12}$ (see [4]). We present two constructions for this code, an algebraic construction which starts from the group M_{12} in its natural action as a group of permutations on 12 letters, and a combinatorial construction in terms of the Witt design $S(5, 6, 12)$. We also prove that the code has parameters as claimed. In the next section we start by recalling some of the basic properties of M_{12} and the small Witt design $S(5, 6, 12)$. A preliminary version of this work appeared in [1].

2 The ternary Golay code, M_{12} and $S(5,6,12)$

The Mathieu group M_{12} is sharply 5-transitive on 12 letters and therefore has order $12 \times 11 \times 10 \times 9 \times 8$. It is best understood in terms of the ternary Golay code $[12, 6, 6]_3$. The ternary Golay code has a generator matrix $(I|P)$ where I is the $(6, 6)$ -unit matrix and

$$
P = \left(\begin{array}{rrrrr} 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 2 & 2 \\ 1 & 1 & 0 & 2 & 1 & 2 \\ 1 & 1 & 2 & 0 & 2 & 1 \\ 1 & 2 & 1 & 2 & 0 & 1 \\ 1 & 2 & 2 & 1 & 1 & 0 \end{array}\right).
$$

The group M_{12} acts in terms of monomial operations on the ternary Golay code. We identify the 12 letters with the columns of the generator matrix and consider the action of M_{12} as a group of permutations on those 12 letters $\{1, 2, ..., 12\}$. M_{12} is generated by h_1, h_2, h_3, h_4 and g where

$$
h_1 = (2, 3, 5, 6, 4)(8, 9, 11, 12, 10), h_2 = (2, 3)(4, 5)(8, 9)(10, 11),
$$

\n
$$
h_3 = (3, 5, 4, 6)(9, 11, 10, 12), h_4 = (1, 2)(5, 6)(7, 8)(11, 12),
$$

\n
$$
g = (5, 12)(6, 11)(7, 8)(9, 10).
$$

The group $H = \langle h_1, h_2, h_3, h_4 \rangle$ of order 120 is the stabilizer of $\{1, 2, 3, 4, 5, 6\}.$ Call a 6-set an information set if the corresponding submatrix is invertible, call it a block if the submatrix has rank 5. The terminology derives from the fact that the blocks define a Steiner system $S(5,6,12)$, the small Witt design. There are 132 blocks and $12 \times 11 \times 6$ information sets. The complement of a block is a block as well. The stabilizer of each 5-set is S_5 , the stabilizer of a block has order $10 \times 9 \times 8 = 720 = 6!$ and the stabilizer of an information set has order 5! The stabilizer of a 2-set has order 1440. This stabilizer is the group $P\Gamma L(2,9) \cong Aut(A_6)$. In the sequel we identify the 12 letters with a basis $\{v_1, \ldots, v_{12}\}$ of a vector space $V = V(12, 3)$ over the field with three elements and consider the corresponding action of M_{12} on V.

3 The 10-dimensional module of M_{12}

Clearly M_{12} acts on an 11-dimensional submodule of V, the augmentation ideal $I = \{ \sum_{i=1}^{12} a_i v_i | \sum a_i = 0 \}$ and on a 1-dimensional submodule generated by the diagonal $\Delta = v_1 + \cdots + v_{12}$. As we are in characteristic 3, we have $\Delta \in I$, and M_{12} acts on the 10-dimensional factor space $Z = I/\langle \Delta \rangle$. The $u_i = v_i - v_{12}, i \le 11$ are a basis of I and $z_i = \overline{u_i} = u_i + \Delta \mathbb{F}_3, i \le 10$ are a basis of Z. Here $\sum_{i=1}^{11} u_i = \Delta$, hence $z_{11} = -z_1 - \cdots - z_{10}$.

4 The Pace code

We consider the action of M_{12} on the 10-dimensional \mathbb{F}_3 -vector space Z with its basis $z_i = \overline{u_i} = v_i - v_{12} + \Delta \mathbb{F}_3$, $i = 1, \ldots, 10$. Recall that it is induced by the permutation representation on $\{v_1, \ldots, v_{12}\}\$. This action defines embeddings of M_{12} in $GL(10,3)$ and in $PGL(10,3)$. For each orbit of M_{12} we consider the projective ternary code whose generator matrix has as columns representatives of the projective points constituting the orbit.

