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Abstract

In this paper we introduce new average operators for merging any
number of fuzzy numbers, without any exogenous components. The pro-
posed n-ary operators are based on a specific adaptation of Marzullo’s
algorithm, and depart from the usual fuzzy arithmetic mean according to
the degree of agreement or disagreement among the memberships of input
fuzzy numbers. Such merging operators are suitable to be applied in any
model where the same quantity (usually a parameter) can be measured
(estimated) through different fuzzy memberships stemming by different
sources of information. The special case of two fuzzy memberships was
the focus of our previous contributions that were elicited in order to es-
timate the fuzzy volatility parameter in an hybrid fuzzy-stochastic model
for option pricing. In this paper we generalize the setting to the case of
n fuzzy inputs to be merged and also remove exogenous factors from the
definition of the operators. In order to have an application at hand we
consider the same example treated in the quoted paper and we compare
the outcomes obtained via the new operators, named SMART , with the
fuzzy arithmetic mean as a canonical benchmark.

Keywords Smart Average Operators, Fuzzy Mean, Merging, Fuzzy
Option Pricing

1 Introduction and motivation

The problem of aggregating evidences from several sources of information
is of concern in many fields, from engineering to decision theory. As
pointed out in [19] some examples are

• to aggregate pieces of information coming from different sensors i.e.
in engineering,
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• to aggregate multiple source interrogation systems where several
databases can provide precise, imprecise or uncertain information
about values of interest,

• to take into account expert opinions, when different individual state-
ments have to be aggregated to a synthetic single value.

In the last decade, due to the increase of availability and variety of
data, the need for merging information becomes very strong. The choice
of a fusion operator is not unique and, above all, is heavily context-
dependent. Authors in [33] affirm that there are more than 90 different
fuzzy operators proposed in the literature for fuzzy set operations and
there is a wide family of aggregation functions with predictable and tai-
lored properties (e.g. those analyzed in [27] [28]) related to different areas
and disciplines and different basic properties they could satisfy (see e.g.
[16]).

Classes of aggregation functions include triangular norms and conorms,
copulas, means and averages, and those based on nonadditive integrals
[26]. To distinguish properly among all the suggestions in the literature,
it is worth to remark that the problem of merging information can be
classified in two broad classes: either as a way for extending filtering and
estimation techniques to fuzzy data or as a tool to extract the most reliable
information out of imprecise data, [19].

In the former case, the extension principle is usually applied to classical
estimators as well as methods of fuzzy arithmetic (see [15]); in the lat-
ter, the purpose of aggregation is pursued by applying fuzzy set-theoretic
operations and the choice of conjunctive versus disjunctive connectives
depends upon assumptions on whether all sources are reliable or not (see
also [23] for a survey). An interesting interpretation of the difference
among the two broad classes of aggregation is given in [19] “ (Estimation)
differs from fusion in the sense that the aggregation is performed on the
measurement scale (horizontal view) while in the fusion process the aggre-
gation is performed on the scale of membership values, in practice degrees
of plausibility (vertical view). A bridge between these two views of merging
information is ensured using the concept of constrained fusion.” A more
detailed illustration of these two different merging approaches is reported
in the Appendix of this contribution.

In this paper we focus on the estimation problem, which is of substan-
tial interest in many domains. Indeed, in our contribution [5] we intro-
duced a methodology for the elicitation of the fuzzy membership of the
volatility parameter of a risky asset; by applying the method on either the
historical volatility estimator σ̂ or to the estimator ν = VIX/100, based on
the volatility index VIX of the S&P500 market index, see [40], we obtained
two different memberships for the fuzzy volatility. The peculiarity of our
procedure was to deal with alternative sources of information and raised
the need to define suitable operators to merge the memberships stemmed
by the different sources, which was left as an open problem. Indeed, the
membership elicitation is an extension to fuzzy numbers of the estimation
of the crisp volatility parameter, hence we look for proper aggregations
within the class of averaging operators. In this case, the problem is to
combine outcomes coming from different sources of information to obtain
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one representative value which is consistent with the observations. Many
aggregation operations are introduced within Fuzzy set theory to perform
estimation, especially within the class of generalized means, which can be
directly applied to fuzzy numbers.

As claimed in [19] a bridge between the “estimation” and the “fusion”
is represented by the fuzzy arithmetic mean (named simply “fuzzy mean”
in the sequel) which is, indeed, a basic operation for estimation and also
a fuzzy set-theoretic connective. However, it is well known that the fuzzy
mean, even more than the crisp one, is insensitive with respect to the
agreement or disagreement among original values (we can have the same
mean between two very close values ad well as between two very distant).

Agreement among the sources of information has been considered in
fuzzy aggregation literature, like e.g. in [39] where averaging is based on
a so called coordination index ; this proposal operates, as a fusion, among
membership values.

Attempts to address such issue for fuzzy estimation are the relative
agreement degree proposed in [21] and the constrained merging developed
in [19, §6.6.2] which allow to overcome the above insensitivity of the mean,
while maintaining the aforementioned double role of estimator and set-
theoretic connective.

Since we are interested in estimation and filtering, we look at proper
averaging operators in order to merge fuzzy memberships which are de-
rived according to different sources of information (i.e. historical volatility
an VIX in the numerical example). In order o take into account the level
of agreement or disagreement among the n fuzzy inputs to be merged, we
adopt a similar view in this research and build on generalizations of the
fuzzy mean such as the Fuzzy Operator Weighted Average (FOWA, see
e.g. [35]) or the various combination techniques described in [1].

We define merging operators differently in case the estimators give al-
ternative (“disjunctive/disagreeing”) or concomitant (“conjunctive/agreeing”)
information, in accordance with one of the basic principle of information
merging reported in [16]. In this view, though out operators are fuzzy
weighted averages and operate ”horizontally” on the α-cuts of the in-
puts, we refer them as disjunctive and conjunctive operators with a little
abuse of langu age. In fact, from a technical perspective, our proposals
are hybrid in that they are based on suitable deformations of the fuzzy
mean towards canonical conjunctive (i.e. min) and disjunctive (i.e. max)
connectives, by looking at their ”vertical” values.

The aforementioned constrained merging is based on an original Yager’s
“intelligent” component [43]; we borrow from the above quoted paper the
motivation of including a “smart” component in the averaging process to
address conflicts in the data to be fused and, similarly, we name our op-
erators as ”SMART”. SMART is in fact both a synonym of “intelligent”
and a, commonly used, acronym for “Specific, Measurable, Achievable,
Realistic and Time-related”, most of which are also goals of our approach.
The main difference with respect Yager’s proposal is that we do not make
use of any exogenous “combinability function” that was instead used in
[43].

It is worth to stress that we do not look for t-norms and t-conorms,
as e.g. done in [10], or to any of their generalizations, like e.g. overlap
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and grouping functions (see e.g. [2]), which belong to the class of fusion
connectives, since they are not suitable to merge same claim given by
different subjects over an unknown parameter, which is the aim of our
paper, but rather they are tailored to merge different claims given by the
same subject.

