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1 Introduction

It is known that the spreading disease in a territory is a worldwide problem and the mode
of spread of the disease may take different forms. In 1927 Kermack and McKendrik [19]
proposed a model driven by a nonlinear integral equation, later extensively studied. Kendall
[18] generalized the Kermack-McKendrik model to a space-dependent integro-differential
equation in which it was assumed that the infected individuals become immediately infec-
tious, without considering the incubation period. Following this line, most of the research
literature on epidemic models assumes that the disease incubation is negligible leading to
the SIR models. Of course, the literature is wide; we just refer, as examples, to the papers
[16] where the spatial dynamics of a class of integro-differential equations are studied, and
[25] where the authors combine pest control and infectious disease investigating the control
problem in the management of an epidemic to control a pest population.

Actually, in real phenomena often happens that incubation time assumes a relevance in the
study of the disease, as well as the pregnancy time in the evolution of a population or the
maturation delay of the individual (i.e the time between birth and the moment when the
individual is involved in the reproductive process). A notable example is the Nicholson’s
blowflies equation

N ′(t) = −δN(t) + pN(t− TD)e−aN(t−TD) (1)

(TD is the fixed delay). It was first used by Gurney, Blythe and Nisbet [15] to explain
Nicholson’s experimental data [21] with the Australian sheep blowflie and later widly studied,
also in the case of a distributed delay (see, e.g. [12], [13], [14]).
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In [15] the authors present a new class of equations, of which (1) is a special case. They
observe that the insect population growth in an isolated laboratory culture can be better
described by the equation

N ′(t) = −δN(t) +R(N(t− TD)), (2)

than by the classical time-delayed logistic model N ′(t) = rN(t)
[
1− N(t−TD)

K

]
.

Following them, in this paper we study a process driven by the parametric integro-differential
equation

∂u

∂t
(t, z) = −b(t, z)u(t, z) + g

(
t, u(t, z),

∫ t

0

es/T

T
u(s, z) ds

)
, (3)

where u : [0, T ] × [0, 1] → IR, b : [0, T ] × [0, 1] → IR, and g : [0, T ] × IR × IR → IR are given
functions.
In a biological setting, u(t, z) and b(t, z) represent the density of a population and the
removal coefficient (including death and migration) at time t and position z; g is the popu-
lation development law, affected by a distributed delay which accounts for a memory-effect
expressed by the Volterra integral operator; the parameter T measures the relevance of the
delay. Note that if b(t, z) = δ and g(t, p, q) = aqe−t/T , then equation (3) becomes

∂u

∂t
(t, z) = −δu(t, z) + a

∫ t

0

e−(t−s)/T

T
u(s, z) ds,

i.e. a particular case of (2), but restated for a dispersal delay. Indeed, the importance
of events decreases exponentially the further one looks into the past. Moreover, the kernel

k(τ) = e−τ/T

T clearly satisfies k(τ) ≥ 0 and
∫∞

0 k(τ)dτ = 1, so
∫ τ2
τ1
k(τ)dτ can be interpretated

as the probability that the delay is between τ1 and τ2.

The problem we consider in this note is subject to feedback controls, which often appear
in models from the life sciences. We refer for instance to the book [11]; there the authors
illustrate many situations in systems biology in which feedback control theory is used. In our
paper the control is expressed by a further term we add to the right hand-side of equation
(3), leading to

∂u

∂t
(t, z) = −b(t, z)u(t, z) + g

(
t, u(t, z),

∫ t

0

es/T

T
u(s, z) ds

)
+ ω(t, z), (4)

where ω is subject to the condition

ω(t, ·) ∈W (u(t, ·)). (5)

By its formulation (see (9)), the set of functions W (u(t, ·)) depends on the weighted values
of u(t, ·) all over the habitat normalized to [0, 1]; that is we deal with a control strategy with
a nonlocal nature. For example we can consider a population in a controlled environment
sensitive to external factors such as temperature (like a pest population in a greenhouse or
a bacterial culture in an in vitro culture medium).

