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Abstract 

Spatially representative estimates of saturated hydraulic conductivity, Ks, are needed for simulating 

catchment scale surface runoff and infiltration. Classical methods for measuring Ks are time-consuming so 

sampling campaigns need to be designed economically. Important insights can be obtained by experiments 

directed to understand the controls of Ks in an agricultural setting and identify the minimum number of 

samples required for estimating representative plot scale Ks. In this study, a total of 131 double-ring 

infiltrometer measurements were made on 12 plots in a small Austrian catchment. A statistical analysis of Ks 

across the catchment suggests Ks to be only slightly influenced by physical and topographical soil 

characteristics while land use is the main control. The highest values of Ks were observed in arable fields, 

with a median of about 3 times and a coefficient of variation (CV) of about 75% of those in grassland areas. 

An uncertainty analysis aimed at determining the minimum number of Ks measurements necessary for 

estimating the geometric mean of Ks over a given area with a specified accuracy suggests that, beyond a 

specific and plot-size dependent number of measurements, the benefit of any extra measurement is small. 

The confidence interval of the geometric mean of Ks decreases with the number of measurements and 

increases with the size of the plot sampled. Applications of these findings for designing field campaigns are 

discussed.  
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1 Introduction 

The hydraulic conductivity of saturated soils, Ks, is a key parameter controlling various hydrological 

processes, including rainfall partitioning into infiltration and surface runoff. Accurate estimates of Ks are 

needed for modeling local infiltration into homogeneous (Parlange et al., 1982) and layered soils 

(Govindaraju et al., 2012), as well as for upscaling infiltration models (Smith and Goodrich, 2000; Corradini 

et al., 2011). Saturated hydraulic conductivity is highly variable in space due to soil structure (Dexter et al., 

2004), texture (Saxton et al., 1986; Jabro, 1992), landscape position (Mohanty et al., 1994), and land cover 

and management practices (Alletto and Coquet, 2009; Bonell et al., 2010), it also depends on scale (Sobieraj 

et al., 2004; Lai and Ren, 2007). Saturated hydraulic conductivity typically varies even more than two orders 

of magnitude in space. Baiamonte et al. (2017) performed 150 infiltration measurements in a Sicilian basin 

and observed values of Ks that ranged from less than 1 mm h-1 to more than 8000 mm h-1. Papanicolaou et al. 

(2015) conducted about 120 infiltration experiments on three hillslopes with different agricultural 

management practices in Iowa and observed Ks values that ranged from 0.15 mm h-1 to 360 mm h -1. 

Similarly, Loague and Gander (1990) carried out 157 infiltration measurements in a small rangeland 

catchment of area 0.1 Km2 (R-5, Oklahoma) and obtained values of Ks approximately variable by two orders 

of magnitude in space. Furthermore, Sharma et al. (1987) performed infiltration experiments in two lateritic 

Australian catchments (0.94 Km2 and 0.81 Km2) and found Ks values in the range 8.33-946 mm h-1 and 237-

1646 mm h-1, respectively. 

Woolhiser et al. (1996) found that runoff hydrographs were strongly affected by variations in saturated 

hydraulic conductivity at the hillslope scale, especially for small runoff events. Taskinen et al. (2008) 

investigated the effects of spatial variability of Ks on overland flow in a small agricultural catchment by 

analyzing 2000 synthetic rainfall-runoff events generated from observed rainfall events with runoff modelled 

using different spatially variable Ks fields. They found the greatest differences in the first flow peak and in 

the rising part of the hydrograph. Hu et al. (2015) analyzed the effects of Ks variability on runoff simulations 

in a small watershed on the Chinese Loess Plateau and found that total and peak discharges were 

underestimated if the spatial variability of Ks was completely ignored or only partially considered. Assouline 

and Mualem (2002) examined the effects of the spatial variability of soil hydraulic properties combined with 
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the formation of a sealing layer at the soil surface. They deduced that the hydrological response of arid and 

semiarid catchments is dominated by these effects. Assouline and Mualem (2006) showed that infiltration 

into crusted soils experiences substantial changes for the presence of Ks spatial heterogeneity , particularly 

for loam soils. Accounting for Ks spatial variability is therefore essential. 

In addition to undisturbed soil core sampling, several experimental techniques are available for 

estimating Ks through in-situ infiltration measurements. The most commonly used devices are: tension 

permeameters, e.g. the CSIRO disc permeameter (Perroux and White, 1988), single ring infiltrometers 

(Lassabatère et al., 2006; Bagarello et al., 2004, 2014a; Ahmed et al., 2014), double-ring infiltrometers 

(Swartzendruber and Olson, 1961), constant-head well permeameters, e.g. the Guelph permeameter 

(Reynolds and Elrick, 1985), and rainfall simulators, e.g. the Guelph rainfall simulator (Tossell et al., 1987). 

The device choice conditions the estimated values of Ks (Verbist et al., 2013; Bagarello et al., 2014a) due to 

different factors (Reynolds et al., 2000) such as size of investigated soil, sample collection procedure, flow 

geometry, and estimate of other soil parameters (e.g., soil sorptivity, saturated water content) necessary to 

derive the value of Ks applying specific data analysis procedures. 

Widely used techniques to determine Ks, such as the traditional well permeameter and ring 

infiltrometer, rely on the attainment of a steady-state flow rate, so that the time required to carry out each 

measurement is usually high. Other techniques do not require to achieve steady conditions (Bagarello et al., 

2004; 2014b) but, in any case, their use at the catchment scale represents a challenge. Speeding up the 

measurement operations with the purpose of achieving detailed Ks maps over large areas is therefore one of 

the greatest issues to be addressed in spatial infiltration studies. Pedotransfer functions which estimate Ks 

from more easily measurable soil physical properties (Bouma, 1989) and statistical approaches to extrapolate 

Ks from a small number of measurements to the entire catchment are some of the approaches adopted to 

reduce the time demand of extensive field measurement campaigns.  

However, macropores and other preferential flow paths often dominate the infiltration behavior even 

more than the characteristics of the soil matrix (as quantified by porosity, texture etc.), so it is usually 

advantageous not to rely only on pedotransfer functions from the literature but to perform at least a few Ks 

measurements in the catchment of interest (Bouma et al., 2011). Regarding the number of measurements 

required, Vieira et al. (1981) studied the spatial variability of 1280 field-measured infiltration rates using 
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geostatistical concepts. They argued that 128 samples were sufficient to obtain nearly the same information 

as obtained from 1280 samples. Ahmed et al. (2015) conducted an uncertainty analysis on 722 infiltration 

measurements in six roadside drainage ditches (grassy swales, i.e. shallow, open vegetated roadside drainage 

channels designed to convey stormwater runoff to storm sewers or water receiving bodies) and concluded 

that approximately twenty infiltration measurements were the minimum number to obtain a representative 

geometric mean of Ks of a swale that was less than 350 m long, with an acceptable level of uncertainty. The 

identified minimum number was related to the width of the 95% confidence interval that in logscale was 

about equal to 2. 