As already pointed out, our first proposal of merging operators based
on the level of agreement/disagreement has been given in [6]; however,
it suffered from being restricted to merging only two fuzzy numbers, and
ad-hoc binary deformations were adopted to define the weights. Here, we
consistently overcome both these drawbacks: the new suggested operators,
namely SMART-or and SMART-and, can fuse any number n of fuzzy
numbers and we avoid any external component in the definition of these
new merging operators, which would be arbitrary by construction.

For the sake of clarity, we set up our framework by giving in Subsection
2.1 the preliminary concepts underlying our proposal; then, in Subsec-
tions 2.2-2.4 we define the SMART-or and SMART-and n-ary operators,
respectively. Section 3 is devoted to a numerical application gathering a
detailed description on the entailment, on the pricing for options, of using
the new operators to merge the elicited fuzzy volatility of the S&P500
Market Index according to several sources of information. Finally, in Sec-
tion 4 some concluding remarks are collected.

2 The general SMART-or and SMART-
and averages

2.1 Preliminaries

We recall that membership functions µ : R → [0, 1] of the fuzzy set of
possible values of a random variable X are usually viewed as imprecise
values.

From a practical point of view, we profit from membership character-
ization through α-cuts, that for a generic j-th membership result as

µjα = {x ∈ R : µ(x) ≥ α} , α ∈ [0, 1]. (1)

In particular, since we deal with fuzzy numbers, i.e. memberships with
nested, compact and close α-cuts and with a unique core value with maxi-
mum membership 1, (1) reduces to closed intervals characterized by a left
and a right extreme:

µjα = [µjαl , µj
α
r ]. (2)

The agreement/disagreement among α-cuts, for the same level α, for
n different fuzzy numbers can be expressed by exploiting the q-relaxed
intersection computation applied in [30] and based on the Marzullo’s al-
gorithm [34] which efficiently computes the shortest interval shared by
the maximum number of intervals. This choice avoids any external, hence
arbitrary, imposition.

The average operators we introduce in this paper are based on the
above assessment of agreement/disagreement which is measured α-cut by
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α-cut, hence“horizontally” with respect to the membership function defi-
nition, in line with [29].

Figure 1 shows such quantities for two memberships, together with
other specific quantities that will be involved in our averaging operators
as described below.

Figure 1: α-cuts of two memberships µ1 and µ2 and their characteristic values
for their SMART averages.

More precisely, the original Marzullo’s algorithm returns the optimal,
i.e. shortest, interval which is consistent with the maximum number of
inputs. For example, among µ1α = [8, 9], µ2α = [8, 12] and µ3α = [10, 12]
it produces [8, 9] as the shortest intersection between two of the original
intervals.

Actually, we want to control for intersections among all subsets of
the n α cuts; to this aim we can modify the algorithm by taking trace
of the different numbers of intersecting intervals, so that the results are
now specific weights πjf representing the overlap lengths among f α-cuts,
f = 1, . . . , n, inside the j-th α-cut, j = 1, . . . , n.

By applying the modification of the algorithm suggested below we
obtain, for the the three α-cuts mentioned before:

π1
1 = 0 π2

1 = 10− 9 = 1 π3
1 = 0

π1
2 = (9− 8) = 1 π2

2 = (9− 8) + (12− 10) = 3 π3
2 = (12− 10) = 2

π1
3 = 0 π2

3 = 0 π3
3 = 0.

In few words, we can say that each πjf measures the part of the j-th
α-cut involved into the intersection among f α-cuts. It comes straightfor-
wardly that the sum of the various weights associated to a specific α-cut
gives its length:

n∑
f=1

πjf = δj = µjαr − µjαl . (3)

The detailed algorithm that permits to obtain weights πjf is reported
in Tab. 1.

As already outlined, the SMART-or Y and SMART-and Z operators,
formally defined in what follows, are modifications of the fuzzy mean
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Table 1: Pseudo R code of an adapted Marzullo’s algorithm, with input ext =
list of left and right extremes, i =list of memberships belongings, type = -1 if
left ext; +1 otherwise.

relaxint = function(ext,i,type)

{

n = length(ext)/2

pi = matrix(0,n,n)

lambda = numeric(2*n)

lambda[1] = - type[1]

j=list()

j[[1]] = c(i[1])

for (l in 1:(2*n-1))

{ for (k in j[[l]]){

pi[lambda[l],k] = pi[lambda[l],k] + (ext[l+1] - ext[l])}

lambda[l+1] = lambda[l] - type[l+1]

if (type[l+1] == -1) j[[l+1]]=c(j[[l]], i[l+1])

else j[[l+1]] = setdiff(j[[l]], c(i[l+1]))

}

return(pi)

}

based on full/partial overlap among the α-cuts [µjαl , µj
α
r ], j = 1, 2, . . . , n,

of the fuzzy memberships to be merged. The formal definition bases on
the weights πjf obtained by the adapted Marzullo’s algorithm in order
to emphasize the partial agreement or disagreement among the differ-
ent memberships. This is a peculiarity of our approach since usually in
weighted averages, like FOWA or S-FOWA, the weights are n fixed pa-
rameters the value of which is left to the decision maker (for the sake of
completeness we briefly recall definitions of FOWA and S-FOWA opera-
tors in the Appendix A); here weights are endogenously determined by
the input fuzzy numbers. In [21] weights are also obtained according to
the relative agreement degree that is an average of pairwise agreements
among the n considered inputs. The main difference of our proposal with
respect to [21] is that our weights vary across different α levels and is
influenced by the different arities of agreeing subsets of the input.

It is well known that the arithmetic mean, no matter whether crisp
or fuzzy, is characterized by a convex combination of the extremes of the
α-cuts with uniform weights 1

n
.

The SMART operators generalize the fuzzy mean by tuning such co-
efficients in order to obtain a specific aimed behavior of the merging:
towards the more external values for the SMART-or average (in line with
the canonical max t-conorm if applied ”vertically”) and towards the more
inner ones for the SMART-and average (in line with the canonical min
t-norm if applied ”vertically”).
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2.2 SMART-or disagreement based average

As we have already mentioned, the SMART-or operator weights the outer
extremes of any α-cut more than the inner ones. Since the same procedure
is applied for any α ∈ [0, 1], we omit the superscript α whenever not
strictly necessary.

In Fig. 2, we visually anticipate the SMART-or operator; the afore-
mentioned deformation, with respect to the fuzzy arithmetic mean, to-
wards the max connective is evident from the picture. Different πjf , with
f, j = 1, . . . , 3, stemming from α-cuts of three membership functions are
depicted in the zoomed part of the graph.
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Figure 2: SMART-or (dashed line) among 3 fuzzy numbers (solid lines) com-
pared to the fuzzy arithmetic mean (dashed-dotted line). The zoom shows the
relaxed intersections computed through adapted Marzullo’s algorithm.

In order define the operator formally we need to order the left extremes
of the n α-cuts to be merged, for each α, as well as the rights extremes.
For example, in Figure 2 the order of the left extremes according to their
indices is {3, 1, 2} while the order of the right extremes is {1, 2, 3} with
n=3 fuzzy numbers to be merged.