In our problem, we also consider the presence of impulse functions representing the action
of instantaneous external forces on the system at fixed times

u
(
t+i , z

)
= u (ti, z) + Ii(u (ti, z)) , i = 1, . . . , p. (6)
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Actually many real phenomena, in Biology, Medicine, Physics or other where abrupt pertur-
bations occur or sudden behavioral changes happen, can be described by means of impulse
functions. A wide production appeared on this subject in the last years (see, e.g. [8], [9],
[10], [22]) even in the integro-differential case (see, e.g. [1]).

We study the model by using techniques from the theory of ordinary differential equa-
tions/inclusions and from the semigroup theory as well. This approach allows us to provide
the existence of mild stratiegies solving the problem, even in the case when classical solutions
do not exist.

The paper is organized as follows. In Section 2 we state the problem given by (4)-(6).

Section 3 is devoted to the study of the existence of strategies for the model. We reformulate
the problem as a multivalued impulsive Cauchy problem (see (15)) driven by the ordinary
semilinear integro-differential inclusion in the space L2([0, 1])

v′(t) ∈ A(t)v(t) + g̃

(
t, v(t),

∫ t

0

es/T

T
v(s)ds

)
+W (v(t)). (7)

In Sections 3.1 and 3.2 we list the set of assumptions on the functions appearing in the
model and deduce the corresponding properties on the maps of the associated problem.
Successively, in Section 3.3 we discuss the properties of the multimap F = g̃ + W . Then,
after the proof of the existence of an impulsive mild solution for the problem governed by
the ordinary integro-differential inclusion (7), we deduce the existence of a strategy which
solves the model. An example of nonlinearity including a dispersal kernel is provided.

Eventually, in Section 4 we present a discussion on the impulse functions acting in the
process. These functions in Biology are called “regulation functions” since their presence in
the system leads to a regulation of the model. For example, in practical pest management
the pesticide is not periodically used, but the human control acts on the pest population
only if it overcomes prescribed thresholds at fixed times. We describe this kind of situation
in Example 4.1. Then, we observe that in our results we can take completely arbitrary
impulse functions and produce an example where they are not continuous.

To assist the reader, in the Appendix we list the symbols and the definitions used throughout
the paper.

2 Position of the problem

We consider the following process with feedback controls described by a parametric integro-
differential equation involving a Volterra operator and subject to impulses
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

∂u

∂t
(t, z) = −b(t, z)u(t, z) + g

(
t, u(t, z),

∫ t

0

es/T

T
u(s, z) ds

)
+ ω(t, z) ,

t ∈ [0, T ] , t 6= ti , i = 1, . . . , p , a.e. z ∈ [0, 1],

ω(t, ·) ∈W (u(t, ·)) , a.e. t ∈ [0, T ],

u
(
t+i , z

)
= u (ti, z) + Ii(u (ti, z)) , i = 1, . . . , p , a.e. z ∈ [0, 1],

u(0, z) = α0(z) , a.e. z ∈ [0, 1],

(8)
where: T > 0; 0 = t0 < t1 < · · · < tp < tp+1 = T ; b : [0, T ]× [0, 1]→ IR; g : [0, T ]×IR×IR→
IR; for every i = 1, . . . , p, Ii : IR → IR and u(t+i , ·) = lims→t+i

u(s, ·); α0 ∈ L2([0, 1]). The

map W : L2([0, 1])→ P(L2([0, 1])) is defined by

W (v) =


β ∈ AC([0, 1]) :

f1(z,
∫ 1

0 ϕ(ζ)v(ζ) dζ) ≤ β(z) ≤ f2(z,
∫ 1

0 ϕ(ζ)v(ζ) dζ)
and |β′(z)| ≤ l(z), for a.a. z ∈ [0, 1]

 , v ∈ L2([0, 1]), (9)

where f1, f2 : [0, 1]× IR→ IR, l ∈ L1
+([0, 1]), and ϕ ∈ L2([0, 1]) are given functions.

The map W models the feedback control depending on the weighted values of u(t, ·) all
over the interval [0, 1]; in other words, we have a strategy where the control at time t and
position z depends on the value given by

∫ 1
0 ϕ(ζ)u(t, ζ) dζ, leading to a nonlocal structure

of the control itself. An example of this kind of multimap can be found in [20].