Skøien and Blöschl (2006) found that the required number of samples depends on the spatial correlation 

of Ks as well as on the measurement setup. They investigated the effect of spacing (average distance between 

samples), extent (size of the domain sampled) and support (averaging area of one sample), i.e. the “scale 

triplet” as termed by Blöschl and Sivapalan (1995), on the estimates of mean, spatial variance and complete 

range of a variable in a landscape. For each of the chosen combinations of spacing, support and extent they 

generated 1000 synthetic random fields and sampled from them according to the selected scale triplet. In 

what they termed “single realization case”, they compared the sample mean and sample variance with the 

mean and variance of the entire random field of the same realization. They found that the estimation 

uncertainty of the mean increases when the spacing increases for a given number of samples. Small extents 

(relative to the underlying correlation length) imply that the samples are highly correlated and the underlying 

distribution can be well characterized from a limited number of samples. Skøien and Blöschl (2006) used 

numerically generated random fields, and actual observations of Ks may differ in terms of their sampling 

characteristics. Also, by identifying the controls on Ks, areal estimates can be improved over random 

sampling, either by stratified sampling or by making use of pedotransfer functions.  

The main objective of this paper is to identify the main elements that control the soil saturated hydraulic 

conductivity in an agricultural setting and, on this basis, to define the minimum number of samples needed 

for estimating a value of Ks representative at the plot scale. This is a crucial element to obtain the first of the 

two moments of the Ks probability density function required to apply areal infiltration modeling (Flammini 

et al., 2018). The results of Ks measurement campaigns performed in a small catchment in Austria with 

double-ring infiltrometers (DRIs) are used. The choice of this equipment was made on the basis of a few 
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practical considerations later specified and mainly of the outcomes earlier obtained by Morbidelli et al. 

(2017) in laboratory experiments finalized to compare a double-ring infiltrometer, a tension permeameter 

and a constant-head well permeameter using controlled rainfall-runoff experiments as a benchmark. 

Measurements collected in both grasslands and arable lands are selected to deduce the effects of different 

land management operations on the Ks spatial variability. A statistical analysis is performed to understand 

the confidence in the estimate of the areal average value of Ks for different land uses, plot areas and sample 

sizes. Based on this analysis, guidance is given for planning measurement campaigns with double-ring 

infiltrometers when time and resources are limited.  

2 Materials 

2.1 Study area 

The study area is the Hydrological Open Air Laboratory (HOAL) catchment located in Petzenkirchen, 

in the western part of Lower Austria. The basin has an area of 0.66 km2. The elevation ranges from 268 to 

323 m a.s.l. with a mean slope of 8%. Landcover consists of arable land (87%), pasture (5%), forested area 

with grassland and high-stemmed vegetation of low density (6%), and paved surfaces (2%) (Blöschl et al., 

2016). In this study, pasture and forested area are collectively denoted as “grassland areas” because the 

forested area is really characterized by grassland, and not by brushwood, as a result of the patchy type of 

land use that takes place in the catchment. The climate is humid with a mean annual temperature of 9.5°C 

and a mean annual precipitation of 823 mm yr-1 from 1990 to 2014.  

A soil survey campaign of 300 cores, sampled on a 50×50 m grid, provided information about organic 

matter content (om), clay (cl), silt (si), and sand (sa) percentages at multiple depths. According to the USDA 

soil classification, the topsoil in the catchment consists of silt loam (75% of the area), silty clay loam (20%), 

and silt (5%). A high-resolution digital terrain model (DTM) was used to derive elevation (el) and local slope 

angles (s) across the catchment. 

Winter wheat, winter barley, maize, rapeseed and soy are the main types of crop cultivated in the 

catchment. Crop rotation is associated with green manure in order to ensure natural fertilization of the soil. 

However, nitrogen fertilizers and natural fertilizers, e.g. pig manure, are also applied before sowing, as well 

as plant protection agents, such as plant growth regulators, fungicides and broad-spectrum insecticides. The 
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harvest of the winter crops usually occurs in July, allowing the access to the cultivated areas for infiltration 

measurements until the late-August/September when field preparation for tillage and seedbed is made. 

2.2 Soil data collection 

A total of 131 locations, on 12 different plots, were chosen to sample Ks of the soil surface of the 

HOAL catchment (Figure 1). The measurements were performed with the objective of evenly exploring the 

grassland areas, specifically those without high-stemmed vegetation, and the areas devoted to agricultural 

practices. Depending on the time required to perform a local experiment by the selected procedure (described 

below), the measurements in each plot were carried out in a narrow period, up to 3 days for the larger plot. 

The measurements in the whole grassland areas were substantially completed in the period March 15 – April 

7, while in the cultivated areas, due to restricted access during the crop growing season and tillage 

operations, the experimental campaign was made in the period between harvest and tillage. In the last period, 

between July 20 and September 20, it was possible to investigate different plots at the same condition with 

respect to agricultural practices even though at different times. In any case, because of the absence of bare 

soils subjected to significant temporal changes of Ks due to crust formation and disruption, the lack of 

measurements contemporaneity should not have significantly affected the main features of the Ks spatial 

heterogeneity field. 

Among the available measurement techniques, DRIs were considered to be appropriate because of the 

ease of installation and robustness in natural environments where tall grass, surface slope or strong wind may 

preclude the usage of other, more sensitive, devices. Due to the equipment low cost, simultaneous use up to 

four instruments was possible to speed up the experiments. The technique consists of pushing two concentric 

steel rings, of diameters 0.3 m and 0.6 m, about 10 cm into the ground and pouring water inside them until 

the water level equalizes in the two rings. The reduction of the inner ring water level due to infiltration is 

recorded at regular time steps, and the measurement ends when infiltration steady state is obtained. In our 

measurements the latter was considered to occur when an infiltration rate invariant in the last hour was 

detected. The saturated hydraulic conductivity was assumed equal to the last value of infiltration rate, 

typically observed with a ponded depth of water of about one centimeter. Morbidelli et al. (2017) showed 

that DRIs tended to overestimate the areal average value of Ks as compared to controlled rainfall-runoff 

experiments. They also found that, when samples were taken with DRI in a highly-controlled laboratory 
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system characterized by a soil with homogeneous grain size distribution and bare surface, the observed 

values did not significantly change over the repetitions performed in adjacent places. This finding highlights 

that DRIs allow reliable estimates of Ks in terms of repeatability, but they are biased compared to the 

benchmark value. In any case, considering the measurement repeatability, it is expected that the observed 

bias does not significantly affect the spatial variability analysis of Ks, even though the possible existence of a 

bias dependent on the correct Ks values cannot be ruled out. On the other hand, the magnitude of the bias is 

still an open issue for any available device because of the difficulties related to the identification of an 

indisputable “true” reference value of Ks.  