For the general case, let Ol ⊂ {1, . . . , n} be the set of indices of the
first n − 1 left extremes and Or ⊂ {1, . . . , n} be the set of indices of the
last n − 1 right extremes of the n input α-cuts (from left to right in the
horizontal axis)1. For the SMART-or operator, the extremes of the α-cuts

[(µ1 Y . . . Y µn)αl , (µ1 Y . . . Y µn)αr ] (4)

are computed as convex combinations of the original ones with weights

1

n
(1 + εj) j ∈ Ol or j ∈ Or . (5)

1In the previous example we would have Ol = {3, 1} and Or = {2, 3}
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with

εj =

{ ∑n
f=1

1
f
π
j
f

∆
if ∆ 6= 0

0 otherwise
, j ∈ Jl or j ∈ Jr, (6)

and ∆ = max{µiαr }ni=1 − min{µiαl }ni=1. Equations (5, 6) display the
weighted contributions of the n − 1 more relevant extremes, i.e. for the
aggregation of the left extremes those with index in Ol, while those in Or
for the aggregation of the right ones. The n-th coefficients, associated to
the inner extremes in {1, . . . , n} \ Ol and in {1, . . . , n} \ Or, are simply
given by

1

n
(1−

∑
j∈O∗

εj) O∗ = Ol, Or respectively. (7)

Note that the division by ∆ in (6) makes the contribution of each j-th
α-cut relative with respect to the length of closed envelope of the α-cuts
and it coincides with the α-cut of the usual fuzzy disjunction membership∨n
i=1 µi : R → [0, 1] with

∨n
i=1 µi(x) = max{µi(x) : i = 1, . . . , n}, for all

x ∈ R. Moreover, whenever the original memberships have at least two
distinct cores2, the terms εj tend to zero whenever α tends to one so that
the upper side of the merged membership converge to the core of the fuzzy
mean.

Let us also stress that, since each weight πjf is shared exactly by f

α-cuts, then we have
∑n−1
j=1

∑n
f=1

1
f
πjf ≤ ∆ so that 0 ≤

∑n−1
j=1 εj ≤ 1;

hence, the coefficients introduced in (5, 7) are suitable to define a convex
combination.

From Fig.2 it is clear that the SMART-or α-cuts, except for the core
associated to α = 1, evidence wider intervals than the fuzzy mean, and
extremes are stretched toward those of the the max connective, when
computed vertically. Hence, taking into account the strength of the dis-
agreements among the different α-cuts leads to a more vague estimation
with respect to the fuzzy mean.

2.3 SMART-and average

Let Il ⊂ {1, . . . , n} be the set of indices of the last n − 1 left extremes
and Ir ⊂ {1, . . . , n} be the set of indices of the first n− 1 right extremes
(thought in ascending ordering) of the n α-cuts in input3. The construc-
tion of the SMART-and operator Z follows the same basic rule of the
SMART-or one, but needs a more articulated formulation. Indeed, the
α-cuts of the merging operator

[(µ1 Z . . . Z µn)αl , (µ1 Z . . . Z µn)αr ] , (8)

are computed differently whether α is below or above a fixed value h ∈
(0, 1), defined as the higher level of not empty intersection among all the
n α-cuts of the original fuzzy numbers (see Fig.1 for the case n=2).

2The cores of a fuzzy number are those corresponding to membership value 1 (the maxi-
mum).

3In the previous example we would have Il = {1, 2} and Ir = {1, 2}
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If α ≤ h, the extremes of the α-cuts are obtained as convex combina-
tions of the original ones with coefficients

1

n
(1 + γj) j ∈ Il or Ir , (9)

where the quantities

γj =

∑n
f=1

1
n+1−f π

j
f∑n

k=1

∑n
f=1

1
n+1−f π

k
f

(10)

reflect the weighted normalized contribution of the n− 1 ”more relevant”
extremes, i.e. those in Il for the left extremes and those in Ir for the the
right ones.

Note that the factor 1
n+1−f for each addend in the numerator of γj

is proportional to the number of overlaps (representing the agreement).
Moreover, whenever all the n α-cuts coincide, the γj-s can be consistently
set to zero.

Again, the n-th coefficients, i.e. those associated to the outer left
extreme in {1, . . . , n}\ Il and to the outer right extreme in {1, . . . , n}\ Ir,
are simply given by

1

n
(1−

∑
j=I∗

γj) I∗ = Il, Ir respectively. (11)

Since the denominator in (10) is simply a normalizing constant, it comes
to the fore that

∑n−1
j=1 γj ≤ 1 so that (9, 11) define proper convex combi-

nations of the left and right extremes, respectively.
When α > h, the formal definition is more subtle since many sub-

groups of intersections involving two or more memberships can be identi-
fied. Assume we have k subgroups of indexes Jl ⊂ {1, . . . , n}, each with
cardinality nl, l = 1, . . . , k; since subgroups may share some elements,
we have

∑k
l=1 nl ≥ n. The logic underlying this approach is to compute

the SMART-and operator Z first, within each subgroup Jl, l = 1, . . . , k,
obtaining k intermediate α-levels, and to merge them in a second step, by
applying the SMART-or operator Y.

Formally, for each j ∈ Jl, we compute

γj =

∑nl
f=1

1
nl+1−f π

j
f∑

k∈Jl

∑n
f=1

1
n+1−f π

k
f

(12)

and we define the convex combination of the extremes of the α-cuts in Jl
with coefficients

1

nl

(
(1 + γ1) . . . , (1 + γnl−1), (1−

nl−1∑
j=1

γj)

)
(13)

where the order is from the inner to the outer. Once we obtain these k
SMART-ands of subgroups, characterized by the extremes

µil and µir , i = 1, . . . , k, (14)
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we compute the new relaxed intersection coefficients πlf , l, f = 1, . . . , k,
obtaining new weights

εi =

∑k
f=1

1
f
πif

∆
, with ∆ = max{µir}ki=1 −min{µil}ki=1, (15)

that can be plugged in the coefficients for the convex combination to take
into account the cardinality of each contribution:

1∑k
i=1 ni

(
n1(1 + ε1), . . . , nk−1(1 + εk−1), (nk −

k−1∑
l=1

nlεl)

)
. (16)

Note that in this case the order is from the outer to the inner, the
latter being the ”most relevant” in this case.

The above steps need to be iterated for increasing values of α since par-
tial intersections change whenever one of indexes πjf vanish. In addition,
to guarantee that the output of this merge is a fuzzy number, the α-cuts
obtained through the described aggregation procedure must be “glued”
to those of the levels below; this can be obtained by a proper translation
and deformation of the extremes.

Due to the necessary discretization of the α levels to be considered n
practical applications (see [5]), we can formulate the transformation by
referring to two consecutive values αm and αm+1 so that the transformed
αm+1-cut will have extremes computed recursively by:

µ̂
αm+1

l = µ̂αml + %αm |µαm+1

l − µαml | (17)

µ̂
αm+1
r = µ̂αmr − %αm |µαm+1

r − µαmr | (18)

with

%αm =
µ̂αmr − µ̂αml
µαmr − µαml

(19)

and where the “overlined” extremes are those obtained by the subgroup
merging after the two-step procedure and the “hatted” ones are those
finally obtained by the “gluing” transformation at the specified levels.