The point generated by $z_1 = \overline{u_1} = \overline{v_1} - \overline{v_1}$ has as stabilizer the stabilizer of a unordered pair in M_{12} , of order 1440. The length of the orbit is therefore 66. This is not the orbit we are interested in. It is in fact easy to see that the corresponding $[66, 10]_3$ -code has a small minimum distance.

Definition 1. Let $X \subset \{1, 2, ..., 12\}, |X| = 6$. Define $v_X = \sum_{i \in X} v_i$, $z_X = \overline{v_X}$.

It is clear that $v_X \in I$, and $z_X \in Z$ is therefore defined.

Proposition 1. The $z_X \in Z$ where X varies over the blocks of $S(5,6,12)$ form an orbit of length 132 in Z. In the action on projective points (in $PG(9, 3)$) this yields an orbit of length 66.

Proof. Clearly M_{12} permutes the z_X in the same way as it permutes the blocks X. This yields an orbit of length 132 in $Z = V(10, 3)$. If \overline{X} is the complement of X, then $v_{\overline{X}} + v_X = \Delta$, hence $z_{\overline{X}} = -z_X$. It follows that M_{12} acts transitively on the 66 points in $PG(9, 3)$ generated by the z_X (block X and its complement generating the same projective point). \Box

Definition 2. Let C be the $[66, 10]_3$ -code whose generator matrix has as columns representatives of the orbit of M_{12} on the z_X where X is a block.

This is one way of representing the Pace code. Observe that each complementary pair of blocks contributes one column of the generator matrix. We may use as representatives the vectors z_X where X varies over the 66 blocks X not containing the letter 12. As the stabilizer of a block in M_{12} is $S₆$ it follows that the stabilizer of a point in the orbit equals the stabilizer of a complementary pair of blocks and is twice as large as S_6 . The stabilizer is $P\Gamma L(2,9)$, of order $2\times 6!$

5 A combinatorial description

We introduce some notation.

Definition 3. Let B be a family of subsets (blocks) of a v-element set Ω . Let $A, B \subset \Omega$ be disjoint subsets, $|A| = a, |B| = b$. Define a matrix G with $k = v-a-b$ rows and n columns where n is the number of blocks disjoint from A. We identify the rows of G with the points $i \in \Omega \setminus (A \cup B)$ and the columns with the blocks X disjoint from A. The entry in row i and column X is $= 1$ if $i \in X$, it is $= 0$ otherwise. As the entries of G are 0,1 we can consider them as elements of an arbitrary finite field K. Define $C = C_{A,B}(\mathcal{B}, K)$ to be the code generated by G over K.

Observe that the column of G indexed by $X \in \mathcal{B}$ is the characteristic function of the set $X \setminus B$. We write $C_{a,b}(\mathcal{B}, K)$ instead if the choice of the subsets A, B does not matter. For instance, this is the case in particular if the automorphism group of $\mathcal B$ is $(a+b)$ -transitive. Code $\mathcal C$ is a K-linear code of length n. Its designed dimension is k but the true distance may be smaller.

It is unclear what the minimum distance is. Observe that $C_{A,B}(\mathcal{B}, K)$ is a subcode of $C_{A,\emptyset}(\mathcal{B},K)$: a generator matrix of the smaller code arises from the generator matrix of the larger code by omitting some $|B|$ rows. In case $a = b = 0$ the columns of G correspond to the blocks, and the column indexed by $X \in \mathcal{B}$ simply is the characteristic function of X.

Proposition 2. The Pace code from Definition 2 is monomially equivalent to $C_{1,1}(S(5,6,12),\mathbb{F}_3)$.

Proof. The generator matrix of Definition 2 has rows indexed by $i \in \{1, \ldots, 10\}$ and columns indexed by blocks X of $S(5,6,12)$ not containing the letter 12. If also 11 $\notin X$, then the corresponding column is the characteristic function of X. Let $11 \in X$. As $z_{11} = -z_1 - \cdots - z_{10}$ the entries in this column are $= 0$ if $i \in X = 2$ if $i \notin X$. Taking the negative of this column, we obtain the characteristic function of $\overline{X} \setminus \{12\}$. We arrive at the generator matrix of $C_{A,B}(S(5,6,12),\mathbb{F}_3)$ where $A = \{11\}, B = \{12\}.$ \Box

We used a computer program to confirm that the $[66, 10, 36]_3$ -code from [4] is indeed equivalent to the code described in the present and the previous section.

6 Combinatorial properties of the small Witt design

The following elementary properties of the Steiner system $S(5,6,12)$ will be used in the sequel.

