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Abstract

A ternary [66, 10, 36]3-code admitting the Mathieu group M12 as
a group of automorphisms has recently been constructed by N. Pace,
see Pace (2014). We give a construction of the Pace code in terms of
M12 as well as a combinatorial description in terms of the small Witt
design, the Steiner system S(5, 6, 12). We also present a proof that the
Pace code does indeed have minimum distance 36.
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1 Introduction

A large number of important mathematical objects are related to the Mathieu
groups. For some general information see the ATLAS [2] and [3]. It came
as a surprise when N. Pace found yet another such exceptional object, a
[66, 10, 36]3-code whose group of automorphisms is Z2 ×M12 (see [4]). We
present two constructions for this code, an algebraic construction which starts
from the group M12 in its natural action as a group of permutations on
12 letters, and a combinatorial construction in terms of the Witt design
S(5, 6, 12). We also prove that the code has parameters as claimed. In the
next section we start by recalling some of the basic properties of M12 and the
small Witt design S(5, 6, 12). A preliminary version of this work appeared in
[1].

2 The ternary Golay code, M12 and S(5, 6, 12)

The Mathieu group M12 is sharply 5-transitive on 12 letters and therefore
has order 12× 11× 10× 9× 8. It is best understood in terms of the ternary
Golay code [12, 6, 6]3. The ternary Golay code has a generator matrix (I|P )
where I is the (6, 6)-unit matrix and

P =


0 1 1 1 1 1
1 0 1 1 2 2
1 1 0 2 1 2
1 1 2 0 2 1
1 2 1 2 0 1
1 2 2 1 1 0

 .

The group M12 acts in terms of monomial operations on the ternary Golay
code. We identify the 12 letters with the columns of the generator matrix
and consider the action of M12 as a group of permutations on those 12 letters
{1, 2, . . . , 12}. M12 is generated by h1, h2, h3, h4 and g where

h1 = (2, 3, 5, 6, 4)(8, 9, 11, 12, 10), h2 = (2, 3)(4, 5)(8, 9)(10, 11),

h3 = (3, 5, 4, 6)(9, 11, 10, 12), h4 = (1, 2)(5, 6)(7, 8)(11, 12),

g = (5, 12)(6, 11)(7, 8)(9, 10).
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The group H = 〈h1, h2, h3, h4〉 of order 120 is the stabilizer of {1, 2, 3, 4, 5, 6}.
Call a 6-set an information set if the corresponding submatrix is invertible,
call it a block if the submatrix has rank 5. The terminology derives from the
fact that the blocks define a Steiner system S(5, 6, 12), the small Witt design.
There are 132 blocks and 12 × 11 × 6 information sets. The complement of
a block is a block as well. The stabilizer of each 5-set is S5, the stabilizer of
a block has order 10× 9× 8 = 720 = 6! and the stabilizer of an information
set has order 5! The stabilizer of a 2-set has order 1440. This stabilizer is the
group PΓL(2, 9) ∼= Aut(A6). In the sequel we identify the 12 letters with a
basis {v1, . . . , v12} of a vector space V = V (12, 3) over the field with three
elements and consider the corresponding action of M12 on V.

3 The 10-dimensional module of M12

Clearly M12 acts on an 11-dimensional submodule of V, the augmentation
ideal I = {

∑12
i=1 aivi|

∑
ai = 0} and on a 1-dimensional submodule generated

by the diagonal ∆ = v1 + · · · + v12. As we are in characteristic 3, we have
∆ ∈ I, and M12 acts on the 10-dimensional factor space Z = I/〈∆〉. The
ui = vi − v12, i ≤ 11 are a basis of I and zi = ui = ui + ∆F3, i ≤ 10 are a
basis of Z. Here

∑11
i=1 ui = ∆, hence z11 = −z1 − · · · − z10.