On each plot, Ks measurements were performed with a spatial resolution of 3 m. The duration of each 

run was typically of 3-4 h. Figure 2 highlights examples of the different environmental conditions present on 

the plots: Figure 2a, shows the largest plot, plot 2, which consists of grassy land and is located close to the 

forested area with grassland. Figure 2b represents plot 5 showing the winter wheat stubbles that remains in 

the field after the harvest, and Figure 2c, shows plots 11 and 12, both located in a naturally-vegetated 

orchard. In the choice of the measurement locations, slope represented a crucial factor. According to Philip 

(1991), in the initial stage of the infiltration process – when the capillary forces play a leading role – the 

infiltration rate does not depend on the surface inclination, but after a long time – when only gravitational 

forces drive the process – the infiltration rate is reduced by the cosine of the slope angle. However, 

experimental evidence does not always support this theoretical formulation (Essig et al., 2009; Morbidelli et 

al., 2015). In any case, it is widely recognized that slope affects the infiltration process. In this light to reduce 

the slope effects (Morbidelli et al., 2016), measurements were only performed at locations with surface slope 

angles generally less than 10° and in the absence of bare soils. 

At the locations where the infiltration measurements were performed, soil textural composition and 

organic matter content were inferred from the survey data available on the 50×50 m grid. In addition, slope 

and elevation across the catchment were obtained from the DTM. The physical and topographical soil 

characteristics, displayed in Table 1, show little spatial variation between the measurement locations. The 

maximum Coefficient of Variation (CV) observed for textural composition and organic matter content is 

about 15%, consistent with the USDA soil classification of the catchment according to which only two main 
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soil types are identified in the basin (95% of the topsoil is either silt loam or silty clay loam). Only the 

surface slope angle exhibits a significant variation, with a CV of about 30%. 

3 Method 

3.1 Statistical analysis and controls on saturated hydraulic conductivity 

The ANOVA method (Armstrong et al., 2000) has been selected for the analysis of variance of the 

experimental data associated to the different plots to understand whether the variability of Ks across the 

catchment is linked to specific soil physical characteristics of the measurement locations. An application of 

this method requires that specific assumptions on the experimental data are satisfied. In general terms, the 

results obtained for the study variable are subdivided into J groups and the ith observed value (i=1…I) of a 

given group, j (j = 1, … , J), can be expressed as a sum of the mean of all the available measurements, 𝜇, the 

group effect, 𝜏𝑗, representing the deviation of the group mean 𝜇j from 𝜇 and a random element, 𝜀i,j, reflecting 

the combined effects of measurement errors and natural variation through observations. The basic 

assumptions involved in the ANOVA method concern the random elements that should be normally 

distributed with the same variance in all groups, while the means 𝜇j can be variable from group to group. The 

available Ks data do not satisfy these two conditions, while log-transformed values of Ks have been found 

appropriate for the ANOVA method application (see also Snedecor and Cochran, 1980). The following 

procedure has been therefore used. 

The entire data-set has been divided into J groups and a single transformed observation, ln(Ks)i,j, has 

been expressed as: 

ln(Ks)i,j = μ + τj + εi,j = μj + εi,j        j = 1, … , J     and     i = 1, … , I                                                                  (1) 

with τj =μj − μ and with the quantities μj and εi,j computed on the transformed data-set. On this basis, 

to highlight a possible absence of group effect, the null hypothesis of equality of the J values of the mean has 

been tested starting from the quantity SSt defined as: 

SSt = ∑ ∑ (ln(Ks)i,j − μ)
2

ji
                                                                                                                                     (2) 

that can be rewritten as: 

SSt = SSw + SSb = ∑ ∑ (ln(Ks)i,j − μj)
2

ji
+ ∑ nj(μj − μ)

2

j
                                                                       (3) 
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where SSw is associated to the variation within each group, SSb to the variation between each group and the 

catchment, and nj is the number of observations in each group. The sample variance, σt
2, the “within 

variance”, σw
2 , and the “between variance”, σb

2, have been then estimated by dividing each term of Equation 

(3) by the corresponding degree of freedom: 

σt
2 =

SSt

dft
=  

SSt

I − 1
                                                                                                                                                             (4) 

σw
2 =

SSw

dfw
=  

SSw

I − J
                                                                                                                                                            (5) 

σb
2 =

SSb

dfb
=  

SSb

J − 1
                                                                                                                                                             (6) 

and the variance ratio, F, has been computed as: 

F(J − 1, I − J) =
σb

2

σw
2

                                                                                                                                                         (7) 

For testing the null hypothesis, F has been compared to the critical value, Fcrit(dfb, dfw), obtained from an 

F-distribution (Snedecor and Cochran, 1980) with dfw and dfb degrees of freedom with a significance level 

of 5%. If F is greater than the critical value, the null hypothesis of zero group effect has to be rejected and at 

least one of the μj values is significantly different from the grand mean. 

The above approach has been applied to different group ensembles: (1) ensemble obtained considering the 

plot locations as sources of variation to understand whether Ks variability is substantially linked to the 

specific physical and topographical characteristics of the measurement areas; (2) ensemble identified 

grouping areas with the same land use, considered because the outcomes of step (1) suggested a significant 

dependency of Ks variability on the plot location; (3) ensembles of plots characterized by the same land use 

to understand if (a) other plot-specific properties had a significant influence or (b) the observations could be 

considered as different sets sampled from the same population, even though collected at different locations in 

the catchment. 

 

3.2 Uncertainty analysis and minimum number of samples needed 

An analysis has been performed with the aim of determining the uncertainty related to the estimate of an 

average Ks value for a specific area. The Ks geometric mean, K̅s, has been chosen as the representative 
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estimator of the areal average saturated hydraulic conductivity. Obviously, the higher the number of 

measurements used to estimate the geometric mean of Ks, the higher is the confidence that the estimate is 

representative of the true value of K̅s for the considered area. However, since the measurements are very 

time consuming, understanding whether it is possible to reduce the number of measurements and still obtain 

a reliable average, would enormously improve the planning of measurement campaigns with reduced 

realization times.  

A well-founded uncertainty analysis based on the use of the confidence intervals has been carried out. It 

is rather similar to that used by Ahmed et al. (2015) with changes directed to improve the interpretation of 

results. The plots 2, 11-12, and 7 have been selected because they exhibited the same sampling density 

(about 1 measurement every 10 m2), the same land cover (grass) but different number of observation points, 

i.e., 40, 20 and 9, respectively. For each data-set the non-parametric bootstrap method (Carpenter and 

Bithell, 2000) has been used to estimate confidence intervals around the geometric mean for different 

numbers of samples. The method is particularly helpful whenever confidence intervals must be calculated for 

small data-sets, as in the case of plot 7 where only 9 measurements are available. As suggested by Carpenter 

and Bithell (2000), information about the value of a population parameter (e.g. the mean, μ) can be obtained 

by drawing a random sample 𝐘 from that population and constructing an estimate μ̂(𝐘) of the value of μ 

from that sample. The bootstrap principle is adopted to achieve information about the relationship between μ 

and μ̂(𝐘) by looking at the relationship between μ̂(𝐲𝐨𝐛𝐬) and μ̂(𝐘∗), where 𝐘∗ is a resample characterized by 

the sample of the observations 𝐲𝐨𝐛𝐬. Because the method involves a resampling step – which can be done 

assuming a specific distribution for the parameter and sampling from it (i.e. parametric bootstrap) or without 

assuming any distribution for the parameter and sampling with replacement (i.e. non-parametric bootstrap) – 

it is often used for small data-sets. 