For every i = 1, . . . , p, the maps Ii : IR → IR are the impulse functions and represent
instantaneous external actions on the system.

Definition 2.1 A couple (u, ω) of functions u, ω : [0, T ] × [0, 1] → IR is said to be an
impulsive mild admissible pair for (8) if: u(t, ·) ∈ L2([0, 1]) for every t ∈ [0, T ]; u(·, z) ∈
PC([0, T ], IR), for all z ∈ [0, 1]; u satisfies the identity

u(t, z) = e
∫ t
0 −b(σ,z)dσα0(z) +

∑
0<ti<t

e
∫ t
ti
−b(σ,z)dσIi(u(ti, z)) +

+

∫ t

0
e
∫ t
s −b(σ,z)dσ

[
g

(
s, u(s, z),

∫ s

0

eσ/T

T
u(σ, z) dσ

)
+ ω(s, z)

]
ds,

for every t ∈ [0, T ], z ∈ [0, 1], where ω(s, ·) ∈W (u(s, ·)), a.e. s ∈ [0, T ].

3 Existence of strategies

Our approach to the problem provides for rewriting the feedback control process (8) as an
impulsive problem driven by an ordinary integro-differential inclusion in the space L2([0, 1]).

To this aim, we put:

v(t)(z) = u(t, z) and w(t)(z) = ω(t, z), t ∈ [0, T ], z ∈ [0, 1]; clearly, v, w : [0, T ]→ L2([0, 1]);
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A(t) : L2([0, 1])→ L2([0, 1]), t ∈ [0, T ]

A(t)v(z) = −b(t, z)v(z) , z ∈ [0, 1] , v ∈ L2([0, 1]); (10)

g̃ : [0, T ]× L2([0, 1])× L2([0, 1])→ L2([0, 1])

g̃(t, v, w)(z) = g(t, v(z), w(z)), t ∈ [0, T ], v, w ∈ L2([0, 1]); (11)

Ii : L2([0, 1])→ L2([0, 1]), i = 1, . . . , p,

Ii(v)(z) = Ii(v(z)), z ∈ [0, 1], v ∈ L2([0, 1]). (12)

So, we can pass from problem (8) to the next

v′(t) = A(t)v(t) + g̃
(
t, v(t),

∫ t
0
es/T

T v(s)ds
)

+ w(t), t ∈ [0, T ] ,

t 6= ti , i = 1, . . . , p,

w(t) ∈W (v(t)), a.e. t ∈ [0, T ],

v(t+i ) = v(ti) + Ii(v(ti)) , i = 1, . . . , p,

v(0) = α0 .

(13)

Now, we define the map F : [0, T ]× L2([0, 1])× L2([0, 1])→ P(L2([0, 1])) as

F (t, v, w) = g̃(t, v, w) +W (v) , (t, v, w) ∈ [0, T ]× L2([0, 1])× L2([0, 1]), (14)

therefore, problem (13) becomes the multivalued impulsive Cauchy problem
v′(t) ∈ A(t)v(t) + F

(
t, v(t),

∫ t
0
es/T

T v(s)ds
)
, t ∈ [0, T ] , t 6= ti , i = 1, . . . , p,

v(t+i ) = v(ti) + Ii(v(ti)) , i = 1, . . . , p,

v(0) = α0.

(15)

3.1 Assumptions on the linear part

We assume that the map b : [0, T ]× [0, 1]→ IR of problem (8) satisfies the conditions

(b.1) b is measurable;

(b.2) there exists s ∈ L1
+([0, T ]) such that

0 < b(t, z) ≤ s(t) , for every t ∈ [0, T ], a.e. z ∈ [0, 1];

(b.3) for every z ∈ [0, 1], the function b(·, z) : [0, T ]→ IR is continuous.

Consequently, on the family {A(t)}t∈[0,T ] of problems (13) and (15) we have the following
results.
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Proposition 3.1 (cf. [20, Section 3.1]) Under conditions (b.1), (b.2), for every t ∈ [0, T ]
the map A(t) defined in (10) is a well-posed linear operator.