In Fig. 3 an example of SMART-and is plotted, obtained by apply-
ing the whole procedure; from the picture it is possible to appreciate
the aforementioned deformation with respect to the fuzzy mean of the
SMART-and average towards the min, when computed vertically. Note
that the convex combinations vary with the level α according to changes
of partial overlaps; in the picture this aspect is emphasized by the rough
discretization adopted for the α levels; when a finer mesh is chosen, as is is
done in the empirical application, the “gluing” process produces smoother
memberships.

It is clear from Fig.3 that taking into account the strength of the
agreements among the different α-cuts leads to a narrower membership,
and hence a less vague estimation, with respect to the fuzzy mean.

2.4 Properties of the SMART average operators

We provide here some basic properties of the two average operators pre-
viously introduced. Averaging operators are investigated from fuzzy set-
theoretic points of view in several papers such as, among others, [17, 18].
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Figure 3: SMART-and (dashed line) among 3 fuzzy numbers (solid lines) com-
pared to the fuzzy arithmetic mean (dashed-dotted line).

Let Ψ be the set of fuzzy numbers. Standard properties for an average
operator M : Ψn −→ Ψ when applied to n fuzzy numbers A1, A2, . . . , An
are

• M(A1, A1) = A1 (idempotency).

• min(A1, A2, . . . , An) ≤ M(A1, A2, . . . , An) ≤ max(A1, A2, . . . , An)
(internality);

• M(A1, A2) = M(A2, A1) (simmetry);

• given a specific order relation � between fuzzy numbers, if A2 � A′2
then M(A1, A2) �M(A1, A

′
2) (monotonicity);

For what concerns SMART-or and SMART-and operators, we can
show that they are properly defined since their outcome lays inside the
set of fuzzy numbers. Precisely, the following result holds:

Proposition 1 The SMART-or Y and SMART-and Z operators defined
through (4-19) are fuzzy average operators from Ψn to Ψ.

Proof. In order to prove that our operators are well defined, i.e. that
the result of the proposed n-ary operators are fuzzy numbers, we have to
prove nestedness, compactness and closure of α cuts and uniqueness of
the core values for the operators’ output. Compactness and closure of the
resulting α-cuts comes directly from their definitions (4) and (8).

For the SMART-or average Y , nestedness of the α-cuts of the output
is guaranteed by nestedness of those of the inputs, since each α-cut is a
closed interval with extremes that are convex combinations of those in
input. Moreover there is a unique core value with membership equal to
one and it coincides, as already noted in the description of the weights εj ,
with the arithmetic mean of the cores in input. The same considerations
are valid for the α-cuts of SMART-and average Z below the level h of not
empty intersection. Besides, the “gluing” steps (17-19) defined when α is
above level h, have been designed exactly to ensure that output α-cuts
are actually nested. As for the unique core value, since coefficients (10)
or (15) vanish at level α=1, the core of the output is either the core of
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the fuzzy arithmetic mean or a shifted value of this core, where the shift
is caused by the “gluing” steps previously mentioned. �

For what concerns standard properties, we can state the following:

Proposition 2 The SMART-or Y and the SMART-and Z average op-
erators satisfy idempotency, internality and simmetry. The SMART-or
operator Y is monotone with respect to the simple ordering between core
values (i.e. A1 � A2 ⇔ core(A1) ≤ core(A2) ) while the SMART-and Z
is not.

Proof: Idempotency and internality of both the operators are straight-
forward consequences of the fact that α-cuts of the output fuzzy number
are convex combinations of the α-cuts of the inputs, and the “gluing” steps
(17-19) for Z are designed to make the α-cuts belong to the envelope of
those in input. Simmetry is a direct consequence of the reordering of the
extremes of the α-cuts of the fuzzy numbers to be merged. Monotonicity
of Y with respect to the simple ordering between core values derives again
from the fact that the core of the output fuzzy number coincides with
the core of the fuzzy arithmetic mean that is monotone. The same is not
valid in general for Z since the aforementioned “gluing” steps that could
produce a shift of the core value with respect to that of the fuzzy mean,
the size of the shift depending on the grade of disagreement among the
input fuzzy numbers. Hence it is possible that two n-tuples of fuzzy num-
bers with the same core values, but with different intersections among the
α-cuts, produce different core values of the output, with evident violation
of the monotonicity property. �

We remark that the two SMART average operators are obviously not
associative, since the levels of agreement or disagreement are significantly
influenced by the specific subgroups of the input fuzzy numbers. Neverthe-
less, the lack of associativity is quite common in other merging operators
(both connectives and averages) and it is widely accepted to have non-
associative operators, especially when they are applied in a dynamical
setting where it is reasonable to assume that the result is influenced by
the order of arrival of the new information.

In order to disentangle the different behaviour of the proposed SMART
operators when applied to the same fuzzy numbers in input and how they
differ from the fuzzy mean, which is our benchmark operator, we plot in
Figures 4 and 5 the fuzzy memberships obtained by merging two fuzzy
inputs, respectively within two opposite scenarios: in the former the two
inputs significantly overlap indicating a strong agreement and a low dis-
agreement levels; in the latter the two inputs are disjoint, hence they fully
disagree, but their fuzzy mean is the same of the former scenario.

In Figure 4 it is possible to appreciate how the proposed operators
depart from the fuzzy mean in opposite directions: the strong agreement
is taken into account by the SMART-and operator and leads to a tight-
ening of the fuzzy membership with respect to the mean. Conversely, the
SMART-or operator takes into account the partial disagreement, resulting
in a wider membership with respect to the fuzzy mean.

It is also worth noticing that the left branches of the two operators are
closer to the fuzzy average than the right branches. This is emphasized in
Figure 6 where it is evident that the aforementioned directions are towards
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Figure 4: Comparison of the fuzzy mean (dotted) and the SMART-and
(dashed), SMART-or (dashed-dotted) outputs with partially overlapping fuzzy
inputs.

Figure 5: Comparison of the fuzzy mean (dotted) and the coinciding SMART-
and, SMART-or (dashed-dotted) outputs with fully disagreeing fuzzy inputs.
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Figure 6: Deformations directions of the fuzzy mean (dotted) for the SMART-
and Z (dashed) towards bounds of the usual conjunction (solid-gray) and for
SMART-or Y (dashed-dotted) towards bounds of the usual disjunction (solid-
black).

the bounds of the α-cuts of the usual fuzzy disjunction for the SMART-or
Y and towards the bounds of the α-cuts of the usual fuzzy conjunction for
the SMART-and Z, respectively (hence our choice for names and symbols
of the two new operators).

In Figure 5 the two proposed operators coincide; indeed, the level of
agreement vanishes at any α-cuts and the SMART-and operator collapses
into the SMART-or by construction.

Differently from the fuzzy mean, our SMART-and and SMART-or are
sensitive to agreement or disagreement among the inputs, as desired. Such
difference is highlighted in Figure 7 where we jointly plot the fuzzy output
memberships for the two scenarios.