In implementing the bootstrap method, the observations have been assumed independent, sampling has 

been done with replacement and the process has been repeated 1000 times, as suggested for the 95% 

confidence interval by Carpenter and Bithell (2000). From each sub-sample the geometric mean has been 

estimated. A set of 1000 geometric mean values has been obtained and the 95% confidence interval has been 

derived by calculating the 2.5 and 97.5 percentiles. The procedure has been repeated changing the number of 

observations (𝑛). For each plot, the trend of the confidence interval has been derived varying the number of 
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observations 𝑛 from 2 to the maximum number of data available. The three trends obtained have been then 

normalized by the geometric mean of Ks of each plot to facilitate visual comparisons.  

A further analysis has been performed using plot 2 to determine for different plot areas the minimum 

number of measurements requested to derive K̅s. This plot was the one with the largest data-set. Six sub-

areas of 55, 110, 165, 215, 280 and 345 m2 have been considered, with larger sub-areas always containing all 

the smaller ones. In each sub-area, 4, 5, 6, 7, 8 and 9 measurements have been drawn, and the 95% 

confidence intervals have been estimated as above specified for a total of 36 combinations area - sample 

number. Finally, the widths, A95, of the confidence intervals calculated as the difference between the 97.5 

and 2.5 percentiles, have been plotted against area for different sample numbers. The curves describe how 

the confidence in the estimation of K̅s decreases when an equal number of measurements are performed on 

plots of increasing dimensions or how many samples are needed to obtain a given accuracy.  

4 Results and Discussion 

4.1 Controls on the spatial variability of saturated hydraulic conductivity 

Figure 3 suggests that soil physical characteristics do not have a direct effect on Ks variability. A 

wider Ks variation range seems to be related to lower om (Figure 3a), higher si (Figure 3c) or lower sa 

(Figure 3d), however this may be caused by the variation of the physical characteristics with land use, rather 

than by a direct dependency of Ks on texture. Most likely, considering that arable areas are characterized by 

lower percentages of om and sa, and higher percentage of si, the corresponding wider variation range could 

be an expression of the treatment effect due to land use (investigated later), instead of a reflection of changes 

in soil textural composition. The weak relationship between Ks and soil textural composition is in contrast 

with experimental evidence of a strong connection between Ks and particle size distribution (Rahmati et al., 

2018), and is likely related to the small variation of soil characteristics in the catchment. On the other hand, 

Ks is somewhat dependent on the slope angle (Figure 3e). In particular, higher values of Ks were observed at 

close to horizontal areas, while the Ks range decreases with increasing slope angle s. The relationship 

between slope angles and the textural components is shown in Figure 4. No clear dependency of s on any of 

the considered soil characteristics can be detected, therefore, the influence of s on Ks is not related to 

changing soil attributes with slope but could be due to variations in soil properties not captured by texture. In 
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this context differences in soil packing and presence of macropores, both influenced by random components 

that cannot be objectively quantified, should have generally a major role and explain also the Ks 

heterogeneity within each plot. On the other hand, it is not expected that the significant decrease of Ks with 

increasing s, highlighted by Morbidelli et al. (2015, 2016) under conditions of surface water moving 

downslope, can be deduced by measurements of Ks performed with classical devices in the absence of 

overland flow.  

Notwithstanding the limited spatial variation of the physical and topographical soil attributes, 

saturated hydraulic conductivity varies substantially, with values ranging over two orders of magnitude, from 

a minimum of 1 mm h-1 to a maximum of 130 mm h-1 (Table 2). The high spatial variability of Ks is a well-

known characteristic of this parameter, regardless of the measurement technique applied, the geographical 

location, the land use or the soil type (Baiamonte et al., 2017; Papanicolaou et al., 2015), therefore, this 

parameter is considered as a random variable depending also on random factors that cannot be quantified.  

Table 2 further shows the differences in the Ks variability between arable and grassy plots. The Ks 

minimum and maximum observed in arable lands are significantly larger than those obtained in grassy plots 

with values increased more than 50%. This result can be explained by the fact that, after the harvest, i.e. the 

condition in which the infiltration measurements were performed, the whole root system of winter crops 

including stubbles was present. Therefore, the presence of the root system, typically very deep (see f.i. 

Thorup-Kristensen et al. (2009) for winter wheat), allowed the establishment of a preferential flow regime 

more efficient than that of grassy soils, where the maximum depth of the root system was much lower, with 

values of a few tens of centimeters ( see also Brown et al., 2010; Morbidelli et al., 2014). In addition, the 

behavior of the arable lands is justified by the regular mixing/loosening of the plough layer that takes place 

twice a year, either through ploughing or chiseling, with the result that the pore size distribution can be 

characterized by more medium pores and less fine pores than grassland. On the other hand, the grassy plots 

do not exhibit a plough layer but distinct hydromorphic features more or less close to the surface. The 

uniform distribution of the root system that remains in the field, coupled with the periodic land management 

of the investigated soils, is also responsible for a more homogeneous distribution of Ks across the area. The 

lower variability is reflected by the coefficient of variation that in the arable fields assumes values reduced of 

about 25% with respect to those associated to the grassland areas. Land management operations repeated 
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season after season, such as tillage or plowing, in addition to a uniform land cover of crops having the same 

growing period and therefore similar depths of the root system appear to reduce spatial variations due to 

different plant varieties and soil transformation mechanisms affecting the land surface, e.g. soil compaction, 

crust formation or soil swelling. 

A site-by-site examination reveals very similar minima of saturated hydraulic conductivity on almost 

every plot (Table 3). On the other hand, the maxima vary greatly between different plots. On each plot, the 

coefficient of variation assumes values CV ≥ 0.5 that closely reflect the value associated to the entire 

catchment. This indicates that the high Ks spatial variability is still traceable when the observation plots are 

individually considered. More information about plot differences and similarities is provided by Figure 5, 

which shows the boxplots of Ks on each measurement plot. As mentioned before, the minima vary little 

between plots, while the maxima vary a lot. There are differences related to land use: the first quartile in 

grassy fields (except plot 7) is less than or equal to the minima observed on arable plots 5 and 8, indicating 

that at least 25% of the Ks values observed in natural conditions is lower than the minimum values observed 

when agricultural practices become operative. Moreover, about 50% of the Ks values observed on arable 

plots 5 and 8 are greater than the maximum values (excluding values that seem to be possible outliers even if 

for all the analyses they have been considered because included in the Ks observed range) measured on 

grassy plots 1, 2, 3, 6, 7 and 9 due to the fact that the median is greater than or equal to the maximum of each 

mentioned grassy plot. The boxplot analysis highlights a significant variability among the different 

measurement plots but it does not clarify if the detected variation is caused by specific physical and 

topographical characteristics, by different land uses or simply by the random nature of saturated hydraulic 

conductivity. 

