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Abstract 20 

 21 

Models for forecasting rainfall-induced landslides are mostly based on the identification of 22 

empirical rainfall thresholds obtained exploiting rain gauge data. Despite their increased 23 

availability, satellite rainfall estimates are scarcely used for this purpose. Satellite data should be 24 

useful in ungauged and remote areas, or should provide a significant spatial and temporal 25 

reference in gauged areas. In this paper, the analysis of the reliability of rainfall thresholds based 26 

on rainfall remote sensed and rain gauge data for the prediction of landslide occurrence is carried 27 

out. To date, the estimation of the uncertainty associated with the empirical rainfall thresholds is 28 

mostly based on a bootstrap resampling of the rainfall duration and the cumulated event rainfall 29 

pairs (D,E) characterizing rainfall events responsible for past failures. This estimation does not 30 

consider the measurement uncertainty associated with D and E. In the paper, we propose (i) a 31 

new automated procedure to reconstruct ED conditions responsible for the landslide triggering 32 

and their uncertainties, and (ii) three new methods to identify rainfall threshold for the possible 33 

landslide occurrence, exploiting rain gauge and satellite data. In particular, the proposed methods 34 

are based on least square (LS), quantile regression (QR) and nonlinear least square (NLS) 35 

statistical approaches. We applied the new procedure and methods to define empirical rainfall 36 

thresholds and their associated uncertainties in the Umbria region (central Italy) using both rain-37 

gauge measurements and satellite estimates. We finally validated the thresholds and tested the 38 

effectiveness of the different threshold definition methods with independent landslide 39 

information. The NLS method among the others performed better in calculating thresholds in the 40 

full range of rainfall durations. We found that the thresholds obtained from satellite data are 41 
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lower than those obtained from rain gauge measurements. This is in agreement with the literature, 42 

where satellite rainfall data underestimate the “ground” rainfall registered by rain gauges.  43 

 44 

Key words: Landslide prediction; Rainfall threshold; Satellite rainfall estimates; Threshold 45 

uncertainty 46 

  47 
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1. Introduction 48 

Prediction of landslide occurrence in widespread areas relies on the definition of empirical 49 

rainfall thresholds, which are defined through the analysis of past rainfall events that have 50 

resulted in slope failures. In Italy, every year landslides initiated by intense or prolonged rainfall 51 

produce casualties and economic damages (Salvati et al., 2010, 2013). In this country and 52 

elsewhere, forecasting rainfall-induced landslides, and determining the rainfall conditions 53 

responsible for the initiation of landslides remain a difficult task (Tabios and Salas, 1985; 54 

Morrissey et al., 1995; Aleotti and Chowdhury, 1999; Aleotti, 2004; Guzzetti et al., 2007, 2008; 55 

Frattini et al., 2009; Jaiswal and van Westen, 2009; Penna et al., 2011; Verworn and Haberlandt, 56 

2011; Berti et al., 2012; Peruccacci et al., 2012; Staley et al., 2013; Marra et al., 2014; Melillo et 57 

al., 2014; Vessia et al., 2014). Rainfall is measured on the ground using rain gauges, or estimated 58 

by combining information captured by multiple satellite sensors. Rainfall (ground) measurements 59 

or (remote) estimates can be used to predict the possible occurrence of landslides in an area. 60 

While ground rainfall data are commonly used for the prediction of landslides (Guzzetti et al., 61 

2007), only few studies show how satellite remote estimates can be used for landslide prediction 62 

over large areas (Kirschbaum et al., 2012). Moreover, satellite data should be particularly useful 63 

substituting traditional ground based measurements in ungauged and remote areas, while may 64 

provide a significant spatial and temporal reference in gauged areas. 65 

A large and growing body of literature has investigated the use of empirical rainfall thresholds to 66 

forecast rainfall-induced landslides, particularly over large areas. The most common types of 67 

thresholds are rainfall mean intensity (I) – rainfall duration (D) thresholds (Caine, 1980; Innes, 68 

1983; Crosta and Frattini, 2001; Aleotti, 2004; Guzzetti et al., 2007; Dahal and Hasegawa, 2008; 69 
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Guzzetti et al., 2008; Brunetti et al., 2010; Saito et al., 2010; Staley et al., 2013; Nikolopoulos et 70 

al., 2014; Segoni et al., 2014) or cumulated event rainfall (E) – rainfall duration (D) thresholds 71 

(Innes, 1983; Guzzetti et al., 2007; Floris and Bozzano, 2008; Li et al., 2011; Peruccacci et al., 72 

2012). In Italy, rainfall thresholds for possible landslide occurrence were defined for 73 

geographical areas of different extent, including national (Brunetti et al., 2010), regional (Ceriani 74 

et al., 1992; Calcaterra et al., 2000; Crosta and Frattini, 2001; Aleotti, 2004; Segoni et al., 2009; 75 

Brunetti et al., 2010; Tiranti and Rabuffetti, 2010; Berti et al., 2012; Martelloni et al., 2012; 76 

Peruccacci et al., 2012; Lazzari et al., 2013; Gariano et al., 2014; Melillo et al., 2014; Vennari et 77 

al., 2014), and local thresholds (Guadagno, 1991; Bolley and Oliaro, 1999; Deganutti et al., 2000; 78 

Biafore et al., 2001; Marchi et al., 2002; Giannecchini, 2005; Cevasco et al., 2010; Giannecchini 79 

et al., 2012; Rosi et al., 2012).  80 

For wide and diversified study areas, rainfall thresholds are still the most appropriate and largely 81 

used approach for landslide forecasting. Conversely, physically based models requires 82 

measuring/collecting all the environmental, geotechnical, hydrological (and possible other) 83 

parameters and they can be applied reasonably to small areas (at hillslope or small basin scale). 84 

Previous studies, in a larger and partially overlapped study area and hence in similar geo-85 

environmental conditions, analysed the dependence of rainfall thresholds on the lithology 86 

(Peruccacci et al., 2012). The authors conclude that only marginally lithological conditions affect 87 

rainfall thresholds and they suggest that a minimum number of 175 landslide events is required to 88 

limit the rainfall threshold uncertainty below 10%. This kind of investigation was not performed 89 

in this paper, given the limited amount of landslide information (187 rainfall-induced landslides) 90 

available in the period 2002–2010 in the selected study area, corresponding to the Umbria region 91 

