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1. Introduction

Nowadays two trends are evident in the way the computational resources are
organized and managed to provide users the computing infrastructures adequate
for the emerging computing needs. On the one hand, virtualization technologies
are massively adopted, based on more and more powerful Cloud systems (Open-
stack, Opennebula, Eucaliptus, etc.), along with systems for deploying Virtual
Machines and all technologies related to the Cloud scenario. On the other hand,
it is clear that in order to increase the performances of the computing systems
the best way is to adopt heterogeneous architectures, specializing them on the
basis of the requested type of computation from the users. Examples of this
type are the usage of GPUs for the fast solution of different problems in com-
puter science like graph analysis [10, 11], cryptography [22, 39, 19] or computa-
tional logic[18], the development of innovative architectures, like the Parallella
board[32], and the adoption of Field-Programmable Gate Array (FPGA) device
as a computing resource[27, 13]. Cloud and Grid computing share some essential
driving ideas which led to the construction of both large scale federated Grid
infrastructures which can be summarized as follows:

- bring the promise of encapsulating the complexity of hardware resources
and make them easily accessible by means of high-level user interfaces;

- address some form of the intrinsic scalability issues of large scale compu-
tational challenges;

- cope with the need of resources that cannot be hosted on premises.

However, the key differences between Grids and Clouds concern abstractions
and compute models adopted by both paradigms [21]. It can be said that Grids
are built “bottom up” and are concerned more with federation of static exist-
ing resources that typically are legacy clusters built around a Local Resources
Management System (LRMS) that exploits the Batch computing model.

The development of applications for Grid environments requires the knowl-
edge of the Grid infrastructure abstractions. This process, aimed at enabling
the application to run in such environments, is in fact called “Grid-enabling”
and can be rather complex [20], even considering real-life systems (e.g., [16, 25]).
On the other hand, Cloud users can choose their own compute model, leveraging
more general (without the needs of a fine tuning of the environment) interfaces
that often lead to simpler interaction and application development [36].

As sketched before, there are several problems that do not play nicely with
the heterogeneous nature of aggregated resources in Grids. For example, many
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scientific applications need different environments (operating systems, libraries)
and hardware (i.e., Multicore Processors, FPGA, GPUs, etc.). From a Batch
point of view this represents a set of requirements influencing scheduling de-
cisions for both top and local level resource managers. So the Grid sites het-
erogeneity plays a central role in job distribution (workload) among sites that
match the aforementioned requirements.

Furthermore the Grid workload can be often unpredictable and subject to
burst increase, that lead to unbalanced distribution in resource usage, and even
deterioration of QoS. In this context the Grid workflow represents a weak point
for the Batch model in which resources are often statically managed and parti-
tioned, and cannot be adapted in advance to meet possible requirements. More-
over the use of Clouds could allow the extension of private resource pools in
number and typology with positive effects on Quality of Service (QoS).

So why do not dismiss Grids and adopt Cloud solutions? There are several
reasons: it is not yet clear how some critical issues (data management, security,
etc.) are to be dealt with in the Cloud era, while in Grid are well-established.
Furthermore, the costs of an eventual shift in technology must be thoroughly
investigated. A more reasonable approach is an integration process that com-
bines the features of both. The latter one is the main focus of our work. To
this end, we introduce a simple and powerful DBMS-based system of deploying
VM images from a Cloud environment in order to fulfill particular requests of
task execution coming from a Grid environment. From a user point of view,
resource authorization and access are kept unchanged, thus preserving the user
experience related to the Grid. From the accounting point of view, in order
to inform the Grid sites that a certain resource is available on a given Cloud-
enabled Grid site, the information is published on the Grid information system.
In this so-delineated scenario, we are able of using the powerful capability of
distributing jobs of the Grid in order to allocate resources not only belonging to
Grid clusters, but also with different architectures like GPUs, FPGAs and other
systems. The target DBMS-based system has been designed for orchestrate a
set of computing systems able to provide physical and virtual resources, creat-
ing a unified system, in which the various users-submitted computing tasks are
managed and optimized. The goodness of the proposed system is demonstrated
by a series of experiments highlighting the benefits of our approach.

This paper is organized as follows: in Section 2 the related work and different
integration possibilities are illustrated; after a brief overview of the proposed
solution (Section 3), in Section 4 we describe the internal organization of the
main DBMS component where the system is built around. In Section 5 and
Section 6 the software components and the job flow are presented and discussed.
In Section 7 the Direct2M component is described. Finally, in Section 8 the
results are discussed and in Section 9 some conclusions and the future work are
addressed.
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2. Related Work and Integration Possibilities

Before the Cloud era, even if these issues were addressed in various works[12,
38, 28], the proposed solutions were often heavy customized and too tightly
dependent on particular technological choices.