3 A practical application of the SMART
operators to option pricing

As an illustrative example we apply the generalized SMART operators de-
scribed in previous sections in the option pricing framework of Cox, Ross,
Rubinstein [12], (CRR henceforth) where the dynamics of the risky asset
is modeled by a binomial recombining tree with N periods (N = 6 in our
numerical exercise). The crucial point is to obtain a fuzzy number for the
volatility parameter σ which determines the up and down factors in the
binomial tree; as remarked also in [37], we can infer about the volatility
through different estimators. Since we aim at eliciting the volatility pa-
rameter of the S&P500 index, we build the membership elicitation for σ on
both the historical volatility estimator σ̂ and the estimator ν = VIX/100
(based on the VIX Index that represents the one-month ahead integrated
volatility implied by option prices on the S&P500 index). The elicitation
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Figure 7: Comparison of the coinciding fuzzy mean (dotted) of the two previ-
ous scenarios and the SMART-and (dashed), SMART-or (dashed-dotted) out-
puts with partially overlapping fuzzy inputs and the coinciding SMART-and,
SMART-or (full) outputs with fully disagreeing fuzzy inputs.

procedure we adopt here follows the idea we developed in [5]; aggregations
of different memberships are performed with the generalized SMART op-
erators introduced in the previous section.

For the sake of completeness, after a brief recall of financial derivatives
basics (see [22]), we report in the following the main steps to elicit fuzzy
volatility and to compute corresponding fuzzy option prices.

3.1 Stock volatility and crisp option pricing

One of the main streams of research in financial mathematics is the
evaluation/pricing of derivative assets. A derivative contract is a finan-
cial asset the price of which is a function of time and of the price of
so called underlying assets; these are basic assets (stocks, commodities,
currencies) and their prices are determined by the market according to
some supply-demand equilibrium. More precisely, let us denote with
S = (S1, S2, . . . , Sk) a basket of such simple assets; given a time hori-
zon T , a T -derivative on the basket S is defined as a contract which pays
ΠT at time T where ΠT is a known function of ST (or possibly of the
whole history of basket prices until time T ).

Classical examples of T -derivatives are European CALL and PUT op-
tions which are contracts written on a single underlying stock S. The
payoff of a CALL option is given by

CT = max (ST −K, 0) (20)

and that of a PUT option is

PT = max (K − ST , 0) , (21)
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where K is the so-called strike price of the option and T its expiration
date.

From a financial viewpoint a CALL (PUT) option is a contract which
gives the right, but not the obligation, of buying (selling) the underlying
stock at time T with price K. Notice that K and T are fixed in the
contract at the time it is issued.

From the early seventies much research has been devoted to the com-
putation of a fair value/price at time t < T of derivative contracts, say
Πt. The basic assumption is that, for t ∈ [0, T ], Πt = Π (t,St) where St
is the price at time t of the underlying basket and where the function Π
satisfies some mathematical regularity conditions.

Pioneering approaches for the evaluation of CALL and PUT options
are the ones of [3, 12]. Both models rely on assumptions on the dynamics
of the price process (St, t ≥ 0) of the underlying asset (typically a risky
stock); the former assumes a continuous time dynamics described by a
Geometric Brownian Motion i.e.

dSt = µStdt+ σStdZt (22)

where (Zt, t ≥ 0) is a standard Brownian motion and µ, σ are model pa-
rameters representing the continuously compounded mean return and the
volatility of the underlying stock. The latter suggest a discrete time
process, with time step δ; at time t = nδ, for n = 1, 2, . . . , N the
stock St is a discrete random variable with n + 1 outcomes described by(
S0u

jd(n−j), j = 0, 1, . . . , n
)

with a Binomial distribution B (n, p) (j), j =

0, 1, 2, . . . , n. The parameters of the model are u, d representing the in-
crease and decrease price factor at each step and the increase probability
p at each step. For details on the two models the reader is referred to the
original paper or the comprehensive book of [22]. If we further assume
the availability of a risk-free asset with fixed continuously compounded
rate r (e.g. a money market account), a closed formula can be derived for
the price at time t < T of European CALLs; the price of European PUTs
are then derived by applying simple arguments under the “no-arbitrage”
assumption.

In the case of Black and Scholes model [3] we have that

C(St) = Φ(d1)St − Φ(d2)K e−r(T−t) (23)

with

d1,2 =
ln(St

K
) + (r ± σ2

2
(T − t))

σ
√
T − t

and where Φ(.) is the cumulative distribution function of a standard nor-
mal random variable; for the CRR model [12], if T = Nδ, we have

C(St) = Binn,q∗(m)St − Binn,q(m)K e−r(T−t) (24)

with m = min
{
j|Stujdn−j > K

}
, q = erδ−d

u−d , q∗ = e−rδq and where

Binn,q is the survival function of a binomial random variable with param-
eters n and q.

For the two above models to be consistent (the discrete one converging

to the continuous one as δ → 0) parameters are set such that u = eσ
√
δ,

16



d = e−σ
√
δ. Hence, the estimation of the volatility parameter σ is a crucial

issue in both cases.
As already noticed, much research has been devoted to the evalua-

tion of derivative contracts in more general settings than the ones above
described; so far, one main direction is towards the so called Stochastic
Volatility models, where the volatility of stock price changes is described
itself by a stochastic process, possibly correlated with the stock price pro-
cess. These models are able to reproduce many empirical facts in the stock
and/or in the derivative markets, such as the leptokurtosis of the stock
log-returns and the so called smile curve of the option implied volatility
when plotted against the option strike price (see e.g. [11] for details).

Among stochastic volatility models the most well known are the Heston
model [20] in continuous time and the GARCH(1,1) [4] in discrete time for
which a quasi closed price formula is suggested in [13]. As an alternative
to the stochastic volatility approach, in [5] the volatility is modeled as a
fuzzy number. In this framework, once the membership function for the
fuzzy volatility is known, it is possible to derive the membership function
of the fuzzy option price by applying Zadeh’s extension principle [44, 29].

Differently from [29], we didn’t assign in [5] a specific “a priori” mem-
bership function to the fuzzy volatility but we rather estimated (elicited)
the membership function for the volatility parameter. For each of the
considered sources of information and estimators, we obtained unimodal
membership functions with nested α-cuts identified by intervals [µαl , µ

α
r ]

in the extended reals R̃ and we computed fuzzy option prices once again
via the extension principle. To make this paper self contained, a brief
description of the eliciting procedure is given below.