(central Italy) extending for about 8,460 km2. 92 
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The main objective of this paper is to provide a new statistical procedure for (i) the identification 93 

of rainfall events responsible for slope failures and (ii) the definition of rainfall thresholds and 94 

their associated uncertainty using rain gauge measurements and satellite rainfall estimates and 95 

information on landslide occurrence. The proposed procedure is entirely automated and integrates 96 

a new statistical approach to define the rainfall threshold parameter uncertainty. Such approach 97 

relies upon the uncertainty of rainfall data, as opposed to the resampling approaches for the 98 

uncertainty estimation proposed so far in the literature (i.e. Peruccacci et al., 2012). The 99 

thresholds obtained reconstructing the rainfall events with the “automated procedure” are 100 

compared with those obtained using the so-called “expert method” (Brunetti et al. 2010). For this 101 

purpose, we exploit for the same period: (i) ground-based rainfall measurements obtained by a 102 

network of 60 rain gauges, and (ii) satellite rainfall estimates provided by NASA’s Tropical 103 

Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) covering an 104 

area from 50ºN to 50ºS, with a 0.25° × 0.25° spatial resolution. Although TRMM stopped 105 

providing data in April, 2015, the TMPA product continues to be run and is projected to carry on 106 

through early 2017. We did not consider NASA's Global Precipitation Measurement (GPM) 107 

mission derived rainfall products because currently these data are not available prior to 2014 108 

(Huffman et al., 2013).  109 

Separate ED thresholds for the possible occurrence of rainfall-induced landslides in the study 110 

area are determined from rainfall duration and cumulated event rainfall conditions derived from 111 

rain gauge measurements and satellite estimates, using three different statistical methods. The 112 

thresholds obtained for the different rainfall datasets using the three different statistical 113 

approaches are compared, their validation performances are evaluated, and their possible use to 114 

forecast landslide occurrence is discussed.  115 
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This paper is organized as follows. After a brief description of the study area (Section 2), we 116 

present the landslide information and the rainfall data available to us (Section 3). Next, we use a 117 

manual and an automated procedure to determine ED conditions that have resulted in landslides 118 

and the associated uncertainties (Section 4). Next, using the different sets of (D,E) pairs obtained 119 

from the rain gauge measurements and the satellite rainfall estimates; we test three different 120 

methods to determine ED rainfall thresholds, their uncertainties and their validation performances 121 

(Section 5). Then we discuss the results obtained, and specifically the advantages and the 122 

limitations of the three methods (Section 6). We conclude (Section 7) summarizing the main 123 

lessons learnt. 124 

 125 

2. Study area 126 

We performed our study in the Umbria region that extends for 8,456 km2 in central Italy (Fig. 1). 127 

In the study area, landscape is hilly or mountainous, with large valleys and intra mountain basins 128 

drained by the Tiber River and its tributaries. Elevation in the area averages 500 m a.s.l., and 129 

ranges from 50 to 2478 m a.s.l., at Monte Vettore. Climate is Mediterranean and rainfall falls 130 

mostly from October to December and from March to May. Five groups of rock types crop out in 131 

Umbria (Fig. 1), including carbonate rocks (CC), flysch deposits (FD), volcanic rocks (VR), a 132 

chaotic complex (CH), and post-orogenic sediments (PO). Each lithological group comprises 133 

different rock types varying in strength from hard to weak and soft rocks. Post-orogenic 134 

sediments include continental and marine clay, silt, sand, gravel, and travertine. Flysch deposits 135 

comprise well-stratified and graded marl, sandy shale, and mud orderly interbedded with 136 

greywacke’s, coarse and fine sandstone, calcarenite, and gypsum deposits. Carbonate rocks 137 
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comprise massive and layered limestone, chert, marl, and shale. The chaotic complex is a 138 

mélange of clay, shale, marl, sandstone, and calcarenite, and the volcanic complex includes lava 139 

flows, ignimbrites, and pyroclastic deposits (Guzzetti et al., 1996). Landslides are frequent and 140 

abundant in Umbria (Guzzetti et al., 1996, 2003) and are caused primarily by intense or 141 

prolonged rainfall (Cardinali et al., 2006; Peruccacci et al., 2012). Subordinately, slope failures 142 

are triggered by rapid snowmelt (Cardinali et al., 2000) and earthquakes (Esposito et al., 2000; 143 

Antonini et al., 2002). Landslides in Umbria are most abundant in forested and cultivated areas. 144 

In forested areas, landslides are mostly old and very old, while in cultivated areas old and very 145 

old landslides coexist with recent and active slope failures (Torri et al., 2006). 146 

 147 

3. Data 148 

3.1. Landslides 149 

We selected two independent datasets of rainfall-induced landslides in the Umbria region. The 150 

first dataset includes 170 data from the national catalogue of rainfall events that triggered 151 

landslides in Italy in the period 2002–2009 (Brunetti et al., 2010). We added 17 new events to the 152 

catalogue searching new information, and obtaining a total of 187 landslides in the period 2002–153 

2010 (yellow circles in Fig. 2A). We searched information on rainfall-induced landslides in 154 

national, regional, and local newspapers, and in reports of the local fire brigades. For each 155 

landslide, data listed in the catalogue include: (i) the date and the known or inferred time of the 156 

landslide occurrence (the latter if available), (ii) its geographical location, and (iii) the type of the 157 

failure, adopting the landslide classification proposed by Cruden and Varnes (1996). 158 
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Additionally, the dataset reports information on the uncertainty associated with the temporal and 159 

spatial identification of landslides. This first dataset was used for the reconstruction of the rainfall 160 

conditions responsible for landslides and then used for the calibration of the ED rainfall 161 

thresholds for the possible landslide occurrence proposed in this work. The second dataset, 162 

provided by the Umbria Functional Centre (UFC) of the Civil Protection Department, was used 163 

to validate the rainfall thresholds and the criteria/methods used to define the thresholds. This 164 

second dataset consists of 192 events at daily scale, that triggered rainfall-induced landslides in 165 

the Umbria region during the same period covered by the first dataset (orange circles in Fig. 2A). 166 

For this second landslide dataset, we have a limited knowledge on (i) the spatial and temporal 167 

accuracy of the collected information and (ii) the criteria used for the inventory collection. 168 

 169 

3.2. Rainfall 170 

Two independent sources of rainfall information were available to us. The first consisted of 171 

hourly rainfall measurements obtained by a network of 60 rain gauges in Umbria (Fig. 2B). This 172 

is part of a larger network of more than 2000 rain gauges in Italy managed by the Italian National 173 

Civil Protection Department and the regional governments. The second source of rainfall 174 

information consisted of satellite rainfall estimate products provided by the NASA Tropical 175 

Rainfall Measuring Mission (TRMM), Multi-satellite Precipitation Analysis (TMPA), TRMM 176 

version 6 (V6) 3B42. 177 

We decided to use the TRMM version 6 instead the last available TRMM version (TMPA-V7 178 

and TMPA-V7 Real Time (R-T) following the analysis performed by Rossi et al. (submitted). 179 