4 The Pace code

We consider the action of M12 on the 10-dimensional F3-vector space Z with
its basis zi = ui = vi − v12 + ∆F3, i = 1, . . . , 10. Recall that it is induced
by the permutation representation on {v1, . . . , v12}. This action defines em-
beddings of M12 in GL(10, 3) and in PGL(10, 3). For each orbit of M12 we
consider the projective ternary code whose generator matrix has as columns
representatives of the projective points constituting the orbit.

The point generated by z1 = u1 = v1 − v12 has as stabilizer the stabilizer
of a unordered pair in M12, of order 1440. The length of the orbit is therefore
66. This is not the orbit we are interested in. It is in fact easy to see that
the corresponding [66, 10]3-code has a small minimum distance.

Definition 1. Let X ⊂ {1, 2, . . . , 12}, |X| = 6.
Define vX =

∑
i∈X vi, zX = vX .

It is clear that vX ∈ I, and zX ∈ Z is therefore defined.
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Proposition 1. The zX ∈ Z where X varies over the blocks of S(5, 6, 12)
form an orbit of length 132 in Z. In the action on projective points (in
PG(9, 3)) this yields an orbit of length 66.

Proof. Clearly M12 permutes the zX in the same way as it permutes the
blocks X. This yields an orbit of length 132 in Z = V (10, 3). If X is the
complement of X, then vX + vX = ∆, hence zX = −zX . It follows that M12

acts transitively on the 66 points in PG(9, 3) generated by the zX (block X
and its complement generating the same projective point).

Definition 2. Let C be the [66, 10]3-code whose generator matrix has as
columns representatives of the orbit of M12 on the zX where X is a block.

This is one way of representing the Pace code. Observe that each com-
plementary pair of blocks contributes one column of the generator matrix.
We may use as representatives the vectors zX where X varies over the 66
blocks X not containing the letter 12. As the stabilizer of a block in M12 is
S6 it follows that the stabilizer of a point in the orbit equals the stabilizer of
a complementary pair of blocks and is twice as large as S6. The stabilizer is
PΓL(2, 9), of order 2× 6!

5 A combinatorial description

We introduce some notation.

Definition 3. Let B be a family of subsets (blocks) of a v-element set Ω.
Let A,B ⊂ Ω be disjoint subsets, |A| = a, |B| = b. Define a matrix G with
k = v−a−b rows and n columns where n is the number of blocks disjoint from
A. We identify the rows of G with the points i ∈ Ω\ (A∪B) and the columns
with the blocks X disjoint from A. The entry in row i and column X is = 1
if i ∈ X, it is = 0 otherwise. As the entries of G are 0, 1 we can consider
them as elements of an arbitrary finite field K. Define C = CA,B(B, K) to be
the code generated by G over K.

Observe that the column of G indexed by X ∈ B is the characteristic
function of the set X \ B. We write Ca,b(B, K) instead if the choice of the
subsets A,B does not matter. For instance, this is the case in particular if
the automorphism group of B is (a+ b)-transitive. Code C is a K-linear code
of length n. Its designed dimension is k but the true distance may be smaller.
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It is unclear what the minimum distance is. Observe that CA,B(B, K) is a
subcode of CA,∅(B, K) : a generator matrix of the smaller code arises from
the generator matrix of the larger code by omitting some |B| rows. In case
a = b = 0 the columns of G correspond to the blocks, and the column indexed
by X ∈ B simply is the characteristic function of X.

Proposition 2. The Pace code from Definition 2 is monomially equivalent
to C1,1(S(5, 6, 12),F3).

Proof. The generator matrix of Definition 2 has rows indexed by i ∈ {1, . . . , 10}
and columns indexed by blocks X of S(5, 6, 12) not containing the letter 12.
If also 11 /∈ X, then the corresponding column is the characteristic function
of X. Let 11 ∈ X. As z11 = −z1 − · · · − z10 the entries in this column are
= 0 if i ∈ X,= 2 if i /∈ X. Taking the negative of this column, we obtain
the characteristic function of X \ {12}. We arrive at the generator matrix of
CA,B(S(5, 6, 12),F3) where A = {11}, B = {12}.