 In order to understand whether the variability of Ks across the catchment is more related to the 

random nature of the parameter than to the measurement location or vice versa, an analysis of the variance 

has been carried out. The first step of the analysis has been therefore aimed at determining whether the plot 

characteristics have a significant influence on Ks spatial variability.The whole set of measurements has been 

divided into J = 12 groups, representing the twelve measurement plots. Table 4a shows the results of the 

analysis of variance which has been carried out on the log-transformed data. The ANOVA assumptions of 

normally distributed residuals and homoscedasticity have been tested with the Shapiro-Wilk test (Shapiro 
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and Wilk, 1965) and the Breusch-Pagan test (Breusch and Pagan, 1979), respectively. The variance between 

different plots, σb
2=4.1, is almost three times higher than the variance within each plot, σw

2 = 1.3. This means 

that the largest share of variability is traceable to the physical, topographical and land cover differences 

between the plots. An additional evidence resides in the fact that the value of F, equal to 3.1, is greater than 

the critical value of 1.9, and therefore the null hypothesis of absence of treatment effect, i.e. the effect of plot 

location in the present case, must be rejected. 

 In the interest of further analyzing the origin of the treatment effect, the main variability source 

represented by the land use has been considered. The whole set of Ks observations has been divided into 

arable and grassland areas (J = 2), regardless of the specific type of crop cultivated in the field and the type 

of natural vegetation. Table 4b shows the ANOVA results when land use is considered as source of 

variability. The variance associated with the measurement error and the random nature of Ks, i.e. σw
2 , is 1.4, 

and is thus almost negligible compared to σb
2= 23.7 indicating that land use is most likely the main driver for 

the observed Ks variations across the catchment. The value of the F-ratio of 17.2 is much larger than the 

critical F of 3.9 associated with a significance level of 5%, indicating that the group effect is not negligible 

and the means of the two groups are significantly different from each other. 

Finally, since both land use and measurement plot location are responsible for a non-negligible 

treatment or group effect, it is interesting to understand if both factors cause saturated hydraulic conductivity 

to vary in space, or rather if the two are related with each other and Ks spatial variability is actually due to 

only one of them. In other words, we want to understand if Ks varies with plot location because of different 

physical and topographical soil characteristics specific of each plot or only because every plot exhibits a 

different land use. To this end, the whole sample of Ks observations has been split into two sub-samples – 

the first one consisting of measurements performed in grassland areas and the second of measurements 

performed in arable areas – and within each sub-sample an analysis of variance has been carried out 

considering as source of variation the plot location. Results of the analyses are shown in Table 4c-d. In both 

cases, variances associated with treatment (between) and error (within) have approximately the same values, 

and the F-ratio is always lower than the critical value. These results indicate that plot location does not 

explain the spatial variability and that measurements on different plots with the same land use can be 
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considered as sampled from the same population because the null hypothesis of equality of each group mean 

to the grand mean cannot be rejected.  

The great influence of land use on the observed Ks variability is evident when two Probability Density 

Functions (PDFs) of Ks are associated to observations divided into the two sub-samples previously defined. 

Saturated hydraulic conductivity, that is usually assumed as log-normally distributed (Sharma et al., 1987; 

Dagan and Bresler, 1983), is characterized by the PDFs of both grassy and arable fields which tend to be 

bimodal but can be in any case well approximated by log-normal distributions, as tested with the Shapiro-

Wilk test (Shapiro and Wilk, 1965) on the log-transformed data. In addition, as shown in Figure 6, they 

exhibit different shapes. In arable fields, the PDF is flatter, the peak is lower and less pronounced, the 

variation range is larger and the median is 34.5 mm h-1 as compared to 12 mm h-1 in grassy fields (Table 2). 

This means that agricultural practices and a homogeneous land cover influence the random nature of 

saturated hydraulic conductivity, which still varies randomly inside each group. Clearly, land use strongly 

influences Ks in agricultural settings and data collected in arable and grassland areas should not be 

considered as deriving from the same population. 

4.2 Minimum number of samples for estimating areal average saturated 

hydraulic conductivity  

The uncertainty analysis aimed at determining the minimum number of samples required for 

estimating a reliable Ks geometric mean, K̅s, for a specific area has been carried out using the data from plots 

2, 11-12 and 7. These plots had the same land use, different areas (about 500 m2, 200 m2 and 80 m2, 

respectively) and different number of total observations. However, considering that the measurements were 

performed with the same spatial resolution, the plots approximately had the same measurement density 

(about 1 observation per 10 m2). Figure 7 shows the 95% confidence interval of K̅s normalized by its 

geometric mean of the specific plots. For a specific number of measurements, 𝑛, the plot with smaller area 

results in a narrower normalized confidence interval. For example, for 𝑛=6, the width of plot 7 normalized 

confidence interval of 1.2 is much narrower than those of plots 2 and 11-12 (2.2 and 2.0, respectively). 

Although the normalization influences the width of the confidence interval because of the different 

values of the geometric mean of the three plots (Table 3), it does not affect the results in terms of the 
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reliability exhibited by the same value of 𝑛 with changing areas. Specifically, for 𝑛=6 the widths of the 

confidence intervals without normalization by the geometric mean have different trends (29.7, 34.8 and 21.3 

mm h-1 for plots 7, 11-12 and 2, respectively), but the corresponding average relative errors of the geometric 

means of the three plots (62, 107 and 117%, respectively) confirm a higher reliability of the geometric mean 

estimates for smaller areas. These outcomes are likely related to the lower variability captured in grassy 

fields when a smaller area is sampled while, in larger areas, local soil heterogeneities (e.g. macropores, 

wormholes, cracks, local slope) have a higher chance to be encountered. Furthermore, the differences appear 

to be fairly limited if plots 11-12 and 2 are compared in terms of both the width of the normalized 95% 

confidence interval (Figure 7) and the average relative errors. This suggests that, beyond a certain extent, all 

the local soil heterogeneities characterizing the plot are captured. 

This study does not involve a specific analysis of spatial correlations because of the relatively low 

number of samples on the smaller plots. The hypothesis of independent observations, upon which the 

bootstrap method is based, was adopted following Ahmed et al. (2015).   

Based on the hypothesis of independent data, the confidence interval of plot 2, characterized by a 

sample statistically significant for the analysis of the frequency distribution, has been also computed 

adopting a Gaussian distribution for the log-transformed Ks data. Its trend is shown in Figure 8 together with 

that provided by the non-parametric bootstrap method applied to log-transformed Ks data. As expected, no 

significant differences can be observed.  