3.2 Membership elicitation

This subsection recalls the outcomes in [5] in order to assess a membership
function for the volatility parameter σ. This is done by looking at mem-
bership functions as coherent conditional probabilities assessments and by
applying generalized Bayes rule. More precisely, we deal with some vague
statement about σ e.g. “σ is around a specific value”, and we have to rank
the willingness of an agent to claim it, conditionally to the true unknown
value of the parameter. We look for

µHs(x) = P (σ “is claimed to be a value around ” σs|σ = x), (25)

where each value of σs is representing a market scenario Hs, s = 1, . . . , ns,
while x is the exact value attained by the parameter σ. Given that σ is not
observable, beliefs on the parameter must be based on some estimators.
Thus, what we actually elicit is

µ̃Hs(θ̂) = P (Hs|Infoθ̂), (26)

where Infoθ̂ represents information obtained from an estimator θ̂ of σ. Let
us assume, for computational purposes, that any empirical or simulated
distribution for θ̂ is discretized into nb classes θ̂b, named “bins”. With a
little abuse we set θ̂b ≡ (θ̂ ∈ θ̂b) so that values for the pseudo-memberships
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(26) are computed “bin by bin” with Infoθ̂ ≡ θ̂b. The input domain E is

given by
{
Hs, θ̂b|Hs

}
s=1,...,ns;b=1,...,nb

i.e. by the unconditional scenarios

ranges and by the realization of the estimator inside one of its possible
bins, conditioned to different market scenarios.

As a first step we need the pseudo-memberships (26); they can be de-
rived either via Bayes rule, if scenarios Hs, s = 1, . . . , ns, come from a
partition, or via coherent extension, if scenarios come from partial knowl-
edge (i.e. they overlap, or they do not cover all the possibilities or there is
some logical constraint among them and possible values of the parameter).
In any case, the value of (26) relies on likelihoods P (θ̂b|Hs) and priors
P (Hs). Once likelihoods P (θ̂b|Hs) are obtained, it is possible to infer on
the probabilities P (θ̂b). If we have full information, i.e. the scenarios
form a partition and there is not any logical constraint among the Hs and
the θ̂b, then the available assessment P (·|·) on E is surely coherent [38,
Prop.1]. In this case we obtain the P (θ̂b) through the usual disintegration
formula

P (θ̂b) =

ns∑
s=1

P (θ̂b|Hs)P (Hs), (27)

and the pseudo-membership P (Hs|θ̂b) by Bayes rule

P (Hs|θ̂b) =
P (θ̂b|Hs)P (Hs)

P (θ̂b)
. (28)

If information is partial, once overall conditional coherence of the as-
sessment P (·|·) on E has been ensured, we can extend it by the procedures
detailed in [7, 9] to Hs|θ̂b, obtaining coherent intervals

[P∗(Hs|θ̂b), P ∗(Hs|θ̂b)]. (29)

Given the incompatibility of the various bins θ̂b, Theorem 2 in [10] guar-
antees the coherence of any value inside the intervals (29) . Hence, we
obtain a set of plausible pseudo-memberships instead of a single one, so
that we have to deal with interval type-2 [25] pseudo-memberships.

The further step is to consider the current (observed) value θ̂obs of the

parameter estimator. On the base of the bin θ̂b including θ̂obs we can

select most probable scenarios Hs by maximizing P (Hs|θ̂b). Ties among
type-1 or interval incomparability among type-2 pseudo-memberships can
induce more than one plausible scenario; in this case, any of such scenarios
can be a valid candidate so we need to take the disjunction of them.

At this point we elicit the searched membership µσ̃(x) by transforming
the simulating distributions πs associated with the selected scenario(s)
through a probability-possibility transformation among those proposed
in [14]; in particular we use one transformation induced by confidence
intervals around the median.

It is worth noticing that the elicitation procedure for this membership
is briefly summarized for the reader’s convenience but it is beyond the
scope of the present contribution to give further details.

Here, the focus is on the merging procedure among n memberships,
whatever their origin.
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Going back to the exercise in [5], we recall that the priors are obtained
by ”experts evaluations about scenarios” based on historical data, whereas
likelihoods are derived through simulation. More precisely, we assume
that, by randomly generating values of σ from a specific distribution πs for
each scenario Hs, we are able to obtain the distribution for θ̂ conditioned
to Hs, s = 1, 2, ..., ns. The latter step relies on the availability of an
explicit relation between σ and θ̂.

As already mentioned, we can infer about the volatility through dif-
ferent estimators. The most common is the sample standard deviation of
asset log-returns, so called historical volatility; in this case indirect infor-
mation is based on a sample of stock prices. Alternatively, we may profit,
when available, from the value of a volatility index obtained by consider-
ing as input a set of suitably selected traded Call and Put options thus
relying on a sample of derivatives prices.

Since we aim at eliciting the volatility parameter of the S&P500 index,
we based the membership elicitation for σ on both the historical volatility
estimator σ̂ and the estimator ν = VIX/100, based on the VIX Index.
The elicitation procedure we adopt follows the idea we developed in [5];
however, any different transformation, or better a coherent extension of
the probabilities assessed in the previous steps, could be adopted to obtain
membership functions for σ.

Note that the value of the VIX is released by the Chicago Board Op-
tions Exchange and its computation is based on a sample of prices of Call
and Put options written on the S&P500 Index. For the aim of this paper
we just rely on the fact that the VIX Index is considered an estimate
of the volatility of the S&P500 expected for the near future; in [40] the
interested reader may find the motivation for the VIX to be a volatility
estimate as well as details on its practical computation. We can summa-
rize the main steps of our procedure in the following items (for further
details refer to the cited papers):

1. The available time series are considered in order to elicit a pseudo-
membership for each estimator;

2. on the test date the most probable scenarios are selected according
to the current value of the estimator and depending on the pseudo-
memberships obtained in step 1;

3. a probability-possibility transformations is applied to the simulating
distributions (Uniform, LogNormal, Gamma) corresponding to the
selected scenario(s);

3a. whenever there are more than one membership associated to a sim-
ulating model, they are merged via our SMART-or operator;

4. the memberships, stemming from the different simulation models,
are merged into a single membership through our SMART-or .

5. steps 1-4 are performed for both σ̂ and ν leading to two different
fuzzy numbers;

6. the memberships associated to the two different estimators are merged
via our SMART-and to obtain a single fuzzy number for the volatil-
ity σ.
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The above steps are repeated by applying the fuzzy mean in place of
SMART-or and SMART-and, specifically for steps 3 to 6. This allow to
obtain a single alternative representation of the fuzzy volatility parameter.

3.3 Fuzzy option pricing

Once we have obtained a single aggregated membership function for σ̃, the
fuzzy volatility parameter, on a specific test-date, it is possible to price
options quoted that day by a straightforward extension of standard CRR
model in [12] to a fuzzy multi-period binomial model. This will be done
for the two alternative fuzzy numbers stemming from the application of
our operators or from the application of the fuzzy mean.

Our explicit numerical evaluation of each α-cut of the fuzzy number for
σ̃ allows us to take advantage of others contributions available in literature
for each step of the pricing procedure. In particular:
- from σ̃ to the the fuzzy “UP” and “DOWN” jump factors

(Zadeh’s extension principle [44])

[uα, uα] = [eσ
α
√

∆t, eσ
α
√

∆t] [dα, d
α

] = [e−σ
α
√

∆t, e−σ
α
√

∆t] ; (30)

- from ũ and d̃ to the fuzzy risk neutral probabilities (Muzzioli & Torricelli
[36])

[pα
u
, pαu ] =

[
er∆t − dα

uα − dα
,
er∆t − dα

uα − dα
]

[pα
d
, pαd ] =

[
uα − er∆t

uα − dα ,
uα − er∆t

uα − dα
]

;

(31)
- from p̃u and p̃d to option price (e.g. call) (Li & Han [32])

[Cα0 , C
α
0 ] = e−rN∆t

[
N∑
i=0

(pα
u

)i(pα
d

)N−iCαN,i,

N∑
i=0

(pαu)i(pαd )N−iC
α
N,i

]
(32)

with

[CαN,i, C
α
N,i] =

[
max(S0(uα)i(dα)N−i−K, 0),max(S0(uα)i(d

α
)N−i−K, 0)

]
.