Lemma 1. Let $\Omega = \{1, 2, ..., 12\}$ and $A, B \subset \Omega, |A| = a, |B| = b$ and such that $A \cap B = \emptyset$, $a + b \leq 5$. Let $i(a, b)$ be the number of blocks which contain A and are disjoint from B. Then $i(b, a) = i(a, b)$ and

$$
i(5,0) = 1, i(4,0) = 4, i(3,0) = 12, i(2,0) = 30, i(1,0) = 66,
$$

$$
i(1,1) = 36, i(2,1) = 18, i(3,1) = 8, i(4,1) = 3, i(2,2) = 10, i(3,2) = 5.
$$

Proof. $i(5, 0) = 1$ is the definition of a Steiner 5-design, $i(b, a) = i(a, b)$ follows from the fact that the complements of blocks are blocks. The rest follows from obvious counting arguments. \Box Lemma 2. A family of five 3-subsets of a 6-set contains at least two 3-subsets which meet in 2 points.

Proof. This is immediately verified.

Lemma 3. Let $U \subset \{1, 2, \ldots, 11\}$ such that $|U| = 6$. If U is a block, the number of blocks $B \in \mathcal{B}$ such that $|B \cap U| = 3$ is 20; if U is not a block, this number equals 30.

Proof. This is an application of the principle of inclusion and exclusion. Let U not be a block. The total number of blocks meeting U in 3 points is $\binom{6}{2}$ $\binom{6}{3} - 4 \times \binom{6}{4}$ $_{4}^{6}) \times i(4,0) + 10 \times {_{5}^{6}}$ $_{5}^{6}$) = 60, and clearly half of those blocks belong to β . In the case when U is a block, the calculation is similar. \Box

Lemma 4. Let $\Omega = \{1, 2, ..., 12\}$ and $\Omega = A \cup B \cup C$ where $|A| = |B|$ $|C| = 4$ and $P \in C$. The number of blocks which meet each of A, B, C in cardinality 2 and avoid P is at most 18.

Lemma 4 can be proved by a direct calculation using coordinates.

7 The parameters of the Pace code

Theorem 1. The Pace code is a self-orthogonal $[66, 10, 36]_3$ -code.

In the remainder of this section we prove Theorem 1. We use the Pace code in the form $C = C_{A,B}(S(5,6,12), \mathbb{F}_3)$ where $A = \{12\}, B = \{11\},\$ Definition 3. The length is $n = i(0, 1) = 66$, the designed dimension is $k = 10$. Let B be the blocks of $S(5, 6, 12)$ not containing 12. Observe that the columns of G are the characteristic functions of $X \setminus \{11\}$ where $X \in \mathcal{B}$. Let $r_i, 1 \leq i \leq 10$ be the rows of the generator matrix of Definition 3. The codewords of C have the form $\sum_{i\in U} r_i - \sum_{j\in V} r_j$, where U, V are disjoint subsets of $\{1, \ldots, 10\}$. The number of zeroes of this codeword is the nullity $\nu(U, V)$, the number of blocks $X \in \mathcal{B}$ satisfying the condition that $|X \cap U|$ and $|X \cap V|$ have the same congruence mod 3. Let $c \in \{0,1,2\}$ be this congruence. We need to show that $\nu(U, V) \leq 30$ for all (U, V) except when $U = V = \emptyset$. This will prove the claim that the nonzero weights are ≥ 36 and also that the dimension is 10.

Let W be the complement of $U \cup V$ in $\{1, \ldots, 11\}$. If $u = |U|, v = |V|, w =$ |W| then $u+v+w = 11$ and $w > 0$. We have $\nu(U, V) = \sum_{c} k_c(u, v, w)$, where

 \Box

 $k_c(u, v, w)$ is the number of $X \in \mathcal{B}$ meeting each of U, V, W in a cardinality congruent to c mod 3. Observe that $k_c(u, v, w)$ is symmetric in its arguments as long as the condition $w > 0$ is satisfied. The weight of r_i is $i(1, 1) = 36$ (this is case $u = 1, v = 0$). In particular $r_i \cdot r_i = 0$. Also $r_i \cdot r_j = 0$ for $i \neq j$ as $i(2, 1) = 18$ is a multiple of 3. It follows that C is self-orthogonal. All codeword weights and nullities are therefore multiples of 3. It suffices to show $\nu(u, v) < 33$ for all $(u, v) \neq (0, 0)$.