Figure 9 shows the reduction of the confidence interval with increasing the number of measurements 

for the three plots. The reduction has been obtained as the difference between the width of the non-

normalized confidence interval associated with 𝑛 measurements and the width associated with 𝑛-1 

measurements. On each plot, the reduction is large for small 𝑛. For example, if 4 measurements are used to 

calculate the confidence interval instead of 3, the width of the confidence interval decreases by 5, 7 and 4.3 

mm h-1 for plots 2, 11-12 and 7, respectively. On the other hand, as 𝑛 increases, the reduction decreases and 

tends asymptotically towards zero. This is particularly evident from the interpolated curve of plot 2, even 

though the same behavior is detected for plots 11-12 and 7. From this it can be deduced that the benefit – in 

terms of width reduction – gained by performing one extra measurement on each plot is high for small 𝑛 and 

decreases with plot extent up to a point, specific for each plot, where the average reduction rate becomes 
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almost constant, i.e. the interpolated curve becomes horizontal. Therefore, the 𝑛 associated with this point 

can be considered as the minimum number of measurements necessary to enter the “zone” where the 

confidence interval is stable. For example, the interpolated curve of plot 2 is almost constant for 𝑛 greater 

than 12, suggesting that the reduction of the confidence interval width for more than 12 measurements is 

negligible. 

A further remark concerns the possible influence of spatial correlations on the analysis. The presence 

of spatial correlations would have the effect of reducing the width of the confidence interval for a specific 𝑛 

as compared to uncorrelated data (“single realization case” of Skøien and Blöschl, 2006). The same 

confidence in the estimates of the geometric mean would be therefore achieved with a smaller number of 

observations. Consequently, the minimum number of measurements would depend on the spatial correlation 

structure of the investigated plot which would make the application of our results to other areas difficult. On 

the other hand, the assumption of independent data allows to transfer the results regardless of the plot 

correlation structure, even though they may represent an upper limit of the density of required measurements 

if correlations are present. 

 In order to gain insight into the relationship between grassy and arable fields in terms of accuracy in 

the K̅s estimation, the same uncertainty analysis has been carried out on plots 5 and 7, which possess the 

same number of observations, the same area, but different land use. Figure 10 shows that the confidence 

intervals for the grassland areas are wider than for the arable areas, independently of the number of 

measurements 𝑛 used for the derivation, which is due to the larger variability of Ks highlighted in the spatial 

analysis of section 4.1 for the grassland areas. This result justifies the choice of focusing the consecutive 

analysis only on grassy fields, because, for the same plot size, the minimum number of measurements 

derived for natural conditions always ensures a greater accuracy in arable environments. 

In planning a field campaign one must decide the number and the location of the measurements in 

relation to the time required to collect a single observation and the time available. The second step of the 

uncertainty analysis is aimed at assisting in this choice. In order to be able to compare the combined effect of 

plot size and number of measurements on the accuracy of the final areal estimation of K̅s, six sub-plots have 

been derived from plot 2 in an attempt to avoid effects of temporal variation of Ks on the investigated spatial 

variability. Ideally, the only distinguishing aspects of the sub-plots are size and total number of 
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measurements available. For each sub-plot the 95% confidence intervals of K̅s normalized by the geometric 

mean of the specific sub-plot has been generated through the non-parametric bootstrap method. The width of 

the normalized 95% confidence interval, A95, obtained with a specific number of measurements 𝑛 as a 

function of the plot size is shown in Figure 11. On a plot of specific dimensions, a better estimate of the 

average saturated hydraulic conductivity can be achieved by increasing the number of measurements in the 

area, in accordance with the findings of Skøien and Blöschl (2006). For example, if a plot of 165 m2 is 

sampled at 5 locations, the width of the confidence interval is about twice the average Ks, but if 8 

measurements are made on the same plot the width is halved (slightly less than 1·K̅s), i.e. the reliability 

associated with the K̅s estimation is almost doubled. On the other hand, when the same number of samples is 

taken in increasing areas, the width of the confidence interval increases as well, indicating how the samples 

progressively lose the ability of representing the true value of K̅s. If 7 measurements are performed over an 

area of 110 m2, the width of the confidence interval is 1.1·K̅s, but the uncertainty almost doubles whenever 

the same number of samples is taken on a plot of 345 m2 (A95 = 2.1·K̅s). 

As mentioned before, the confidence intervals are obtained with the non-parametric bootstrap 

method which is based on the hypothesis of independent data. Although the increase in uncertainty with 

increasing areas could be partially due to a progressive decorrelation, this is not the case because in the 

derivation of the confidence intervals spatial correlations are not considered. One possible explanation may 

be the increased likelihood of encountering soil local heterogeneities in larger areas. Additionally, if one 

considers a sub-area of plot 2 of 120 m2 the contained measured Ks are characterized by a variance of about 

170 mm2 h-2. When the sub-area is extended up to 300 m2 the variance increases as well and it is equal to 350 

mm2 h-2. Finally, if the sub-area is further extended up to 450 m2 the variance reaches the value of 410 mm2 

h-2, and for greater areas the variance value fluctuates in the range 350 – 400 mm2 h-2. This trend confirms 

that when the sampled area increases more variability is encountered and therefore the uncertainty on the 

estimation of the Ks geometric mean value increases as well. 

Figure 11 is also useful to derive a minimum number of samples that have to be taken in an area of 

specific dimensions for a tradeoff between accuracy (or uncertainty) and time required for the measurements. 

Selection of the accuracy level should consider the typical K̅s value of the study since the average error is 

relative to it. For example, if A95 is assumed equal to 1.5 for a silty loam soil, for which a typical Ks value of 
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about 1.6 mm h-1 is expected (Corradini et al., 1997), the estimated value of K̅s can vary on average between 

0.4 and 2.8 mm h-1. However, if the same width is chosen for a sandy loam soil, for which a typical Ks value 

of about 25 mm h-1 is expected (Corradini et al., 1997), the estimated value of K̅s will vary on average 

between 6.25 and 43.75 mm h-1. Furthermore, the level of accuracy should be selected in relation to the final 

purpose of the measurement campaign. For instance, if the peak discharge of a stream has to be estimated by 

a rainfall-runoff model for designing a weir system along the stream, the required accuracy of K̅s could be 

inferred from the required accuracy of the flood estimate by error propagation. 

The accuracy level suggested by Ahmed et al. (2015) varies in the range of 1.8-2.2. When the 

reference value is taken as 1.8, Figure 11 suggests that for a plot of 110 m2 at least 5 measurements are 

needed to obtain a width of the normalized 95% confidence interval equal to or smaller than the reference 

value. Similarly, on a plot of 280 m2 at least 8 samples should be taken in order to estimate average saturated 

hydraulic conductivity.  

5 Conclusions 

In this study 131 saturated hydraulic conductivity measurements were performed in a small Austrian 

watershed with double-ring infiltrometers. This device was chosen due to the measurement repeatability, low 

cost, which allowed parallel measurements, and ease of installation and operation in natural environments. 

Measurements were carried out on 12 plots, with a 3 m spatial resolution, trying to avoid local macroporosity 

and preferential flow paths as well as agricultural machinery tracks. Observations were collected in both 

grassland and arable areas to account for land cover effects on the variability of Ks.  