With the success of Cloud computing through the spread of IaaS providers [8,
3, 4], the development of interfaces for the simplification of virtual management
[5, 7] and related libraries (i.e.,[6, 2], etc.) paved the way to several possibilities
for Grid and Cloud integration. As a matter of fact, even if Cloud solutions have
been, since their first definition[14], primarily driven by business motivations,
the IaaS service model seems to respond to some of the Batch model issues and
can overcome them with both on-demand and adaptive characteristics.

To the best of our knowledge there are three approaches of site-level integra-
tion between the Batch oriented Grid compute model and the service oriented
nature of Clouds.

Grid over Clouds. In this model, a whole Grid site is built on top of a pub-
lic/private Cloud. Through this schema, the Grid infrastructure can be built
by instantiating resources according to the real needs of the users. In [9], the
authors provided a “Grid as a service” tool in order to create new Grid sites, or
to add computational resources to existing Grid sites by exploiting a Platform
as a service (PaaS) approach. Similar approach is also adopted in [30].

Hybrid with Batch-dependent Cloud-enabled LRMS. In this model, a single local
Batch system is used to schedule the jobs on a pool of dynamically provisioned
resources either on premises or public/private Clouds. For example, in [35], the
authors described a solution which enables building dynamical environments
through Grid jobs or local Cloud jobs. The solution proposed is built around
the LRMS which handles each request. This approach presents manifold lim-
itations. The main drawbacks are the following: i) the solution is strongly
dependent on a particular technology adopted (i.e. LRMS requires customiza-
tions); ii) the approach is not elastic [33, 31] since it enables the spawn of a
virtual environment on local resources only.

Hybrid no Batch-dependent. In this model, the local Grid site spawns resources
(even whole clusters) on public/private Clouds on the basis of the jobs requests.
The integration is done at the Computing Element level. In this way, several
computational resources (i.e. resources available on other computational cen-
ters) can be exploited by a fine grained control over virtual instances. In [39], the
first solution based on Cloud-over-Grid approach was presented. The authors
also validated their solution providing to Grid users special virtual computa-
tional resources as GPUs.

The last two approaches can be also identified as two types of “Cloud-over-
Grid”. In the present work, we describe our solution, that may be used to
implement any of the described hybrid approaches with the special attention to
the no Batch-dependent model.
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3. A DBMS-Based System for Integrating Grids and Clouds: Overview

The proposed system is based on the adoption of Cloud systems to enable
the Grid sites to provide to the users a set of non-traditional resources, like the
aforementioned ones and dynamical environments. As an example a Grid user
may request to run in a server equipped with a given GPU, or with a particular
software library installed or operating system.

Our system has been designed according to the Unix principles: each com-
ponent is autonomous, independent from the others, specialized in carrying out
a named task in a simple way. According to this approach we have chosen to use
tags for cataloging the Virtual Machines that have a certain type of hardware
features (such as a named architecture, hybrid systems, GPU, etc.) or software
(operating systems, special libraries installed). These tags are published using
the standard techniques of the Grid environment, as features implemented and
published by a particular site, and which can be specified as requirements by the
users when submitting a job. In this way, the Grid information system enables
the users to submit jobs requiring special environments, provided only by some
Grid sites.

In Figure 1 the project logical schema is sketched. Our solution is built
around a DBMS that plays a central role since it contains the configuration of
the system, in terms of the connected clusters, the Cloud systems, and their
environments and status. The architectural workflow of our solution is imple-
mented by different agents connected to the DBMS each performing a specific
action; they will be described in detail later.

In the remaining part of this paper we will use the following terms, and
corresponding meaning:

Computing Element (CE): is the set of resources made by the Gatekeeper and
the Cluster.

Gatekeeper : is the system that provides the gateway through which the Grid
jobs are submitted to the Batch system running on the local farm nodes;

Cluster : it is a Grid enabled Cluster, i.e. a bunch of Worker Nodes (WNs),
connected to a Computing Element (CE) and connected to the Grid system.
When referring to Clusters we will mean the Cluster Resource Manager.

Cloud : it is a Cloud infrastructure with a Cloud controller like OpenNebula,
OpenStack or Eucalyptus.

Computational node: a single server used as target of the incoming Grid job
without the use of a Batch system or a Cloud System.

Cloudtag : tag used to mark the Virtual Machine (VM) images and to organize
the infrastructure resources.
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Figure 1: Description of the proposed system

4. The DBMS Structure

The information about Clusters and Clouds is collected on a DBMS system.
From the implementation point of view we have chosen PostgreSQL for this
purpose. The information has been divided into four logic blocks, each one
mapped to a DBMS schema:

- The capabilities schema contains the information about the Clusters, Cloud
Controllers and VM images known to the system. It also contains the infor-
mation about tagging the VM images to publish this information through to
Grid information system.