(33)
Fuzzy option prices relative to the two approaches are compared to market
bid-ask prices for the quoted options on a test date, in order to assess the
overall pricing performance; the comparison is based on the computation
of a proper similarity index (see, e.g., [38]).

3.4 Numerical results

In the numerical application the elicitation step n.1 is performed on the
S&P500 daily returns from January 1960 to September 2016 for σ̂ and
on daily observations of the VIX index from January 1990 to September
2016 for ν̂. The considered test-date for evaluating pricing performance is
October 5, 2016; the current scenario on this date is the “low volatility”
scenario for all simulating models and both estimators. After obtaining
the three memberships associated to the simulating distributions (Uni-
form, Log-Normal, Gamma) corresponding to the current ”low volatility”
scenario, they are merged (step n.4) either with the Y operator, for both
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the historical volatility and the VIX based estimators (step n.5). The
outcomes corresponding the two estimators are fused via the Z (step n.
6), obtaining the fuzzy representation σ̃ = µσ̂obs Z µνobs for the volatility
parameter σ. Steps n.4 to n.6 are then applied by replacing the standard
fuzzy arithmetic mean to our SMART SMART-or/SMART-and opera-
tors. The memberships derived are plotted in Fig. 8.

Figure 8: The merging results: SMART-or of the fuzzy numbers stemming
from different models for σ̂ (dashed lines on the left) and for ν (solid lines on
the right) and their final SMART-and (dashed-dotted lines on the center), by
applying our Y and Z (black) or the fuzzy mean (gray).

Fuzzy option prices for option traded on October, 5, 2016, are com-
puted by applying the formulas outlined in previous section.

In Fig. 9 we plot the fuzzy price obtained by applying either our
SMART merging operators (solid) or the fuzzy mean (dashed) for two
examples of options; the bid-ask interval is also included in the picture.
We point out that in both examples our procedure gives narrower mem-
berships; this feature is common to all option prices. In the example in
the right picture we also note that the core value is closer to the mid-point
of the bid-ask.

In Fig. 10 we plot the similarity values for the two approaches; the
number of times that our approach overcome the fuzzy mean is not sig-
nificantly above 50%; though, whenever the fuzzy mean is better, the two
values are indeed very similar. In Fig. 11 we plot the histogram of the
difference between the similarity value obtained with our approach and
with the fuzzy mean; if this difference is positive we have a better perfor-
mance of our SMART-or/SMART-and in describing option prices. It is
evident from the picture that this difference is often null and that in the
other cases there is an asymmetric distribution of the difference towards
positive values. Summary statistics in Table 2 confirm this evidence.

A deeper investigation of the results also highlights that the two ap-
proaches are good enough whenever the core of the fuzzy prices are within
the bid-ask range and in that cases the SMART merging approach is def-
initely better since it usually produces less vague values. Conversely, the
fuzzy arithmetic mean seems to be better when both similarities are indeed
very low; and this happens mostly when both memberships are “far” from
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Figure 9: Market bid-ask (crisp interval), “smart” fuzzy prices (solid), “arith-
metic mean” fuzzy prices (dashed) for two examples of CALL options traded
on October 5, 2016 with expiration in one month and strike price K=2040 (left
panel) and K=2210 (right panel). The S&P500 value is S0 = 2159.7.

Figure 10: Similarities between fuzzy SMART (solid circle) or fuzzy mean
(dashed plus) against market bid-ask option prices.

Table 2: Summary statistics for similarity differences between SMART and
fuzzy mean w.r.t. bid-ask market prices.

Mean StD Median Q1 Q3 10th perc. 90th perc. Skewness
0.0058 0.0433 0 -0.0032 0.0076 -0.0094 0.0416 1.3362
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Figure 11: Histogram of the difference between the similarity for SMART and
average fuzzy merging.

the bid-ask spread, since the one obtained through fuzzy mean is usually
larger and hence more likely to overlap the bid-ask interval. An example
is given in Fig. 12.

We believe that this feature is due to the pricing model itself (the core
of both the fuzzy prices are usually outside the bid-ask range within these
cases) and not to the particular aggregation method used for the elicited
(estimated) fuzzy volatility. In addition, the aim of this contribution is
not that of convincing the reader about a new model for option pricing;
rather the present section was aimed at giving a practical example for the
application of our merging operators in the financial world where several
sources of data are available for the same claim. Hence, we don’t discuss
further this issue.

Figure 12: A case of SMART (solid) and fuzzy mean (dashed) option prices
with low similarity w.r.t. market bid-ask (crisp interval).
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4 Conclusion

The problem of merging information stemming from several sources is cru-
cial in recent times where both size and variety of available data is hugely
increasing. To address this issue we propose SMART fuzzy operators to
aggregate sources of information and models when estimation for some
(fuzzy) parameter is the final aim of the merging. Note that our proposal
come as alternative to the use of the fuzzy mean, commonly adopted to
merge fuzzy estimates of the same quantity, and are defined through a
slight modification of the fuzzy mean itself, similar to generalizations like
Fuzzy Ordinal Weighted Average (FOWA, see e.g. [31]). However, the
operators we introduce can be applied in a disjunctive, when sources of
information are alternative one another, or in a conjunctive way, when
they give concomitant information. This is achieved through a proper
choice of the weights which, notably, is endogenous to the input fuzzy
numbers. Specifically, the definition of the proposed operators is based
on an adapted Marzullo’s algorithm to properly measure the weight as-
signed to overlapping intervals in each of the α-cuts of the memberships
to be merged. The whole methodology is illustrated within the problem
of estimating stock volatility in the US financial markets, usually repre-
sented by volatility of the S&P 500 Market Index, on a fixed test date.
Many source of information described by different data are available to
this scope. Traditionally, volatility on a certain date is measured as the so
called historical volatility which is nothing but the sample standard devi-
ation of past daily observations of logarithmic returns of the Index itself;
the VIX Index is provided by the Chicago Board Option Exchange as an
alternative measure for the volatility of the S&P 500 Market Index, based
on the price of a basket of financial Call and Put Options on the Index,
traded on the same Exchange, see [40]. The two memberships obtained
for the historical volatility and the VIX based estimators, according to
the elicitation procedure defined in [5] by merging the simulating distri-
butions (Uniform, Log-Normal, Gamma) with the SMART-or Y operator,
are then merged via the SMART-and Z operator, obtaining the fuzzy rep-
resentation σ̃ = µσ̂obs Z µνobs for the volatility parameter σ. The same is
done by applying the arithmetic fuzzy mean operator whenever merging is
due and the outcomes are summed up in Fig. 8. Since a true membership
for the volatility, to be compared with our estimates, is not available, in
order to have a tangible comparison of the different merging procedure we
should shift to observable quantities, such as market prices for options on
the S&P market Index, whose prices notoriously depend on the underlying
volatility, see [22]. Hence, we compute fuzzy option prices corresponding
to a chosen model, once the fuzzy volatility parameter is elicited, and com-
pare them to the corresponding Market Bid and Ask price intervals. More
precisely, fuzzy option prices are computed within the fuzzy generalization
of the Cox Ross Rubinstein model by building on existing results such as
(Muzzioli & Torricelli [36]) and (Li & Han [32]) as well as on the exten-
sion principle of [44]). Model prices are computed for all options traded
on the test date and are compared to the corresponding market Bid and
Ask price intervals. The results of our numerical exercise are promising:
in particular, whenever closeness is measured by fuzzy similarity as de-
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fined in [38] we find that our proposed merging procedure produces fuzzy
option prices which are closer to Bid-Ask market prices with respect to
the ones obtained by applying the fuzzy mean averaging operator. Hence,
taking into consideration agreement and disagreement among input fuzzy
estimates may indeed be useful for practical applications, of which option
pricing is just an illustrative example.