While soil texture is not significantly variable in the catchment, Ks varies by two orders of magnitude, 

with a minimum of 1 mm h-1 and a maximum of 130 mm h-1. The variation range in arable areas is wider 

than in grassland (pasture, forest) areas. The minima are similar, but the maximum value of Ks in cultivated 

plots is 50% greater than those in the grassy plots. Soil management practices and uniform land cover are 

considered the main causes of the lower spatial variability of Ksin the cultivated areas, where CV assumes 

values reduced of about 25% with respect to those obtained in the areas with natural vegetation. 

An analysis of variance has been also carried out with the purpose of understanding the role of plot 

characteristics, including land cover, on the variability of saturated hydraulic conductivity. The results show 
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that the main control is the land cover and the plot location influences Ks only because different plots are 

characterized by different land uses. The great influence of land cover is also reflected by the probability 

density functions considered separately for grassland and arable areas. Although both PDFs follow a log-

normal distribution, their shapes are rather different, with a median of 12 mm h-1 in grassy fields and 34.5 

mm h-1 in arable fields. Therefore, two separate PDFs should be considered to characterize the probability 

distribution of Ks measurements performed with a double-ring infiltrometer in natural or agricultural 

settings. 

Finally, an uncertainty analysis has been performed aimed at determining the minimum number of 

measurements necessary for estimating the geometric mean of Ks for a specific area. From the analysis of 

three grassy plots with the same measurement density, it is clear that the uncertainty, expressed in terms of 

width reduction of the 95% confidence interval, decreases rapidly as the number of measurements increases 

up to a certain value. Here the reduction stabilizes and, after this point, the increasing of the number of 

observations used in the estimate provides little benefit in accuracy compared to the cost, in terms of time 

and resources, of each additional measurement. The width of the confidence interval obtained with a specific 

number of measurements increases with plot size most likely because of the higher chance to encounter soil 

local heterogeneities such as macropores, wormholes, different root systems or preferential flow paths. The 

increase appears to be limited beyond a certain extent, suggesting that all the local soil heterogeneities 

characterizing the plot are captured, even though further analyses on this should be made. 

The chart of the confidence interval width as a function of number of measurements and plot size can 

be used as a support in sampling design to obtain a reliable K̅s with the minimum number of samples. 

The chart could be also used for estimating the minimum number of DRI measurements in other 

catchments that exhibit geo-morphological characteristics similar to those characterizing this study, i.e. an 

agricultural setting, slope angles less than 10° and silty soils. If spatial correlations of Ks are present, the 

proposed procedure represents an upper limit of the uncertainty to be expected. Finally, the methodology 

adopted here could be of interest to develop similar investigations in different areas. 

A limitation of this work is that the Ks measurements through the catchment were not performed at the 

same time. Therefore a distortion of the spatial pattern of Ks cannot be ruled out because of possible changes 

of the local values. This is a problem that cannot be completely solved, at least considering the limits of the 
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currently available devices, and that in any case should not have significantly affected the main features of 

the Ks spatial variability field obtained in this study. 
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values; Arable land = Ks values measured in arable areas; Grassland = Ks values measured in grassy areas; 

Total = all Ks values. 
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G.mean = geometric mean. 

 

Table 4 – Results of ANOVA analyses. df = degree of freedom (dfb; dfw; dft); SS = sums of squares 

(SSb; SSw; SSt); σ
2 = variance (σb

2; σw
2 ); F = variance ratio; Fcrit = critical value of the F-ratio. All variances 
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Figure 1 – Measurement sites in the catchment. Dark-grey circles represent plots located in arable areas, 

light-grey triangles represent plots located in grassland areas. The catchment location in the Lower Austria 

region is also shown. 

 

Figure 2 – Pictures of some measurement sites (1) and correspondent scheme of measurements performed (2) 

for different environmental conditions present in the plots: (a) plot 2, the largest plot located in the proximity 

of the forested area of the catchment and featuring a grassy meadow land; (b) plot 5, located in the cultivated 

area of the catchment; (c) plots 11 and 12, both located in a naturally vegetated orchard. 

 

Figure 3 – Saturated hydraulic conductivity, Ks, observations plotted against (a) organic matter content, om; 

(b) clay content, cl; (c) silt content, si; (d) sand content, sa; (e) slope angle, s; (f) elevation, el. Dark-grey 

circles represent plots located in arable areas, light-grey triangles represent plots located in grassland areas. 

 

Figure 4 – Slope angles plotted against (a) organic matter content, om; (b) clay content, cl; (c) silt content, si; 

(d) sand content, sa. 

 

Figure 5 – Boxplots of saturated hydraulic conductivity, Ks, for the different measurement plots. Dark-grey 

boxplots represent plots located in arable areas, light-grey boxplots represent plots located in grassland areas. 

The box represents the interquartile range, i.e. difference between the third and the first quartiles. The 

horizontal black line represents the median of each plot. The dark-grey dots, usually representing possible 

outliers, were nevertheless considered as acceptable occurrences of Ks as they lie in the typical Ks domain. 

 

Figure 6 – Probability Density Functions (PDFs) of observed saturated hydraulic conductivity, Ks, values on 

both arable (dark-grey) and grassy (light-grey) fields. 

 

Figure 7 – Normalized 95% confidence intervals of the saturated hydraulic conductivity geometric mean Ks 

obtained via non-parametric bootstrap method for 3 grassy plots. 

 

Figure 8 – 95% confidence interval of the saturated hydraulic conductivity geometric mean obtained 

applying the non-parametric bootstrap method (solid curve) and for a Gaussian variable (dashed curve). Plot 

2, log-transformed data. 
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Figure 9 – Reduction of the width of the non-normalized confidence interval of the saturated hydraulic 

conductivity geometric mean obtained using one extra measurement in the bootstrap method. For a specific n 

the corresponding point represents the difference between the width associated with n measurements and 

with n-1 measurements. 

 

Figure 10 – Normalized 95% confidence intervals by the Ks geometric mean, obtained via the non-

parametric bootstrap method for a grassy and an arable plot. The x-axis represents the number of 

measurements used for each plot. 

 

Figure 11 – Width of the 95% confidence intervals normalized by the saturated hydraulic conductivity, Ks, 

geometric mean plotted against plot size. Lines represent the number of measurements used for the 

evaluation of the confidence interval and the geometric mean.  
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Tables 

Table 1 – General statistics of the physical and topographic soil characteristics available in the same locations where the infiltration 

measurements were performed. Min = minimum value; Max = maximum value; Mean = arithmetic mean; CV = coefficient of 

variation; om = organic matter content; cl = clay content; si = silt content (as complementary to 100% of clay and sand); sa = sand 

content; s = slope angle; el = elevation. 

Statistics om (%) cl (%) si (%) sa (%) s (°) el (m a.s.l.) 