- The needs schema contains a live view of the Cloudtag needed by clusters.

- The fulfillments schema contains a live view of the Cloudtag offered by Cloud
systems.
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- The running schema contains the list of the running jobs, with related details.

4.1. The capabilities Schema

The capabilities schema contains the information related to the composi-
tion of the various systems. Each software component reads from the DB the
necessary information, since the capabilities schema contains all the information
related to the structure of the system. The information contained in this schema
concern the Cloud, Clusters, Gatekeepers, the Computational nodes connected
to the system, and, more important, the VM images.

4.1.1. Information on the Active Cloud Systems

The table Clouds of the capabilities schema traces the following information
related to the active Cloud systems:

- Type of Cloud system (i.e., OpenStack, OpenNebula or Eucaliptus).

- The description of the Cloud system.

- The information on how to interact with the system, which may, or may
not, contain authentication information.

4.1.2. Information on the Active Clusters

The table clusters of the capabilities schema traces the following information
related to the Batch system of the active Clusters:

- Type of Cluster’s Resource Manager (Torque/MAUI, LFS, etc).

- The description of the Cluster.

- The optional information on how to interact with the Batch system of the
Cluster.

4.1.3. Information on Gatekeepers

The table gatekeepers of the capabilities schema traces the information re-
lated to the Gatekeepers of the active Grid nodes. In particular, the more
important information are:

- Gatekeeper information and the Information System of the Grid site.

- Description of the Grid site.

- The optional information on how to access the Gatekeeper and/or the
Information System.

It is relevant to notice the reason why we implemented two separate tables,
one for Gatekeepers and one for the Batch Systems, even if the Grid site is the
same, so that the CE is listed in the gatekeepers table and the Batch System
in clusters table. We kept separated the two tables because we want to stress
the fact that the job path, and the related sequence of events and actions, are
different if they are under the control of a Batch System or not.
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4.1.4. Information on Standalone Computational Nodes

The table compnodes of the capabilities schema traces the information re-
lated to the access to Computational nodes capable of executing jobs. They
represent the real or Virtual Machines not connected to a Batch System, we
want to include in our System. The most relevant information are:

• Node type.

• Operating system.

• Information related to the access to the node.

4.1.5. VM Images

A job can be received by a Gatekeeper or by a Batch System and sent to a
virtual resource (Cloud) or on a standalone Server or Computational node. The
aforementioned resources can be of two types: those that require the fulfillment
of a need (Gatekeepers and Clusters) and those that satisfy the need (Clouds
and Server). The association between requests to meet and who can satisfy
them is performed inside the table images.

The possible job flows originated by this schema are four and are described
in Table 1. The single flows will be discussed in the next sections.

Table 1: Possible job flows

Component Target
Cluster Server
Cluster Gloud
Gatekeeper Cloud
Gatekeeper Server

The table images contains the couple of values Component from which the
job is coming and Target, indicating the job flow in the system, the tag that will
be published by the Grid Information System in order to notify the presence of
the resource, and a series of information related to the possibility of creating
multiple instances. In particular are advised the following information:

• How many instances may be generated (for a single Computational node
this value is 1).

• Number of jobs per instance.

• Magnitude and boundaries of the instances.

• Waiting time before destroying the images.
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4.2. The needs Schema

In the needs schema the software agents running on Clusters and/or Gate-
keepers connected to the system, maintain the status of requests to be satisfied.
Each agent has associated a table containing the list of jobs with the related
Cloudtags. The job listed in such tables are all waiting jobs. Running jobs are
listed in the running schema.

4.3. The fulfillments Schema

In the fulfillments schema are instead listed the resources available to satisfy
the requests, so that the systems may know for each Cloudtag where is located
the Cloud or the Computational node.

4.4. The running Schema

We included in the system also the running schema having the purpose of
storing the state of running resources.

5. Software Components

The implemented system is based on the DBMS and on a set of daemons,
each of them carries out a limited and specific action. We can identify three
functional classes:

• Daemons that integrate the information on a Computational node, a Clus-
ter or a Cloud or on the Grid. They create a global view of the system,
that is crucial to let the single components to interact properly each other.
They also publish the information related to a component on another one:
i.e., a given Cloudtag offered by a Cloud has to be propagated via the
Grid, in order to be accessed from remote users in a secure way.

• Daemons that keep updated on the DBMS the state of a system (Cloud,
Cluster or Computational nodes). It represents the passive part of the
system, collects the utilization information related to the Cloud and Grid
systems and insert them into the database.