Acknowledgements

This work has been supported by DMI - Universitá degli Studi di Perugia
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A Merging operators between fuzzy num-
bers

A merging or aggregation operator for fuzzy numbers is intended as an
operator which applied to an input of n fuzzy numbers, with n ≥ 2,
delivers a single fuzzy number as an output.

Two approaches can be distinguished for merging/aggregating fuzzy
numbers.

One seeks to merge fuzzy numbers related to preferences or evalua-
tions stemmed from different experts or information sources in one single
fuzzy number which should subsume the fuzzy number related to a rep-
resentative expert or information source and can have several reasonable
properties like those reported in [8].

The other interprets fuzzy numbers as estimates stemming from dif-
ferent experts or sources of information and aims at aggregating those
estimates to a single fuzzy number representing a compromise of original
inputs, as done e.g. in [1, 21, 35]. The α-cuts corresponding to the same
level of plausibility for the n input fuzzy numbers are merged in order to
obtain the α-cut of the output fuzzy number.

In order to make the difference between the two approaches crystal
clear from a computational point of view, other that only motivational,
we remark that the former combines fuzzy numbers with set-theoretically
operations, such as t-norms or t-conorms, applied pointwisely on their
membership functions (i.e. vertically, on [0, 1]) , while the latter applies
algebraic operations ”on” fuzzy numbers (addition, multiplication or av-
erages) which are defined on the α-cuts (i.e. horizzontally, on R).

A.1 Merging connectives

The classical t-norm fuzzy conjunction and t-conorm disjunction fall within
the first approach as well as some of their generalizations like, e.g., overlap
and grouping functions (see [2]). For the sake of clarity we briefly recall
their definition in what follows

Definition: A triangular norm (t-norm shortly) is a function T : [0, 1]2 −→
[0, 1] which is commutative, associative, non-decreasing and admits 1 as
neutral element.

The simplest example of a t-norm id the min function i.e. T (a, b) =
min (a, b). If A and B are two fuzzy numbers represented by fuzzy mem-
berships µA(x), µB(x) : R → [0, 1] the fuzzy number C merging A,B
through T is defined through the fuzzy membership µC(x) : R → [0, 1]
where µC(x) := T (µA(x), µB(x)) suitable scaled to fulfill fuzzy member-
ships properties. Depending on the choice of the t-norm function it is
possible to obtain different fuzzy-theoretic intersection operators.

Definition: A triangular conorm (t-conorm or s-norm shortly) is a func-
tion S : [0, 1]2 −→ [0, 1] which is commutative, associative, non-decreasing
and admits 0 as neutral element.

The simplest example of a t-conorm id the max function i.e. S(a, b) =
max (a, b). If A and B are two fuzzy numbers represented by fuzzy mem-
berships µA(x), µB(x) : R → [0, 1] the fuzzy number D merging A,B
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through S is defined through the fuzzy membership µD(x) : R → [0, 1]
where µD(x) := S(µA(x), µB(x)) suitable scaled to achieve normality if
required. Depending on the choice of the t-conorm function it is possible
to obtain different fuzzy-theoretic union operators.

A.2 Merging averages

We recall here main examples of merging averages by following the ap-
proach in [35]. The simplest example is the fuzzy weighted average (FWA)
which, when weights are crisp numbers, is defined as follows

Definition: Let Ψ be the family of fuzzy numbers. A fuzzy weighted
average operator is a mapping FWA : Ψn −→ Ψ , associated to a vector
w = (w1, w2, . . . , wn) of non negative weights with

∑n
i=1 wi = 1 , such

that

FWA(A1, A2, . . . , An) =

n∑
i=1

wiAi, (34)

where Ai, i = 1, 2, . . . , n are the fuzzy numbers to merge, such that it
results as the fuzzy number with α-cuts:

[

n∑
i=1

wiµ
α
Ail

,

n∑
i=1

wiµ
α
Air

]. (35)

In the special case of equal weights wi = 1
n

, FWA reduces to the simple
fuzzy arithmetic mean, i.e. the fuzzy number with α-cuts:

[
1

n

n∑
i=1

µαAil ,
1

n

n∑
i=1

µαAir ]. (36)

The above definition may be generalized to the case where weights are
also described by fuzzy numbers introducing anyhow further suddle tech-
nicalities (one for all: we could louse the convexity of the combination);
since we do adopt such generalization, we do not recall it here.

Instead, it is worth to mention a modification of the FWA in order
to consider a predetermined order of the input fuzzy numbers: the fuzzy
ordered weighted averaging operator, FOWA, which is the extension of
the ordered weighted operator for crisp numbers, introduced in [41].

Definition: Let Ψ be the family of fuzzy numbers. A fuzzy ordered
weighted average operator is a mapping FOWA : Ψn −→ Ψ , associated
to a vector w = (w1, w2, . . . , wn) of non negative weights with

∑n
i=1 wi = 1

, such that

FOWA(A1, A2, . . . , An) =
n∑
i=1

wiBi, (37)

where Ai, i = 1, 2, . . . , n are the fuzzy numbers to average and Bi is the
i-th largest of the input fuzzy numbers.

As pointed out in [35], the reordering of the fuzzy numbers introduces
a further complexity since there are many alternative valid proposals that
might lead to different results. As recommended in the same paper [35],
the simplest criteria is to order fuzzy numbers according to the order of
their core values, i.e. the α-cuts for α = 1.
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Several families of FOWA operators can be classified according to spe-
cific choices of the weights; an interesting example is the S-FOWA family
of operators based on [42] where the weights are proper modifications of
those of the fuzzy arithmetic mean. In particular w1 = 1

n
(1−(α+β))+α,

wn = 1
n

(1−(α+β))+β and wj = 1
n

(1−(α+β)), for j = 2, . . . , n−1. This
choice of the weights is in the same spirit of our deformations of the fuzzy
arithmetic mean; however, parameters α and β are left to an exogenous
decision and remain constant for all α−cuts, contrarily to ours.
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