In the sequel we verify that $\nu(U, V) < 33$ in a case by case analysis. If $u =$ 10 then $v = 0, w = 1$ and $\nu(10, 0) = k_0(10, 0, 1) = i(0, 2) = 30$. In case $u = 9$ we have $\nu(9,1) = k_1(9,1,1) + k_0(9,1,1) = i(2,1) + i(0,3) = 18 + 12 = 30,$ $\nu(9,0) = k_0(9,0,2) = i(0,3) = 12$. In case $u = 8$ we have $\nu(8,1) = \nu(8,2)$ by symmetry, and $\nu(8, 2) = k_1(8, 2, 1) + k_0(8, 2, 1) = 2i(2, 2) + i(0, 4) = 20 + 4 =$ $24, \nu(8,0) = k_0(8,0,3) = i(0,4) + i(3,1) = 4 + 8 = 12$. Let $u = 7$. By symmetry it suffices to consider the triples $(u, v, w) = (7, 2, 2), (7, 1, 3), (7, 0, 4)$. We obtain $\nu(7, 2) = k_2(7, 2, 2) + k_1(7, 2, 2) + k_0(7, 2, 2) = i(4, 1) + 4i(2, 3) + i(0, 5) =$ $24, \nu(7, 1) = k_1(7, 1, 3) + k_0(7, 1, 3) = 3i(2, 3) + i(0, 5) + i(3, 2) = 21, \nu(7, 0) =$ $k_0(7, 0, 4) = i(0, 5) + 4i(3, 2) = 21$. If $u = 6$ it can be assumed by symmetry that $v \le 2$. We obtain $\nu(6, 2) = k_2(6, 2, 3) + k_1(6, 2, 3) + k_0(6, 2, 3) \le$ $3i(4, 1) + 6i(1, 4) + i(3, 2) = 27 + 5 < 33$. Let now $u = 6, v = 1$. Then $c \neq 2$ and $k_1(6, 1, 4) \le 4i(1, 4) + 1 = 13$. Consider $k_0(6, 1, 4)$. There is at most one $X \in \mathcal{B}$ avoiding $V \cup W \cup \{12\}$. All remaining contributions to $k_0(6,1,4)$ correspond to blocks X meeting W in three points. There are 4 possibilities for $X \cap W$, and in each case Lemma 2 shows that at most 4 blocks yield contributions, as otherwise some two different blocks would meet in five points. This shows $k_0(6, 1, 4) \leq 1 + 16 = 17$ and therefore $\nu(6, 1) \leq 13 + 17 = 30$. In case $u = 6, v = 0$ we have $c = 0$ and either $X = U$ or X meets U in 3 points.We are done by Lemma 3.

Let $u = 5$. By symmetry it can be assumed $3 \le v \le 5$. In case $v =$ 5 we have $k_1(5, 5, 1) \leq 10, k_0(5, 5, 1) \leq 20$, and in case $v = 4$ we have $k_2(5,4,2) \leq 12, k_1(5,4,2) \leq 2+10 = 12, k_0(5,4,2) \leq 8$, hence $\nu(5,4) < 33$. As $k_2(5,3,3) \leq 18, k_1(5,3,3) \leq 9$ and $k_0(5,3,3) \leq 1+2 \times 2$ we have $\nu(5,3) < 33$. The final case to consider is $(u, v, w) = (4, 4, 3)$. In case $c = 0$ we have that X meets two of the subsets U, V, W in cardinality 3. If $W \subset X$, there are at most two such blocks. There are at most four blocks meeting each of U, V in cardinality 3. It follows $k_0(4, 4, 3) \leq 6$. If $c = 1$, then either $U \subset X$ or $V \subset X$. It follows $k_1(4,4,3) \leq 6$. The most difficult case is $c = 2$. Lemma 4 states $k_2(4, 4, 3) \leq 18$. We are done.

References

- [1] J. Bierbrauer, S. Marcugini and F. Pambianco, A combinatorial construction of an M_{12} -invariant code, in Proceedings of ACCT, Albena, Bulgaria, 2016, pp. 325-329.
- [2] R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, ATLAS of Finite Groups, Oxford University Press, 1985.
- [3] A.A. Ivanov, Geometry of Sporadic Groups 1, Cambridge University Press, 2008.
- [4] N. Pace: New ternary linear codes from projectivity groups, Discrete Mathematics 331 (2014), 22-26.