• Daemons that perform actions on the Cluster and on the Cloud, when
necessary. They represent the active and decision-making part of the
system. Based on the current status information may for example decide
to instantiate new virtual resources to meet the needs of a single cluster.
As an example, a given component may suspend a job because it is not
yet available the resource where it has to run.
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5.1. Resource Publisher

The Resource Publisher components are responsible for the publication of
the resource capabilities within the site Berkeley Database Information Index
(BDII) of every cluster connected to the system. These agents, typically one per
Grid site connected to the system, read from the database the set of Cloudtag
and modify the site information system regarding the available resources, to
advice their presence. In our case, we implemented the interface agent with
the Grid agents based on Glite middleware. The agent inserts each Cloudtag
supported into the BDII of the Grid site, in the LDAP directory.

5.2. Resource Translator

The presence of Cloudtag as supported features of a Grid site, enables the
users to specify in the requirements for a job, one of such tags. When the
job arrives in the Grid site it is necessary to recover the information on tags
and utilize them for letting the job continue the execution in the right way.
An agent takes charge of modifying the Grid site information related to the
supported Cloudtags. In our case we developed a Grid agent based on Glite
middleware.

5.3. Grid Connectors

The purpose of Grid Connectors is to maintain, for each Cluster, the status
of the Cloudtag requests in the database table related to such Cluster. The
system needs an active connector for each Cluster connected to the system and
such connectors are dependent from the type of Resource Manager installed on
the Grid site. We implemented the Torque/MAUI connectors. Similarly it is
possible to implement the connectors for the other systems (LSF, Condor, etc).

5.3.1. Torque/MAUI Connector and Advisor

Upon job arrival another agent instructs the scheduler MAUI not to start
the job, at least at the beginning. This is done to avoid the job failure in case
one of the necessary resources to run the job is not yet ready. The job is then
blocked on the Batch system maintaining the Cloudtag attribute.

The connector for Torque Batch system then tracks jobs within the resource
manager that has some Cloudtag listed as required resource, and updates the
needs table belonging to the cluster where it runs. This is done by a C program
directly interfaced with the Torque server.

Another agent, checking the running status and the needs schema, takes
the decision about deploying or destroying virtual resources and unlocks, if
necessary, the frozen jobs.

With this model the Resource Manager still is in charge of executing, schedul-
ing, prioritizing jobs, however the resource pool is modified by our agents ac-
cording to the needs expressed by the Cloudtags.
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5.4. Grid Advisors

Sometimes, it happens that the behavior of a managed Grid site has to be
changed. If a job needs for example a resource not yet ready, we may force the
Batch System to hold the job. If a job has to run on a Computational node
instead of being managed by the Batch System, we have to launch the proper
scripts, acting differently respect to the standard behavior. The aforementioned
examples show as our system modifies through Agents the standard behavior of
a Grid site to obtain the desired result.

5.5. Cloud Connectors and Standalone Computational Node Connectors

As is the case of the Grid sites, also for the Clouds connected to the system,
a group of agents (usually one per Cloud System) maintain a copy of the virtual
resources status of the named Cloud, related to the system. The same occurs
for the standalone Computational nodes connected to the system.

In order to use the most common Cloud Systems, we implemented the fol-
lowing Agents, using the following languages and libraries:

- OpenStack: the Fog library and the Ruby language;

- OpenNebula: the Boto library and the Python language;

- EC2 generic: the Boto library and the Python language.

5.6. Cloud Advisors

Another relevant class of Agents in our system is that taking charge of in-
stantiate, delete, or modify virtual resources on the managed Clouds. Reading
from the DBMS the current status of the resources and respecting a set of rules
defined in their configuration, these daemons decide when create or destroy
virtual resources. In this case also, we used the languages listed in Section 5.5.

6. Job Flow

Considering what has been said so far, in our system are implemented three
different job flows:

- Jobs arriving from the Batch System that are executed on a virtual re-
source provided by a Cloud System;

- Jobs arriving to the Gatekeeper that are not transferred to the Batch
System and instead are moved on a virtual resource;

- Jobs arriving to the Gatekeeper that are not transferred to the Batch
System and instead are moved on a real resource, not managed by a Cloud
System.

The flow related to a job transferred to a Batch System and then to a real
machine, represents the standard behavior of a Grid site and therefore will be
not considered in this paper.
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6.1. Cluster and Cloud

The first considered job flow implemented in our system is related to a job
arriving via Grid to the Gatekeeper and is transferred (with its Cloudtag) to the
Batch System. Up to this point our system translates the tags expressed in the
Grid format to the corresponding Batch System tags. An Agent verifies then,
crossing the live data of jobs in the waiting queue and related Cloudtags, with
the data of the Cloud System, if it will be necessary to instantiate resources
on the Cloud System. Similarly, the Agent may decide to remove a Virtual
Machine from the Cloud System. In Figure 2 it is sketched such type of job
flow.