They found that the new TRMM rainfall estimates are closer to the data measured by rain gauges, 180 
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but they exhibit the lowest determination coefficients and the largest estimation variability 181 

compared to the TMPA-V6 and TMPA-V6-RT. This reflects in a simpler scaling/tuning process 182 

when using the older products. Moreover, Rossi et al. (submitted) suggest that rainfall events 183 

derived exploiting an automated procedure, using the different satellite rainfall data types, are 184 

statistically different as well as their spatial arrangements and patterns across the Italian territory. 185 

In particular, the new TRMM products TMPA-V7 and TMPA-V7-RT, compared to TMPA-V6 186 

and TMPA-V6-RT, failed to capture the dependence/conditioning given by the morphology 187 

identified by the rain gauge data. Finally, between the two TMPA-V6 product versions, we 188 

decided to use the research product rather than real-time, mainly because this incorporates gauge 189 

calibration.  190 

The TMPA-V6 product covers an area from 50ºN to 50ºS, with a 0.25° × 0.25° spatial resolution, 191 

and a 3-hours temporal resolution (Huffman et al., 2007, 2010). This product merges high-quality 192 

microwave and infrared precipitation estimates after calibration to the combined TRMM 193 

Precipitation Radar (PR) and TRMM Microwave Imager (TMI) precipitation product from the 194 

TRMM satellite, and factors in monthly precipitation gauge analyses to create the 3-hourly 195 

product. In the analysis, we select the rainfall data series corresponding to the 13 TRMM pixel 196 

centroids inside the Umbria regional boundary (Fig. 2B). For this study, we used rain gauge data 197 

and satellite rainfall estimates in the period from 2002 to 2010. 198 

 199 

4. Rainfall conditions responsible for landslides 200 

In order to determine the rainfall responsible for a landslide, the identification of the rainfall start 201 

time and the information on the landslide occurrence time are required (Aleotti, 2004; Guzzetti et 202 
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al., 2007; Brunetti et al., 2010; Saito et al., 2010; Shamsudin et al., 2010, Berti et al., 2012; 203 

Peruccacci et al., 2012; Rossi et al. 2012; Staley et al., 2013; Melillo et al., 2014; Nikolopoulos et 204 

al., 2014; Vessia et al., 2014). This task is not trivial and it is characterized by uncertainty 205 

(Aleotti, 2004; Godt et al., 2006; Guzzetti et al., 2008; Bach-Kirschbaum et al., 2012). For a 206 

rainfall event responsible for a landslide, D was determined by measuring the time between the 207 

moment, or period, of initiation of the failure(s) (rainfall end time, Te) and the time when the 208 

rainfall event started (rainfall start time, Ts), i.e. D = Te − Ts (Brunetti et al., 2010; Rossi et al., 209 

2012; Rossi et al., 2013; Rossi et al., 2014; Vessia et al., 2014). Generally, Te depends on the 210 

temporal accuracy associated with each landslide information (Brunetti et al., 2010). For 211 

landslides that failed after the end of the rainfall event, Te is taken to coincide with the end of the 212 

rainfall event. Precise identification of Ts was often problematic. A dry period between two 213 

successive rainfall values is required to separate different rainfall events. A dry period is a period 214 

without rainfall, or with rainfall below a minimum threshold level. In this work, we adopted two 215 

independent procedures to separate rainfall events and to determine rainfall conditions 216 

presumably responsible for the landslide occurrence. Both procedures used the same information 217 

i.e., (i) the catalogue of rainfall events with landslides in Umbria, (ii) the hourly rainfall 218 

measurements, and (iii) the TRMM satellite rainfall estimates. The first procedure, commonly 219 

used in literature (Brunetti et al., 2010; Peruccacci et al., 2012; Vennari et al., 2014) to 220 

reconstruct rainfall events with landslides and named “expert method”, is manual and heuristic 221 

and it is used here as a benchmark. The second procedure, i.e. the “automated procedure” 222 

introduced in this work is automatic (i.e. coded in R; R Core Team, 2015) and objective (Rossi et 223 

al., 2012).  224 

 225 



Rossi et al. Statistical approaches for rainfall thresholds using rain gauge and satellite data 
 

 
Release 2, Version 3 31 January 2017 12/43 
 

4.1. Expert method  226 

The manual procedure started with the selection of a single rain gauge according to: (i) the 227 

geographic distance to the landslide, not exceeding 15 km from the landslide, (ii) the elevation of 228 

the rain gauge, comparable to the elevation of the slope failure, and (iii) the location of the rain 229 

gauge with respect to the local topographical and morphological settings (Brunetti et al., 2010; 230 

Peruccacci et al., 2012; Vessia et al., 2014). For the satellite-based rainfall estimates, the centroid 231 

of each grid cell was considered a hypothetical (“virtual”) rain gauge, and the centroids closest to 232 

the landslides were selected. When the representative rain gauge or satellite centroid was 233 

identified, D (in hour), and E (in mm) were calculated. As aforementioned, the selection of Ts is 234 

difficult, particularly when the rainfall is not continuous. To account for different meteorological 235 

regimes, Brunetti et al. (2010) considered a two-day (48 h) period without rainfall to separate 236 

rainfall events during the period May–September, and a four-day (96 h) period between October 237 

and April. to identify rainfall events with landslides in Italy. In this analysis, we used the same 238 

settings. Fig. 3 shows the rainfall conditions selected exploiting the expert method, and 239 

calculated using rain gauge measurements (red dots in Fig. 3A) and satellite rainfall estimates 240 

(green dots in Fig. 3B), respectively. 241 

 242 

4.2. Automated procedure 243 

The first step in the automated procedure was the selection of a pool of rain gauges, or satellite 244 

rainfall centroids, considered representative of the rainfall responsible for each landslide in the 245 

catalogue. We chose a minimum of seven and a maximum of 12 rain gauges for each landslide. 246 

The representative rain gauges were selected within a planimetric distance of 10 km, and within 247 
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an elevation range of 100 m, from the geographical location of the landslide. If an insufficient 248 

number of rain gauges were found in the selected distance and elevation boundaries, the 249 

procedure increased progressively the search distance of 0.1 km step, and the elevation range of 5 250 

m step, to reach the requested minimum of seven rain gauges (Ri, i = 1,…,7; Fig. 4). Satellite 251 

centroids were selected using solely the planimetric distance of 10 km from the landslide. If an 252 

insufficient number of centroids were found, the procedure increased progressively the search 253 

distance of 0.1 km step until a minimum of centroids was selected (Si, I = 1,…,4; Fig. 4). 254 