We used a computer program to confirm that the [66, 10, 36]3-code from
[4] is indeed equivalent to the code described in the present and the previous
section.

6 Combinatorial properties of the small Witt

design

The following elementary properties of the Steiner system S(5, 6, 12) will be
used in the sequel.

Lemma 1. Let Ω = {1, 2, . . . , 12} and A,B ⊂ Ω, |A| = a, |B| = b and such
that A ∩ B = ∅, a + b ≤ 5. Let i(a, b) be the number of blocks which contain
A and are disjoint from B. Then i(b, a) = i(a, b) and

i(5, 0) = 1, i(4, 0) = 4, i(3, 0) = 12, i(2, 0) = 30, i(1, 0) = 66,

i(1, 1) = 36, i(2, 1) = 18, i(3, 1) = 8, i(4, 1) = 3, i(2, 2) = 10, i(3, 2) = 5.

Proof. i(5, 0) = 1 is the definition of a Steiner 5-design, i(b, a) = i(a, b)
follows from the fact that the complements of blocks are blocks. The rest
follows from obvious counting arguments.
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Lemma 2. A family of five 3-subsets of a 6-set contains at least two 3-subsets
which meet in 2 points.

Proof. This is immediately verified.

Lemma 3. Let U ⊂ {1, 2, . . . , 11} such that |U | = 6. If U is a block, the
number of blocks B ∈ B such that |B ∩ U | = 3 is 20; if U is not a block, this
number equals 30.

Proof. This is an application of the principle of inclusion and exclusion. Let
U not be a block. The total number of blocks meeting U in 3 points is(
6
3

)
− 4×

(
6
4

)
× i(4, 0) + 10×

(
6
5

)
= 60, and clearly half of those blocks belong

to B. In the case when U is a block, the calculation is similar.

Lemma 4. Let Ω = {1, 2, . . . , 12} and Ω = A ∪ B ∪ C where |A| = |B| =
|C| = 4 and P ∈ C. The number of blocks which meet each of A,B,C in
cardinality 2 and avoid P is at most 18.

Lemma 4 can be proved by a direct calculation using coordinates.

7 The parameters of the Pace code

Theorem 1. The Pace code is a self-orthogonal [66, 10, 36]3-code.

In the remainder of this section we prove Theorem 1. We use the Pace
code in the form C = CA,B(S(5, 6, 12),F3) where A = {12}, B = {11}, see
Definition 3. The length is n = i(0, 1) = 66, the designed dimension is
k = 10. Let B be the blocks of S(5, 6, 12) not containing 12. Observe that
the columns of G are the characteristic functions of X \ {11} where X ∈ B.
Let ri, 1 ≤ i ≤ 10 be the rows of the generator matrix of Definition 3. The
codewords of C have the form

∑
i∈U ri −

∑
j∈V rj, where U, V are disjoint

subsets of {1, . . . , 10}. The number of zeroes of this codeword is the nullity
ν(U, V ), the number of blocks X ∈ B satisfying the condition that |X ∩ U |
and |X ∩ V | have the same congruence mod 3. Let c ∈ {0, 1, 2} be this
congruence. We need to show that ν(U, V ) ≤ 30 for all (U, V ) except when
U = V = ∅. This will prove the claim that the nonzero weights are ≥ 36 and
also that the dimension is 10.

Let W be the complement of U∪V in {1, . . . , 11}. If u = |U |, v = |V |, w =
|W | then u+v+w = 11 and w > 0. We have ν(U, V ) =

∑
c kc(u, v, w), where
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kc(u, v, w) is the number of X ∈ B meeting each of U, V,W in a cardinality
congruent to c mod 3. Observe that kc(u, v, w) is symmetric in its arguments
as long as the condition w > 0 is satisfied. The weight of ri is i(1, 1) = 36
(this is case u = 1, v = 0). In particular ri · ri = 0. Also ri · rj = 0 for
i 6= j as i(2, 1) = 18 is a multiple of 3. It follows that C is self-orthogonal.
All codeword weights and nullities are therefore multiples of 3. It suffices to
show ν(u, v) < 33 for all (u, v) 6= (0, 0).