Figure 2: Flow related to Batch System and Cloud.

6.2. Gatekeeper and Cloud

The second job flow implemented in our system is related to a job arriving
to the Gatekeeper and not transferred to the Batch System, but enters the
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Direct2M (D2M) component, that has been implemented by us. The Direct2M
component temporarily blocks the job and verifies if exists a virtual resource
available, matching the Cloudtag. If the resource is available, Direct2M acquire
the necessary authentications and authorizations and executes the job in the
Virtual Machine. If the resource is busy the job is blocked until the resource if
released or another resource which supports the Cloudtag may be instanced.

Figure 3 shows the diagram related to such a flow.

Figure 3: Flow related to a Cloud resource and no Batch System.

6.3. Gatekeeper and Server

The third flow we considered is related to the following scenario: the in-
coming job is blocked on the Gatekeeper and is transferred to a Computational
node. In such cases the Cloud component is not active. Since the system cannot
instantiate new resources, the Agent function is that of unblocking the job and
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send it to a resource as soon as the resource becomes available. The Figure 4
shows such a scenario.

Figure 4: Flow related to a Cloud free resource without Batch System.

7. Direct2M Component

The implemented system is based on the hypothesis that Virtual Machines
used as Worker Nodes are included in the pool of resources the Gatekeeper of
the Grid site manages. This means that all typical operations carried out by the
Grid middleware (move the job binaries to the right place, execute the job with
the proper ownership, the verification of authorizations, the collection of results,
etc.) are delegated to the Resource Manager of the Grid System. This imply
that the Grid middleware has to be installed into such Virtual Machines man-
aged by the Cloud System. However in some circumstances, the architectures
and /or the Operating Systems are to much different from the ones supporting
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the middleware. In example, we cannot run a job in a Virtual Machine running
an OpenBSD System, since it does not support Glite middleware. To make it
possible, we developed an agent to enable the job execution on system without
the Grid middleware installed, named Direct2M.

A set of heterogeneous resources (either virtual or real), not included in the
Grid Resource Manager, enabled with Direct2M component, can execute Grid
jobs and some functionalities usually carried out by the Grid Resource Man-
ager are performed by this component. Extended Gatekeeper features are also
necessary in order to execute the Direct2M component. In our case studies, we
modified the Glite middleware, in particular we added the following capabilities
to the Gatekeeper:

Job management at Gatekeeper level: since when the Direct2M compo-
nent is used we are implementing a “no Batch-dependent model” we create some
bash scripts to get and control the jobs. This component is interfaced with the
Batch Local ASCII Helper (BLAH) component of the Glite middleware.

User and group mapping: every job authorized by the Grid is mapped on the
Gatekeeper to a string representing the Person/Organization of the job owner.
This string is then mapped to a Gatekeeper local user. We needed to map this
user to a local one of the target machine.

Data moving from and to servers: we choose to use ssh to move input data
of jobs, retrieve outputs and as a method to submit the job. A set of control
scripts have been written to carry out all these operations.

8. Experimental Results

By using the Grid infrastructure of the Italian Grid Infrastructure avail-
able in the Department of Mathematics and Computer Science of the Perugia
University, we implemented all software components necessary to integrate the
Grid site with the most popular Cloud Systems: OpenStack and OpenNebula.
We built an experimental Grid site connected to an OpenNebula and an Open-
Stack Cloud systems. As for the Computational nodes, we included some Linux
systems and some Unix systems, Illumos based distribution and some BSD fla-
vors. We also tested the system with no-x86 systems: notably raspberryPI,
Beaglebone Black systems.

A user who access the implemented system has the opportunity to exploit,
using a standard Grid interface, heterogeneous resources, both in hardware and
software components.

Concerning the performance point of view, our system introduces a negligi-
ble overhead when it is used as “Hybrid with Batch-dependent Cloud-enabled
LRMS” and the resources are deployed in advance. If the resources have to
be deployed, the overhead introduced by our system is negligible, compared to
the time necessary to deploy the resources. When used as “Hybrid no Batch-
dependent model” an additional overhead is introduced by the ssh command,
used to move data and launch jobs.
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8.1. Case Study

To better understand the implemented system, a complete example will be
now illustrated. Let’s assume of having a particular library, named cgintlib,
installed in an image of a Cloud system connected to the computing environment
described so far. The goal is to enable jobs needing cgintlib, submitted to a
Grid owning the site connected to the implemented environment, to be executed
on computing resources provided by the aforementioned Cloud.