Min 1.9 17.6 68.7 6.0 2.4 263.1 

Max 3.4 23.0 73.8 11.5 13.0 316.4 

Mean 2.6 20.3 71.3 8.4 6.1 279.3 

St. dev. 0.4 1.1 1.5 1.2 1.9 16.3 

CV (%) 13.8 5.6 2.1 14.7 31.7 5.8 

 

Table 2 – General statistics of the Ks values measured with double-ring infiltrometer. Min = minimum value; Max = maximum 

value; Mean = arithmetic mean; CV = coefficient of variation; Skew = skewness; Mean log = arithmetic mean of the log-transformed 

values; CV log = coefficient of variation of the log-transformed values; Arable land = Ks values measured in arable areas; Grassland 

= Ks values measured in grassy areas; Total = all Ks values. 

Statistics Arable land Grassland Total 

Min (mm h-1) 2.0 1.0 1.0 

Max (mm h-1) 130.0 84.0 130.0 

Mean (mm h-1) 46.9 20.2 25.1 

St. dev. (mm h-1) 35.5 20.3 25.8 

CV (%) 75.6 100.3 102.7 

Skew (-) 0.8 1.1 1.5 

Median (mm h-1) 34.5 12.0 15.0 

Mean log (-) 3.5 2.4 2.6 

CV log (%) 27.7 50.6 47.9 

 

Table 3 – General statistics of the Ks values, grouped by plot. n. obs. = number of observations in each plot; Min = minimum value; 

Max = maximum value; Mean = arithmetic mean; CV = coefficient of variation; G.mean = geometric mean. 

Plot 1 2 3 4 5 6 7 8 9 10 11 12 

n. obs. 8 40 4 9 9 8 9 6 9 9 10 10 

Min (mm h-1) 1.5 1.0 6.0 2.0 18.0 2.0 3.0 12.0 1.8 3.0 3.0 2.0 

Max (mm h-1) 12.0 78.0 42.0 87.0 118.5 46.5 48.0 130.0 58.5 66.0 54.0 84.0 

Mean (mm h-1) 5.8 17.0 23.6 35.7 51.8 18.4 30.3 56.4 16.0 22.9 20.2 36.8 

St. dev. (mm h-1) 3.5 18.6 18.8 28.2 32.2 16.7 15.1 49.8 18.5 28.7 19.7 26.6 

Median (mm h-1) 5.3 12.0 23.3 22.5 51.0 12.8 34.5 45.8 7.0 4.0 12.0 40.5 

CV (%) 60.8 109.0 79.4 78.9 62.2 90.6 49.8 88.3 115.7 125.3 97.6 72.2 

G.mean (mm h-1) 4.8 9.1 17.1 23.4 43.5 12.3 24.0 36.6 8.9 9.4 11.5 22.7 

 

 

 

 

 

 



  

30 

 

 

Table 4 – Results of ANOVA analyses. df = degree of freedom (dfb; dfw; dft); SS = sums of squares (SSb; SSw; SSt); σ
2 = variance 

(σb
2; σw

2 ); F = variance ratio; Fcrit = critical value of the F-ratio. All variances (SS, 𝜎2) relate to the logarithms of Ks. 

(a) All measurements grouped by plot 

Source of variation df SS σ2 F Fcrit 

Plot (between) 11 44.7 4.1 3.1 1.9 

Error (within) 119 156.9 1.3   

Total 130 201.5    

      

(b) All measurements grouped by land use  

Source of variation df SS σ2 F Fcrit 

Land use (between) 1 23.7 23.7 17.2 3.9 

Error (within) 129 177.8 1.4   

Total 130 201.5    

      

(c) Grassland measurements grouped by plot 

Source of variation df SS σ2 F Fcrit 

Plot (between) 8 19.1 2.4 1.7 2.0 

Error (within) 98 137.0 1.4   

Total 106 156.2    

      

(d) Arable land measurements grouped by plot 

Source of variation df SS σ2 F Fcrit 

Plot (between) 2 1.8 0.9 1.0 3.5 

Error (within) 21 19.9 0.9   

Total 23 21.7    
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Figures 

 

Figure 1 – Measurement plots in the catchment. Dark-grey circles represent plots located in arable areas, light-grey triangles 

represent plots located in grassland areas. The catchment location in the Lower Austria region is also shown. 
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Figure 2 – Pictures of some measurement sites (1) and correspondent scheme of measurements performed (2) for different 

environmental conditions present in the plots: (a) plot 2, the largest plot located in the proximity of the forested area of the catchment 

and featuring a grassy meadow land; (b) plot 5, located in the cultivated area of the catchment; (c) plots 11 and 12, both located in a 

naturally vegetated orchard. 

Plot 2 

Plot 5 

Plot 12 

Plot 11 
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Figure 3 – Saturated hydraulic conductivity, Ks, observations plotted against (a) organic matter content, om; (b) clay content, cl; (c) 

silt content, si; (d) sand content, sa; (e) slope angle, s; (f) elevation, el. Dark-grey circles represent plots located in arable areas, light-

grey triangles represent plots located in grassland areas. 

 

 

Figure 4 – Slope angles plotted against (a) organic matter content, om; (b) clay content, cl; (c) silt content, si; (d) sand content, sa. 
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Figure 5 – Boxplots of saturated hydraulic conductivity, Ks, for the different measurement plots. Dark-grey boxplots represent plots 

located in arable areas, light-grey boxplots represent plots located in grassland areas. The box represents the interquartile range, i.e. 

difference between the third and the first quartiles. The horizontal black line represents the median of each plot. The dark-grey dots, 

usually representing possible outliers, were nevertheless considered as acceptable occurrences of Ks as they lie in the typical Ks 

domain. 

 

 

Figure 6 – Probability Density Functions (PDFs) of observed saturated hydraulic conductivity, Ks, values on both arable (dark-grey) 

and grassy (light-grey) fields.  

 

  

Figure 7 – Normalized 95% confidence intervals of the saturated hydraulic conductivity geometric mean Ks obtained via non-

parametric bootstrap method for 3 grassy plots. 
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Figure 8 – 95% confidence interval of the saturated hydraulic conductivity geometric mean obtained applying the non-parametric 

bootstrap method (solid curve) and for a Gaussian variable (dashed curve). Plot 2, log-transformed data.  

 

 

Figure 9 – Reduction of the width of the non-normalized confidence interval of the saturated hydraulic conductivity geometric mean 

obtained using one extra measurement in the bootstrap method. For a specific n the corresponding point represents the difference 

between the width associated with n measurements and with n-1 measurements. 
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Figure 10 – Normalized 95% confidence intervals by the Ks geometric mean, obtained via the non-parametric bootstrap method for a 

grassy and an arable plot. The x-axis represents the number of measurements used for each plot. 

 

 

Figure 11 – Width of the 95% confidence intervals normalized by the saturated hydraulic conductivity, Ks, geometric mean plotted 

against plot size. Lines represent the number of measurements used for the evaluation of the confidence interval and the geometric 

mean. 

 

 

 

Saturated hydraulic conductivity (𝐾𝑠) greatly influences infiltration modeling 

 

Spatial analysis is performed to understand the controls in agricultural setting  

 

Minimum number of measurements for plot-scale 𝐾𝑠 estimate is suggested  

 

 

 