In the sequel we verify that ν(U, V ) < 33 in a case by case analysis. If u =
10 then v = 0, w = 1 and ν(10, 0) = k0(10, 0, 1) = i(0, 2) = 30. In case u = 9
we have ν(9, 1) = k1(9, 1, 1) + k0(9, 1, 1) = i(2, 1) + i(0, 3) = 18 + 12 = 30,
ν(9, 0) = k0(9, 0, 2) = i(0, 3) = 12. In case u = 8 we have ν(8, 1) = ν(8, 2) by
symmetry, and ν(8, 2) = k1(8, 2, 1) +k0(8, 2, 1) = 2i(2, 2) + i(0, 4) = 20 + 4 =
24, ν(8, 0) = k0(8, 0, 3) = i(0, 4) + i(3, 1) = 4 + 8 = 12. Let u = 7. By symme-
try it suffices to consider the triples (u, v, w) = (7, 2, 2), (7, 1, 3), (7, 0, 4). We
obtain ν(7, 2) = k2(7, 2, 2)+k1(7, 2, 2)+k0(7, 2, 2) = i(4, 1)+4i(2, 3)+i(0, 5) =
24, ν(7, 1) = k1(7, 1, 3) +k0(7, 1, 3) = 3i(2, 3) + i(0, 5) + i(3, 2) = 21, ν(7, 0) =
k0(7, 0, 4) = i(0, 5) + 4i(3, 2) = 21. If u = 6 it can be assumed by symme-
try that v ≤ 2. We obtain ν(6, 2) = k2(6, 2, 3) + k1(6, 2, 3) + k0(6, 2, 3) ≤
3i(4, 1) + 6i(1, 4) + i(3, 2) = 27 + 5 < 33. Let now u = 6, v = 1. Then c 6= 2
and k1(6, 1, 4) ≤ 4i(1, 4) + 1 = 13. Consider k0(6, 1, 4). There is at most one
X ∈ B avoiding V ∪ W ∪ {12}. All remaining contributions to k0(6, 1, 4)
correspond to blocks X meeting W in three points. There are 4 possibilities
for X ∩W, and in each case Lemma 2 shows that at most 4 blocks yield con-
tributions, as otherwise some two different blocks would meet in five points.
This shows k0(6, 1, 4) ≤ 1 + 16 = 17 and therefore ν(6, 1) ≤ 13 + 17 = 30.
In case u = 6, v = 0 we have c = 0 and either X = U or X meets U in 3
points.We are done by Lemma 3.

Let u = 5. By symmetry it can be assumed 3 ≤ v ≤ 5. In case v =
5 we have k1(5, 5, 1) ≤ 10, k0(5, 5, 1) ≤ 20, and in case v = 4 we have
k2(5, 4, 2) ≤ 12, k1(5, 4, 2) ≤ 2 + 10 = 12, k0(5, 4, 2) ≤ 8, hence ν(5, 4) < 33.
As k2(5, 3, 3) ≤ 18, k1(5, 3, 3) ≤ 9 and k0(5, 3, 3) ≤ 1 + 2 × 2 we have
ν(5, 3) < 33. The final case to consider is (u, v, w) = (4, 4, 3). In case c = 0
we have that X meets two of the subsets U, V,W in cardinality 3. If W ⊂ X,
there are at most two such blocks. There are at most four blocks meeting
each of U, V in cardinality 3. It follows k0(4, 4, 3) ≤ 6. If c = 1, then either
U ⊂ X or V ⊂ X. It follows k1(4, 4, 3) ≤ 6. The most difficult case is c = 2.
Lemma 4 states k2(4, 4, 3) ≤ 18. We are done.
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