In this example we will consider the OpenStack Cloud Infrastructure, the
Grid environment EGI, and as per the VM image, it will not be part of the
resources controlled be the Grid resource manager, so that the working scenario
is the “Hybrid no Batch dependent” (see Section ??). Let’s assume also to have
a working image with the cgintlib library installed, and that the OpenStack
installation is configured to spawn an instance of this image upon request. Three
records in the DMBS instruct the system to handle this scenario:

1. A record in the capabilities schema table named Cloud tells the system
the available Cloud controller that can provide the required resources and
the necessary information to access it. In the present example the record
will contain the Cloud controller type (OpenStack), its IP address, the
authentication information, etc. There will be a record for each available
Cloud controller.

2. A record in the capabilities schema table named gatekeepers tells the sys-
tem that exists a Grid enabled gatekepeer which may accept jobs to be
executed in the implemented environment. In the present example the
record will contain the Grid environment type (EGI), its Gatekeeper IP
address, etc.

3. A record in the capabilities schema table named images instructs the sys-
tem that exists an image that implements the cgintlib Cloudtag (we
chose the same name for the library and for the Cloudtag), and selects the
proper job flow for this image. In the present example the flow is Gate-
keeper → Cloud meaning that the jobs will not be forwarded to the Grid
site Batch system but will be handled by the Direct2VM component. The
flow is inferred by the two references to the two previous records contained
in the present record.

This information, and the proper VM image configuration, are the only
things needed to make the system working. Once the system is configured with
the previous information, firstly the Grid site publishes the information about
the cgintlib capability and is reconfigured to handle requests; secondly upon
job arrival the request is processed. Let’s examine these two processes in detail
in the present example.

When the resource publisher running in the Grid site argues the existence of
a new capability (in the form of the Cloudtag cgintlib) within the capabilities
schema, it publishes this capability in the Grid DBII as supported Software
Runtime Environment. The Grid Workload Management System will then be
able to serve a requirement specified in the user’s JDL file, allocating the Job
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in the Grid site which published the proper capability. The resource publisher
demon publishes the information according the capabilities schema.

Since the job will not make use of the Grid local resource manager, two
other operations are requested in order to handle jobs arrival. The BLAH
parser is aware that jobs requesting cgintlib do not have to be send to the
Batch system and that an alternative environment setup is requested. All these
actions are performed by the Grid site resource translator, which firstly deploys
the Direct2VM BLAH script (opposing to the one already present to handle
various resource managers), and then modify the BLAH parser to target these
scripts and finally runs a D2M executor, a demon whose purpose in to talk with
the IaaS provider and its VM instances.

The described scenario enables the system to handle the jobs tagged as
cgintlib. Upon job arrival the BLAH parser matches the Cloudtag cgintlib

and, since the target environment is the Cloud environment, it transfers the
control to the Direct2VM BLAH scripts. The job is now blocked on the Gate-
keeper, the D2M executor is informed about the job, and the proper table within
the needs schema is updated. The D2M executor firstly matches the entries in
the capabilities schema, to identify the target environment (in the present case
a Virtual Machine in a OpenStack Cloud, however, several types of Cloud envi-
ronments and even standalone servers are supported). It matches the tables of
the fullfilments schema with those of the needs schema to verify that the given
target already has a running VM suitable for the job. Depending on the cases
it will either spawn a new VM instance, remove a running VM instance, or wait
until some resource will be freed. The fulfillments schema has a table relative
to the given OpenStack Cloud system and a Cloud Status daemon will keep the
information updated.

When the necessary resources are available for job execution, the job is
unblocked, executed and finally its results are moved back to the Gatekeeper.
During these phases the D2M executor also updates the tables of the running
schema. All these operations are the result of the interaction between the D2M
executor and the Direct2VM BLAH scripts.

8.2. Experiment Assessment Details

We run four experiments to prove the goodness of our method. To this
purpose, four groups of 100 jobs have been submitted to the system to measure
its response time.

To avoid to measure a systematic delay due to the GRID middleware, we
considered the job active when it reached the gatekeeper and not when it was
submitted. Moreover, the job is considered done, when its execution is starts.
The other assumption made during these tests was that the resources are always
idle and no additional delay should be introduced because the jobs are waiting.
Our tests are presented in the next sections.

It should be noted as our proposed test-bed focusing on 100 jobs could also
be extended to a larger number of concurrent jobs. Indeed, since our main goal
consists in providing a milestone-study on showing how the proposed DBMS-
based system for supporting Grid and Cloud integration works, we firmly retain
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that this setting already provides a sufficient experimental environment where
highlighting pros and cons of the proposed solution and, above all, precisely
detecting how the actual integration layer (of our system) impacts on both the
target Grid and Cloud systems, respectively. Our final experimental results, as
clearly demonstrated in the next Sections, completely fulfill this goal. On the
other hand, extending experimental work as to further stress the scalability of
the system is left as future work.