The second step of the automated procedure was the identification of the rainfall conditions 255 

responsible for the  landslides in the catalogue as proposed by Rossi et al. (2012, 2013, 2014). As 256 

for the expert method, the procedure needs to identify Te and Ts. In this work, we used a dry 257 

separation period of 72h (Rossi et al., 2013, 2014), and two minimum rainfall levels of 0.2 mm 258 

and of 0.0 mm for the rain gauge measurements and the TRMM satellite rainfall estimates, 259 

respectively. 260 

The last step of the automated procedure was the determination of D and E of the rainfall events 261 

responsible for each landslide in the catalogue, reconstructed using the representative rain gauges 262 

and centroids. For each landslide, multiple (D,E) pairs that probably have resulted in slope 263 

instability were determined. For D and E, we calculated the median (D50 and E50), the 1st quantile 264 

(D25 and E25), and the 3rd quartile (D75 and E75). We assumed that the quantities D75 − D25 and 265 

E75 − E25 represent the uncertainty associated with D and E, respectively. Thus in the DE plane, 266 

rainfall conditions associated with landslides can be any pair in the rectangle identified by the 267 

two uncertainties. The ED rainfall conditions characterized by large uncertainties were excluded 268 

from the analysis. In particular, if the following conditions (Eqs. 1 and 2) are contemporarily 269 
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verified, the event is characterized by a large uncertainty, and hence discarded from the analysis: 270 

   −
   
 

<                  >    +
   
 

 (1) 

   −
   
 

<                  >    +
   
 

 (2) 

Fig. 5 shows the (D50,E50) rainfall conditions and their associated uncertainties selected 271 

exploiting the aforementioned procedure, and calculated using rain gauge measurements (red dots 272 

in Fig. 5A) and satellite rainfall estimates (green dots in Fig. 5B). The automated procedure 273 

allows the estimation of the uncertainty associated with the rainfall conditions that have probably 274 

resulted in landslides (Fig. 5). We maintain that this is an advantage over the expert method 275 

which identifies a single ED rainfall condition responsible for the slope instability (Fig. 3). 276 

 277 

5. Definition of rainfall thresholds 278 

We used the empirical rainfall data (rainfall measurements from rain gauges and rainfall 279 

estimates from satellite) reconstructed with the expert method (Fig. 3) and data reconstructed 280 

with the automated procedure (Fig. 5) to determine rainfall thresholds for possible landslide 281 

occurrence in Umbria.  282 

For rainfall conditions reconstructed with the expert method, we defined rainfall thresholds using 283 

the frequentist method proposed by Brunetti et al. (2010) and modified by Peruccacci et al. 284 

(2012). Thresholds are power law curves of the form: 285 

 = ( ± 'D) ( ±' ) (3) 

where E is the cumulated (total) event rainfall (in mm), D is the duration of the rainfall event (in 286 
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h), α is a scaling parameter (the intercept), γ is the slope of the power law threshold curve, and Δα 287 

and Δγ are the uncertainties associated with α and γ, respectively. The method allows defining 288 

thresholds at different non-exceedance probability levels and adopts a “bootstrap” non-parametric 289 

statistical technique (Efron, 1979; Efron and Tibshirani, 1994) to estimate the uncertainty 290 

associated with the threshold curve. Fig. 6 shows frequentist thresholds (F) at 5% non-291 

exceedance probability obtained exploiting rainfall conditions reconstructed with the expert 292 

method using rain gauges (Fig. 3A) and satellite estimates (Fig. 3B). Table 1 lists the relative 293 

threshold parameters defined with the frequentist method. 294 

For rainfall conditions obtained by the automated procedure we proposed and tested three new 295 

methods to define empirical rainfall thresholds. These new three methods allow to account for the 296 

uncertainty associated with D and E. The three methods include (i) a Least Square (LS) method 297 

(i.e. similar to the statistical approach used in F), (ii) a Quantile Regression (QR) method, and 298 

(iii) and a Nonlinear Least Square (NLS) method. These methods allow propagating the 299 

uncertainty associated with the ED rainfall conditions responsible for landslides to the thresholds. 300 

Conversely, the uncertainty of thresholds defined with the frequentist method applied to the 301 

rainfall conditions reconstructed with the expert method is obtained using a bootstrap resampling 302 

approach. 303 

To account for the uncertainty associated with D and E in the calculation of the rainfall 304 

thresholds, we used a specific statistical procedure. Starting from the empirical data set of n 305 

events, we generated 10,000 samples of n randomly selected events. For each sample, the 306 

synthetic values of D and E were sampled from their uncertainty ranges using a uniform 307 

distribution. We applied separately the three methods to define the rainfall thresholds and their 308 
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associated uncertainties. The significance levels of threshold parameters, obtained using the 309 

different statistical approaches, were estimated from the t-test statistics and corresponding (two-310 

sided) p-values (R Core Team, 2015).  311 

5.1. Least Square method (LS) 312 

The Least Square method (Wilkinson and Rogers, 1973; Chambers, 1992) consists of fitting each 313 

of the 10,000 synthetic samples with a power law curve: 314 

 =   Ȣ Eq. (4) 

The probability density distributions of α and γ parameters obtained from the 10,000 power law 315 

curves were calculated, and their median values   and   were chosen as the best LS fit. Next, we 316 

estimated the uncertainty associated with the fit defining αinf and γinf as the 5th percentile and Dsup 317 

and Jsup as 95th percentile of the two distributions. Then, for each (D50,E50) pair, we calculated 318 

the difference between E50 and the corresponding value on the LS fit (i.e., the fit residuals). 319 

Lastly, we calculated the probability density function of the residuals, allowing us to define 320 

thresholds for different non-exceedance probability levels (Brunetti et al., 2010). Fig. 7A,B 321 

shows the LS thresholds, and their uncertainties at 5% non-exceedance probability for the 322 

ground-based rain gauge measurements (Fig. 7A) and for the TRMM satellite rainfall estimates 323 

(Fig. 7B). Table 2 lists the parameters of the power law thresholds obtained using the LS model 324 

and their associated significance levels. 325 

Visual inspection of Fig. 7A,B reveals that the LS threshold captured reasonably well the general 326 

trend of the cloud of the empirical (D,E) data, but failed to catch a part the distribution of the 327 

empirical data, particularly at durations less than about 50 h and higher than about 400 h. In an 328 
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attempt to overcome the problem, we used a different threshold curve based on a Quantile 329 