8.2.1. Cluster to Server Example

All jobs are dispatched to the Local Resource Manager (Torque/Maui); this
type of flow represents the standard flow of a Grid environment. In Figure 5(a)
the Job waiting time is shown (Minimum time: 5s, Maximum time: 26s, Mean
waiting time: 11s), while in Figure 5(b) is shown the jobs distribution among
the waiting time (boxed by 2 seconds intervals). Such experiment measures the
latency of the Grid middleware, since it is related to the dispatch of a Job in a
Grid site on its Local Resource Manager.

(a) Waiting times before execution of the
set of jobs.

(b) Job distribution (boxed by 2 seconds
intervals) respect to the waiting time be-
fore execution.

Figure 5: Results obtained measuring the waiting time before execution of a set of 100 jobs
in the Cluster to Server Job flow.

8.2.2. Cluster to Cloud Example

All jobs are dispatched to the Local Resource Manager (Torque/Maui) and
the Worker Node is started on the Cloud system; this type of flow was previously
described as cluster to cloud in Section 6.1. In Figure 6(a) the Job waiting
time is shown (Minimum time: 75s, Maximum time: 95s, Mean waiting time:
81s), while in Figure 6(b) is shown the jobs distribution among the waiting
time (boxed by 2 seconds intervals). Such experiment measures the latency of
the Grid of the previous experiment, plus the time necessary to instantiate a
Virtual Machine on the Cloud system (70s, approximately). In this experiment,
we ignored the time necessary to close the instance of the Virtual Machine.
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(a) Waiting times before execution of the
set of jobs.

(b) Job distribution (boxed by 2 seconds
intervals) respect to the waiting time be-
fore execution.

Figure 6: Results obtained measuring the waiting time before execution of a set of 100 jobs
in the Cluster to Cloud Job flow.

8.2.3. Gatekeeper to Cloud Example

All jobs are handled by the Direct2M components targeting a Virtual Ma-
chine image on the Cloud system, this type of flow was previously described
as gatekeeper to cloud in Section 6.2. In Figure 7(a) the Job waiting time is
shown (Minimum time: 78s, Maximum time: 124s, Mean waiting time: 103s),
while in Figure 7(b) is shown the jobs distribution among the waiting time
(boxed by 2 seconds intervals). Such experiment measures, if compared with
the previous one, the effect of the interaction with the Direct2M component
(22s, approximately), before the Virtual Machine will be instantiated.

(a) Waiting times before execution of the
set of jobs.

(b) Job distribution (boxed by 2 seconds
intervals) respect to the waiting time be-
fore execution.

Figure 7: Results obtained measuring the waiting t3me before execution of a set of 100 jobs
in the Gatekeeper to Cloud Job flow.
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8.2.4. Gatekeeper to Server Example

All jobs are handled by the Direct2M components targeting an image on a
real server; this flow is described as gatekeeper to server in Section 6.3. In Figure
8(a) the Job waiting time is shown (Minimum time: 6s, Maximum time: 24s,
Mean waiting time: 12s), while in Figure 8(b) is shown the jobs distribution
among the waiting time (boxed by 2 seconds intervals). In this experiment
the data distribution is similar to that of the cluster to server case, with some
overhead due to the facts that i) the job is always stopped and restarted by the
Direct2M component and ii) its processing is made using SSH that is slower
than a proper batch system (i.e., Torque).

(a) Waiting times before execution of the
set of jobs.

(b) Job distribution (boxed by 2 seconds
intervals) respect to the waiting time be-
fore execution.

Figure 8: Results obtained measuring the waiting time before execution of a set of 100 jobs
in the Gatekeeper to Server Job flow.

8.3. Use Case: Enabling GPU Computing

Nowadays, GPUs are widely used high-performance devices to accelerate
scientific applications. Moreover, virtualization technologies allows obtaining
reasonable performance with respect to real machines (see for example [40]),
supporting a wide range of different architectures. For example, Xen hypervi-
sor is fully compliant with x86, x86 64, IA64 and ARM architectures. It also
provided the support for the virtualization of input/output memory manage-
ment unit (IOMMU) of the motherboard chip-set that enable the use of direct
memory access (DMA) to I/O bus is also necessary to efficiently use peripheral
devices in guest virtual machines. When those hardware prerequisites are met
Xen permits to transparently assign PCIe devices like VGA devices to VMs.
This assignment can be performed at the creation of the Virtual Machine or at
runtime but a single PCIe resource can not be shared between VMs ensuring is
this way the exclusive access of hardware resources.