Regression approach (Koenker and Bassett, 1978). 330 

5.2. Quantile Regression (QR) 331 

Quantile Regression was introduced in the 1970s as an extension to the classical linear regression 332 

model (Koenker and Bassett, 1978). Classical linear regression minimizes the sums of the 333 

squared residuals enabling us to estimate a model for conditional mean functions. Similarly, QR 334 

minimizes asymmetrically the weighted absolute residuals. This provides a way for estimating 335 

models for the conditional median functions (50th percentile), and for any other conditional 336 

quantile functions. 337 

In this work, we performed a QR for the 5th percentile, to define an empirical threshold at 5% 338 

non-exceedance probability level, for each of the 10,000 synthetic samples using the power law 339 

in Eq. (4). Next, adopting the same approach used for the LS method, we calculated the empirical 340 

probability density distributions of α and γ for the 10,000 power law curves, and we selected their 341 

median values   and   to represent the best QR model. Lastly, we estimated the uncertainty 342 

associated with the QR model by selecting Dinf and Jinf as the 5th percentile and Dsup and Jsup as 343 

the 95th percentile of the two distributions. Fig. 7C,D shows the QR thresholds and their 344 

uncertainties at 5% non-exceedance probability, for the rain gauge measurements (Fig. 7C) and 345 

for the TRMM satellite rainfall estimates (Fig. 7D). Table 2 lists the parameters of the power law 346 

thresholds calculated using the QR models and their associated significance levels. 347 

Fig. 7C,D shows that the QR threshold fitted reasonably well the lowest empirical (D,E) data for 348 

durations larger than about 12 h. For shorter durations, the QR threshold underestimates 349 

significantly the amount of rainfall required to initiate a landslide. The underestimation is a result 350 
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of the reduced number of empirical data points for D < 12 h. The underestimation may result in 351 

an excessive number of false alarms (Brunetti et al., 2010; Tiranti and Rabuffetti, 2010; Berti et 352 

al., 2012; Martelloni et al., 2012; Lagomarsino et al., 2013; Staley et al., 2013; Nikolopoulos et 353 

al., 2014; Segoni et al., 2014). In order to overcome this problem, we experimented a nonlinear 354 

threshold model based on a least-square approach. 355 

5.3. Nonlinear Least Square model (NLS)  356 

The power law thresholds calculated using the LS and the QR models, resulted inadequate 357 

because they poorly bordered the lowest empirical data, as shown in Fig. 7A–D. Therefore, we 358 

adopted a three-parameter power-law threshold model, similar to the threshold model proposed 359 

by Cannon and Ellen (1985), 360 

 =  + D   Eq. (5) 

Where t, α and γ are the threshold parameters. We estimated the three model parameters in the 361 

linear coordinates using a Nonlinear (weighted) Least Square estimation approach (Bates and 362 

Watts, 1988). For consistency with the previous methods, the NLS thresholds were defined at 5% 363 

non-exceedance probability level. Adopting the same approach used for the previous models, we 364 

calculated the empirical probability density distributions of the model parameters (t, α, γ) for the 365 

10,000 NLS curves obtained from the synthetic samples. In particular, for each of 10,000 366 

synthetic samples, we estimated the 5th percentiles of D and E, in a mobile kernel window 367 

moved along the duration axis (i.e. along x-axis in Fig. 7), starting from the (D,E) pair with 368 

lowest duration value to the pair with the highest one. To define the kernel window size we tested 369 

two different approaches using: (i) a fixed window size, and (ii) a variable window size 370 

containing a fixed number of (D,E) pairs. We repeated the threshold calculation exploiting these 371 
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two approaches using different kernel window sizes and different number of points. Best 372 

performances were obtained using a variable window size with 10 pairs. The (D,E) pairs 373 

(corresponding to the 5th percentiles) obtained for each synthetic sample were then fitted using 374 

the NLS method to estimate the three threshold curve parameters (Eq. 5). Table 2 lists the 375 

parameters for the power law NLS thresholds and their associated significance levels, while Fig 376 

7E,F show the NLS curves and their uncertainties, for the rain gauge measurements (Fig. 7E) 377 

and for the TRMM satellite rainfall estimates (Fig. 7F). Inspection of Fig. 7E,F reveals that the 378 

NLS threshold models fitted adequately the lowest values of the empirical data distribution, for 379 

the entire duration range. This result was obtained at the expense of a larger uncertainty for the 380 

events with D < 12 h (Fig. 7E,F). Fig. 8 shows the comparison of the thresholds obtained for the 381 

rain gauge measurements (Fig. 8A) and for the satellite estimates (Fig. 8B), with the “frequentist 382 

expert method” and the three models proposed in this paper (LS, QR, NLS). 383 

5.4. Threshold methods validation  384 

A second independent dataset of rainfall-induced landslides in Umbria region provided by the 385 

Umbria Functional Centre (UFC) was used (i) to validate/test the effectiveness of the thresholds 386 

defined using satellite and rain gauge data in forecasting new landslides, (ii) to test the 387 

effectiveness of the methods to derive rainfall thresholds for the possible landslide occurrence. 388 

To address the first issue, we compared the thresholds defined using different methods (coloured 389 

lines in Fig. 9), with rainfall conditions triggering landslides (red dots in Fig. 9 A,B) 390 

reconstructed from the independent UFC dataset (i.e. not used in the rainfall threshold 391 

identification). Rainfall conditions were derived using the automated procedure proposed in 392 

Section 4.2 using rain gauge measurements (Fig. 9A) and satellite rainfall estimates (Fig. 9B). 393 
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Table 3 summarizes the number and percentage of UFC rainfall conditions triggering landslides 394 

below the different thresholds derived for rain gauge and satellite rainfall data.  395 

To test the effectiveness of the methods proposed in this work to derive rainfall thresholds for the 396 

possible landslide occurrence, we applied them using the independent UFC landslide dataset. For 397 

this purpose we first reconstructed rainfall conditions (from satellite and rain gauge data) 398 

responsible for landslides occurrence using the automated procedure described in Section 4.2, 399 

and then defined new rainfall thresholds using the different methods described in Sections 5.1, 400 

5.2 and 5.3. Table 4 summarizes the ED rainfall threshold parameters estimated for the Umbria 401 

region for a non-exceedance probability of 5%, and using a period of 72 h without rain to 402 

separate two rainfall events.  403 

6. Results and discussion 404 

The performed analysis compared the use of rainfall gauge measurements and satellite estimates 405 

for determining ED thresholds for possible landslide occurrence, exploiting two different 406 

methods: (i) expert method and (ii) automated procedure. 407 

The log-log plots of the empirical (D,E) data points obtained by the expert method show that the 408 

majority of the landslides (77%) listed in the catalogue in Umbria (Section 3.1) were caused by 409 

precipitation characterized by long durations and low mean rainfall intensities. The remaining 410 

landslides (23%) were triggered by rainfall characterized by short duration and high rainfall rates. 411 

In particular, in the dry period from May to September, rainfall events with D < 24 h (58%) 412 

predominate, whereas in the wet period between October and April rainfall events with D > 24 h 413 

(78%) are most abundant. Furthermore, comparing Fig. 3A with Fig. 3B, it can be seen that 414 

rainfall events reconstructed using TRMM satellite estimates were characterized by a lower 415 
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cumulated rainfall E than the corresponding events reconstructed using rain gauge measurements. 416 

This is in agreement with other comparison of TRMM estimates and gauge data in Italy (Rossi et 417 

al., 2012, submitted). 418 

We have derived the empirical rainfall thresholds from the two data sets shown in Fig. 6 419 

considering a non-exceedance probability of 5%, and estimating the uncertainty associated with 420 

the thresholds as proposed by Brunetti et al. (2010), and improved by Peruccacci et al. (2012). To 421 

evaluate the statistical uncertainty associated with the two parameters γ and α of Eq. (3), we used 422 

a bootstrapping technique (Peruccacci et al., 2012). The shaded areas around the threshold lines 423 

show that uncertainty associated with the thresholds increases with the rainfall duration. 424 

Table 1 reveals that the underestimation of the satellite rainfall estimates is clearly reflected in 425 

the rainfall thresholds. The values of α for satellite rainfall threshold are lower than those 426 

obtained for the rain gauge rainfall threshold while the values of γ are very similar. Therefore, the 427 

rainfall thresholds are approximately parallel to each other with the satellite threshold moved 428 

downwards.  429 

The expert method is time consuming and error prone, and the quality of the results obtained 430 

depends on the experience and consistency of the investigator (Melillo et al., 2014) and do not 431 

include the uncertainties of rainfall data (Fig. 3). This aspect was considered by the automated 432 

procedure where, a pool of rain gauges or satellite rainfall centroids was selected for each 433 

landslide. Thus, for each landslide in the catalogue, multiple reconstructions of the rainfall 434 

conditions that are (presumably) responsible for a landslide occurrence were determined. This 435 

basically allowed propagating the rainfall measurement uncertainty as opposed to the uncertainty 436 

estimations proposed in the literature, mainly obtained using resampling approaches (i.e. 437 
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Peruccacci et al., 2012) useful to determine a more reliable rainfall threshold (Fig. 5). 438 

Inspection of Figs. 3 and 5 shows that rainfall conditions reconstructed using the expert method 439 

and the automated procedure have a similar general trend, and that in general, the largest 440 

differences occur for the events with the lowest cumulated rainfall. The total number of events 441 

derived by the automated procedure (114 points in Fig. 5A and 89 points in Fig. 5B) is lower 442 

than that obtained by the expert method (182 points in Fig. 3A and 124 points in Fig. 3B) and 443 

that the decrease is larger for short durations (D < 24 h). This is explained since those events 444 

characterized by a large uncertainty, according to Eqs. (1) and (2), are discarded from rainfall 445 

threshold analysis. 446 

To define thresholds from rainfall datasets obtained by the automated procedure (Fig. 5), we used 447 

three different statistical, objective and automated methods: LS, QR and NLS described in 448 

Sections 5.1, 5.2 and 5.3. The LS is comparable with that proposed by Peruccacci et al. (2012); 449 

unlike in the mentioned method, the estimation of the uncertainty associated with the real rainfall 450 

conditions necessary to trigger each landslide was here considered. As in the expert method 451 

proposed by Peruccacci et al. (2012), rainfall threshold with a non-exceedance probability level 452 

of 5% determined by the LS method is the curve parallel to the best-fit line (corresponding to 453 

50th percentile) and to the curves of any non-exceedance probability levels. In the expert method, 454 

uncertainty decreases by increasing the number of data analysed (Peruccacci et al., 2012). In the 455 

automated procedure, uncertainty decreases when the uncertainty of the rainfall events associated 456 

with landslides reduces. The two thresholds defined using the LS method have a relatively small 457 

uncertainty; they represent well the general trend of the data, but they are not able to represent the 458 

lower bound of the empirical (D,E) data points for all durations (Fig. 7A,B).  459 
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Comparison of the results for the LS method in Table 1 with those in Table 2 shows that the 460 

slope of the power law thresholds (J) obtained with the expert method are lower than those with 461 

the automated procedure. 462 

Visual inspection of Fig. 7C,D derived using the QR method reveals that the power law threshold 463 

in the log-log coordinates (Eq. 4) performed well to bound the data distribution for duration D > 464 

24 h but is less appropriate for shorter durations events (D < 24 h) where the threshold 465 

underestimates the rainfall. This is a consequence of the reduced number of empirical data points 466 

with short rainfall duration (D < 24 h), but also a result of the fact that the lower bound of the 467 

cloud of the empirical data points with D < 24 h is almost horizontal, and does not follow the 468 

increasing trend prescribed by Eq. (4). The thresholds obtained adopting the NLS model, based 469 

on Eq. (5) with three parameters (Fig. 7E,F) works properly as lower boundaries of the empirical 470 

data points for the entire range of rainfall duration. In particular, we observed that for D � 24 h, a 471 

stretch of the curve is horizontal and therefore E values are independent of duration. For D ! 24 h 472 

the NLS thresholds are similar to the QR thresholds. For very long rainfall durations (D > 200 h), 473 

the NLS thresholds are slightly higher than the LS and QR thresholds (Fig. 6A,C). The better 474 

performance of the NLS thresholds is obtained at expense of a significantly larger uncertainly, 475 

but only for D < 24 h. We feel that, despite the larger uncertainty for the short duration event, the 476 

two thresholds minimized the problem of the underestimation of rainfall required to trigger 477 

landslides in Umbria. 478 

Table 2 shows the results of the rainfall threshold analysis by the automated procedure, using a 479 

period of 72 h without rain to separate two rainfall events. Figs. 7 and 8 show thresholds 480 

obtained with the statistical methods previously described. In this case, thresholds obtained with 481 



Rossi et al. Statistical approaches for rainfall thresholds using rain gauge and satellite data 
 