Concerning GPUs virtualization, graphic adapters support many legacy x86
features that must be provided in the virtual environment. Qemu-dm emulator
used by the Xen HVM guests, needs to disable the internal (emulated) graphics
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adapter, and copy and map the real graphics adapter VGA BIOS to the Virtual
Machine memory.

A different approach is followed when the graphic driver is splitted into a
front-end component, deployed on the Virtual Machine, and a back-end one,
deployed on the real machine, setting a communication channel between them
[23]. This technique also allows sharing of GPUs between multiple Virtual
Machines.

Other notable virtual GPU solutions are provided in [26, 24] and [37] as
well. We tested our system on a motherboard which support both Intel Vir-
tualization Technology (VT-x) and Intel Virtualization Technol-
ogy for Directed I/O (VT-d). The server is powered by an Intel i7 870
CPU and Nvidia GeForce 580 (Fermi). In our test, we compared the perfor-
mance of real GPU and virtual GPU provided by means of PCIe pass-through
on Debian operating system with XEN hypervisor.

The samples provided by Nvidia developer kit are used as benchmarks. We
performed two different experiments. In the first one we measured the band-
width during memory transfer over PCIe. Furthermore, we evaluated the per-
formance of both real and virtual GPU by performing arithmetic-intensive op-
erations like matrix multiplication.

Concerning the bandwidth tests, we performed Host-Device memory trans-
fers. The memory was pinned and the size was varying from 1 Byte to 64 MB.
Data transfer over PCIe should represent the most relevant source of virtualiza-
tion overhead, since it requires interrupt remapping, IOMMU interaction, etc.,
in order to enable PCI pass-through into the VM. Despite this, we observed a
maximum of 2% overhead.

Finally, concerning arithmetic intensive evaluation we performed a squared
matrix multiplication. As shown in Figure 9 the Virtual GPU (in red) is about
4% slower than Real GPU (in blue). Similar results are also reported in [40] by
using GPU pass-through and Xen hypervisor.

As per the Grid side, a user can require a GPU specifying such resource
via the Job Description Language which is usually defined for a specific Grid
middleware. In Listing 1, an example is provided for the EGI environment [1].

Listing 1: JDL example with GPU flavor

Type = ” job ” ;
executab l e=”” ;
[ . . . ]
CeRequirements=” other . GlueHostMainMemoryRAMSize > 2048 &&
(Member(\ ”GPU\” ,
other . GlueHostApplicationSoftwareRuntimeEnvironment ) ) ” ;

9. Conclusions and Future Work

In the this work, we presented different integration strategies which allow a
simple interoperability between Batch-oriented and Service-oriented computing
models.
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Computational Grids provide simple user interface for the execution of scien-
tific applications (Batch jobs) through hierarchical components exploiting stati-
cal pre-allocated computational resources. On the other hand, Cloud computing
allows exploiting elastic computation by means of virtualization technologies.
Through this approach the user is able to use heterogeneous and specialized
computation resources like GPUs, FPGA or other embedded systems transpar-
ently.

We provided a straightforward implementation of one of the proposed strate-
gies, which finally determines a novel DBMS-based system for the integration
of Grids and Clouds. The implemented system allows the utilization of the
Grid and its standard utilities for publishing the information related to a given
Grid site, for accepting and executing jobs requiring particular software tools,
libraries and specific hardware characteristics. The system, even if contains com-
ponents typical of a Resource Manager and of a Scheduler, has been designed
not for replacing these components, but for orchestrate a set of computing sys-
tems able to provide physical and virtual resources. In this way we created a
unified system, in which the various job flows are managed and optimized.

We evaluated our solution integrating two different well-known IaaS provider
proving in practice the interoperability between Cloud and Grid environments.

We carried out four experiments to measure the waiting time of a set of
100 jobs according to the four possible job flows we may have. The results in
terms of minimum, maximum and mean waiting time values and the type of job
distributions obtained confirmed the goodness of our method and that there is
no additional overhead due to our system.

Figure 9: Matrix multiplication benchmark on squared matrix.
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Finally as use case, we have also provided an example for the execution
of a Grid job on GPU devices via an IaaS provider, which is really important,
considering the increasing popularity of the GPGPU approaches in several fields
of the sciences of life studies.

The work may be extended in several ways. The Direct2M component may
be rewritten to remove ssh as the command used for accessing servers and
Virtual Machines. The DBMS may be removed from the architecture and the
system may be re-engineered to be fully distributed adopting for example the
protocol 9P described in [34]. Furthermore we can explore innovative approaches
for data and big-data management. In this respect, some interesting directions
to be taken into consideration are: (i) fragmentation issues (e.g., [15]); (ii)
uncertain data management issues (e.g., [29]); (iii) general big data management
issues (e.g., [17]).
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