 
Release 2, Version 3 31 January 2017 24/43 
 

rain gauge and satellite data of Table 2 also reveal that the values of α for satellite rainfall 482 

threshold are lower than those obtained for rain gauge rainfall threshold, while the values of γ are 483 

very similar. Moreover, the significance levels reported in the table show that adding a third 484 

parameter to the power-law threshold model (i.e. as for the NLS method) is significant and do not 485 

imply over-parameterization problems. 486 

We also verified that the thresholds obtained with the three statistical methods cited above, using 487 

different periods without rain to separate two rainfall events (24, 48, and 96 h), are statistically 488 

undistinguishable, and the uncertainty associated with thresholds overlap. The observed 489 

differences are mostly in the length of the events. For longer separation periods, the duration of 490 

the events increases, and the range of duration for the validity of the thresholds also increases. 491 

This is more evident for rainfall events associated with regional frontal systems characterized by 492 

prolonged, low-intensity rainfall. Convective events, typical of the summer period and 493 

characterized by short duration and high rainfall rates, are less sensible to the length of the 494 

separation period.  495 

In addition, a systematic application of the QR method for non-exceedance probability levels 496 

from 5% to 95% was carried out, using a period of 72 h without rain to separate two rainfall 497 

events. Results reveal that the thresholds obtained for the different quantiles, have different 498 

slopes (γ values) (Fig. 10A). This suggests that, shifting the threshold parallel to that obtained for 499 

the 50th percentile to obtain other thresholds for different non-exceedance probabilities values 500 

(e.g. 5%) is not always representative. Moreover, the uncertainty also varies with the different 501 

non-exceedance probabilities levels: the uncertainty for the 50th percentile is smaller than those 502 

for lower percentile values (Fig. 10B). Therefore, defining a lower threshold (e.g., the 5% 503 
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threshold) shifting that obtained for the 50th percentile together with its uncertainty is 504 

inappropriate in this case. 505 

Significant results were obtained when validating the thresholds defined with different statistical 506 

approaches using satellite and rain gauge data. The analysis of Fig. 9 supported by numerical 507 

results in Table 3, reveals good performances of the thresholds to forecast the possible landslide 508 

occurrence for independent rainfall conditions (i.e. not used in the threshold definition) derived 509 

from the UFC dataset. Indeed, the percentages of rainfall conditions triggering landslides below 510 

the thresholds reported in Table 3 are close to the 5% non-exceedance probability used to define 511 

the thresholds (i.e. the probability level expected when applying the threshold with new landslide 512 

data).  513 

Despite the good validation results, the three approaches do not perform similarly (i.e. do not 514 

have the same effectiveness) when applied to derive rainfall thresholds for the possible landslide 515 

occurrence using new and independent landslide information. Indeed, comparison of Tables 2 516 

and 4 reveals that only NLS produces comparable threshold parameters (i.e. within the expected 517 

lower and upper parameter uncertainty boundaries), when applied to an independent landslide 518 

dataset. As a result, NLS is the most effective methods to derive rainfall thresholds and should be 519 

preferred among the others, particularly when using landslide dataset with a limited knowledge 520 

on the criteria used for the landslide inventory collection, and on the spatial and temporal 521 

accuracy of the collected information. 522 

 523 
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7. Conclusions 524 

We proposed an automated procedure to reconstruct the ED rainfall conditions that have induced 525 

landslides using rain gauge and satellite data for the Umbria region, central Italy. The rainfall 526 

events derived by the procedure are reproducible and objective and include the uncertainties of 527 

the (D,E) rainfall data, unlike those obtained by the expert method. 528 

Among the various statistical methods used for defining thresholds from rainfall data derived by 529 

the automated procedure, the NLS method performed better in identifying the boundary 530 

conditions on the entire range of rainfall durations. The better performance of the NLS thresholds 531 

is obtained at the expense of a larger uncertainty for the shorter duration (D < 24 h). We think 532 

that, despite the large uncertainty for the short duration events, the two thresholds minimized the 533 

problem of the underestimation of the rainfall required to trigger landslides in the Umbria region. 534 

The thresholds obtained by the QR method perform well for longer rainfall durations (D > 24 h), 535 

providing results similar to the NLS method, but are less appropriate for shorter duration values 536 

(D < 24 h). On the contrary, LS method does not represent properly the lower bound of empirical 537 

data points for all durations. These results show that the LS method is inappropriate for the 538 

estimation of rainfall thresholds in the Umbria region. These thresholds, if used in a landslide 539 

warning system, would underestimate the rainfall conditions responsible for landslide occurrence, 540 

resulting in a significant number of potential false alarms. In addition, despite the similar 541 

validation performances of the three statistical methods, NLS should also be preferred given its 542 

higher effectiveness when defining thresholds using a landslide dataset with a limited knowledge 543 

on the criteria used for the landslide inventory collection and on the spatial and temporal 544 

accuracy of the collected information. 545 
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The comparison of the parameters of rainfall thresholds, obtained with rain gauge and satellite 546 

data and using different statistical methods, reveals that the thresholds obtained from satellite 547 

estimates are lower than those obtained from rain gauge measurements. This agrees with the 548 

underestimation of the “ground” rainfall data observed by Rossi et al. (submitted) and reference 549 

therein, by comparing rain gauge measurements and satellite rainfall estimates. Finally, the 550 

proposed method can be applied using different rainfall data estimates, such as radar estimated 551 

precipitation, or new GPM satellite rainfall products to derive rainfall thresholds for the possible 552 

landslide occurrence. 553 

 554 
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TABLES 772 

Table 1. ED rainfall threshold parameters (D and J) estimated for the Umbria region for a non-773 

exceedance probability of 5% using rain gauge measurements and TRMM satellite rainfall 774 

estimates, and the value of the uncertainty associated to the thresholds. Dinf and Jinf are lower 775 

boundaries and Dsup and Jsup are upper boundaries of uncertainty. Thresholds defined using the 776 

method proposed by Peruccacci et al. (2012) based on rainfall conditions reconstructed with the 777 

expert method. 778 

Rainfall data Dinf D Dsup Jinf J Jsup 

Rain gauge 5.8 6.6 7.4 0.39 0.41 0.43 

Satellite 2.1 2.4 2.7 0.36 0.39 0.42 

 779 

Table 2. ED rainfall thresholds parameters (t, D and J) estimated for the Umbria region for an 780 

non-exceedance probability of 5% using rain gauge measurements and TRMM satellite rainfall 781 

estimates. tinf, Dinf and Jinf are lower boundaries and tsup, Dsup and Jsup are upper boundaries for the 782 

model parameters estimated exploiting the Least Square (LS), the Quantile Regression (QR), and 783 

the Nonlinear Least Square (NLS) methods. All data processing was run using a period of 72 h 784 

without rain to separate two rainfall events. Significance of threshold parameters, estimated from 785 

t-test statistics and corresponding (two-sided) p-values, are reported in the table and codified 786 

following the schema at the bottom. 787 

RAIN GAUGES 

Method tinf t tsup Dinf D Dsup Jinf J Jsup 

LS - - - 4.90 5.20***** 5.60 0.56 0.56***** 0.57 

QR - - - 0.25 0.43***** 0.74 0.82 0.88***** 0.93 
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NLS 2.3 9.8**** 15.0 0.09 0.01*** 0.01 1.15 1.53***** 1.56 

SATELLITE 

Method tinf t tsup Dinf D Dsup Jinf J Jsup 

LS - - - 4.40 4.60***** 4.70 0.31 0.31***** 0.33 

QR - - - 0.35 0.47***** 0.48 0.54 0.6***** 0.64 

NLS 1.1 2.6*** 4.1 0.01 0.03*** 0.12 0.85 1.2***** 1.39 
Significance codes and associated p-value ranges: ‘*****’ [0, 0.001]    ‘****’ ]0.001, 0.01]    ‘***’ ]0.01, 0.05]    ‘**’ ]0.1, 1]    ‘*’ ]0.05, 0.1] 788 

 789 

Table 3. Comparison of the number and percentage of new rainfall conditions triggering 790 

landslide (not used in the threshold identification) below the thresholds, estimated using different 791 

methods for rain gauge and satellite rainfall data. The rainfall conditions were derived starting 792 

from the independent landslide dataset provided by the Umbria Functional Centre (UFC) of the 793 

Italian Civil Protection Department. 794 

Threshold 
method 

Events below rain gauge threshold  

# (%) 

Events below satellite threshold  

# (%) 

LS 7 (3.7) 23 (12.0) 

QR 9 (4.7) 9 (4.7) 

NLS 11 (5.7) 23 (12.0)  

 795 

Table 4. ED rainfall thresholds parameters (t, D and J) estimated for the Umbria region for a non-796 

exceedance probability of 5% using rain gauge measurements and satellite rainfall estimates 797 

starting from the landslides independent dataset provided by the Umbria Functional Centre of the 798 

Civil Protection Department, exploiting the Least Square (LS), the Quantile Regression (QR), 799 

and the Nonlinear Least Square (NLS) methods. All data processing was run using a period of 72 800 

h without rain to separate two rainfall events. 801 
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RAIN GAUGES 

Method t D J 

LS - 0.10 0.88 

QR - 0.03 1.32 

NLS 2.5 0.01 1.50 

SATELLITE 

Method t D J 

LS - 0.10 0.64 

QR - 0.23 0.68 

NLS 1.1 0.05 1.06 

 802 

  803 
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FIGURE CAPTIONS 804 

 805 

Fig. 1. Map of the study area, the Umbria region, central Italy. Shades of colour portray elevation 806 

computed from a 90m DEM obtained by the NASA Shuttle Radar Topography Mission in 807 

February 2000. Small map of the study area shows simplified lithology: PO, post-orogenic 808 

sediments complex; FD, flysch deposits complex; CC, carbonate rocks complex; CH, chaotic 809 

deposits; VR, volcanic rocks complex. Pie chart summarizes the extent and percentage of the 810 

lithological complexes. 811 

Fig. 2. Landslide and rainfall data for the Umbria Region. (A) Location of 187 rainfall-induced 812 

landslides (yellow dots) of the national catalogue modified in this study and of the 192 landslides 813 

of the UFC dataset collected in Umbria for the period 2002–2010. (B) Location of 60 rain gauges 814 

(red triangles) and 13 satellite centroids (blue dots). For both maps, shades of colour portray 815 

elevation computed from a 90m DEM obtained by the NASA Shuttle Radar Topography Mission 816 

in February 2000. 817 

Fig. 3. Log-log plots showing rainfall duration D (x-axis) vs cumulated event rainfall E (y-axis) 818 

conditions that have resulted in landslides in Umbria in 2002–2010, reconstructed using the 819 

expert method. Red and green dots are rainfall conditions obtained using rain gauge 820 

measurements (A) and satellite rainfall estimates (B), respectively. 821 

Fig. 4. Association schema between a landslide (yellow dot) and the representative rain gauges 822 

(R, red triangles) or satellite centroids (S, blue dots). Association, shown by solid lines for rain 823 

gauges and dotted lines for satellite centroids, depends on terrain elevation (h) and planimetric 824 

distance for rain gauges (dR), and on planimetric distance for satellite centroids (dS). 825 
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Fig. 5. Log-log plots show rainfall duration D (x-axis) vs cumulated event rainfall E (y-axis) 826 

conditions that have resulted in landslides in Umbria in 2002–2010 calculated exploiting the 827 

automated procedure. Red and green dots represent the (D50,E50) median values of the rainfall 828 

conditions using rain gauge measurements (A) and satellite rainfall estimates (B), respectively. 829 

The horizontal and vertical lines show uncertainties associated with D and E, respectively. 830 

Fig. 6. Least Square empirical rainfall threshold (obtained with the Frequentist method, F) 831 

corresponding to a 5% non-exceedance probability level defined using rain gauge measurements 832 

(A) and satellite rainfall estimates (B). The ED rainfall conditions (dots) were determined using 833 

the expert method. Shaded areas show uncertainty associated to the thresholds. 834 

Fig. 7. Thresholds for possible landslide occurrence determined for a 5% non-exceedance 835 

probability level (coloured lines) starting from the rainfall conditions determined exploiting the 836 

automated procedure using rain gauge measurements (A, C, E) and satellite rainfall estimates (B, 837 

D, F). Orange lines (A, B) are thresholds defined using the LS method. Blue lines (C, D) are 838 

thresholds defined using the QR method. Violet curves (E, F) are thresholds defined using the 839 

NLS method. Shaded areas show uncertainties associated to the different threshold models. 840 

Fig. 8. Comparison of the thresholds defined using the different methods (F, LS, QR, NLS) using 841 

rain gauge measurements (A) and satellite rainfall estimates (B). Shaded areas show uncertainty 842 

associated to the threshold models.  843 

Fig. 9. Effectiveness of thresholds, derived for (A) rain gauge measurements and (B) satellite 844 

rainfall estimates (see Fig. 8), in forecasting rainfall conditions triggering landslide (red dots) 845 

reconstructed from the independent UFC dataset information. 846 
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Fig. 10. Thresholds defined using the QR method for different non-exceedance probability levels 847 

from 5% to 95%, exploiting ED rainfall conditions reconstructed from rain gauge data using a 72 848 

h period for separating rainfall events (A). Uncertainty (shaded areas) associated to thresholds 849 

defined for the 5% and 50% non-exceedance probabilities levels (B). 850 

 851 
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