Proposition 3.2 Under conditions (b.1)-(b.3), the family {A(t)}t∈[0,T ] defined by (10) gen-
erates the evolution system {T (t, s)}0≤s≤t≤T of bounded linear operators T (t, s) : L2([0, 1])→
L2([0, 1]), 0 ≤ s ≤ t ≤ T , defined by

[T (t, s)v](z) = e
∫ t
s −b(σ,z)dσv(z) , z ∈ [0, 1], v ∈ L2([0, 1]). (16)

Proof. First of all, each operator T (t, s) is well-defined. Indeed, let us fix v ∈ L2([0, 1]) and
consider the map T (t, s)v : [0, 1]→ IR defined by (16). By (b.1) and the Tonelli’s Theorem,

the map z 7→ e
∫ t
s −b(σ,z)dσ is measurable, so T (t, s)v is measurable too. Moreover, since

e
∫ t
s −b(σ,z)dσ < 1 (see (b.2)), by (16) we have

∫ 1
0 [T (t, s)v(z)]2dz < ‖v‖22, and so T (t, s)v ∈

L2([0, 1]).

Then, it is easily seen that each T (t, s) is a bounded and linear operator.
Moreover, it is immediate to check that the family {T (t, s)}0≤s≤t≤T has property (T1)
(see Section 4). Now we show that also (T2) is satisfied. Fix v ∈ L2([0, 1]), (t̄, s̄) with
0 ≤ s̄ ≤ t̄ ≤ T and {(tn, sn)}n with 0 ≤ sn ≤ tn ≤ T such that (tn, sn)→ (t̄, s̄); then, let us
define

hn(z) =
[
e
∫ tn
sn
−b(σ,z)dσ − e

∫ t̄
s̄ −b(σ,z)dσ

]2
v2(z), z ∈ [0, 1], n ∈ N.

Note that (hn)n are L1-functions point-wise converging in [0, 1] to zero; further, by (b.2)
we have that |hn(z)| ≤ 4v2(z) for every z ∈ [0, 1]. Therefore, by using the dominated
convergence theorem we obtain

lim
n→∞

‖T (tn, sn)v − T (t̄, s̄)v‖22 = 0,

and so T (tn, sn)v → T (t̄, s̄)v in L2([0, 1]).
Then we can conclude that the family {T (t, s)}0≤s≤t≤T is an evolution system.

Finally, {T (t, s)}0≤s≤t≤T is generated by the family {A(t)}t∈[0,T ] defined in (10), i.e. (see
[7]) on the region D(A) = L2([0, 1]), each operator T (t, s) is strongly differentiable relative
to t and s, while

∂T (t, s)

∂t
= A(t)T (t, s) and

∂T (t, s)

∂s
= −T (t, s)A(s).

To prove these, we fix v ∈ L2([0, 1]) and z ∈ [0, 1]. By (16), (b.3) and (10) we have the
identities

∂T (t, s)

∂t
v(z) =

∂

∂t
e
∫ t
s −b(σ,z)dσv(z) = −b(t, z)e

∫ t
s −b(σ,z)dσv(z) = A(t)T (t, s)v(z),

∂T (t, s)

∂s
v(z) =

∂

∂s
e
∫ t
s −b(σ,z)dσv(z) = e

∫ t
s −b(σ,z)dσb(s, z)v(z) = −T (t, s)A(s)v(z).

2

Remark 3.1 It is worthy to note that the evolution system defined by (16) is not compact.
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3.2 Assumptions on the nonlinear part

On the map g : [0, T ]× IR× IR→ IR of problem (8) we suppose that:

(g.1) for every ε > 0 there exists a compact Cε ⊂ [0, T ] such that λ([0, T ] \ Cε) < ε and
g|Cε×IR×IR is continuous; here λ is the Lebesgue measure on IR;

(g.2) there exists a function ψ ∈ L2([0, 1]) such that

|g(t, v(z), w(z))| ≤ ψ(z), for a.e. z ∈ [0, 1], every t ∈ [0, T ], every v, w ∈ L2([0, 1]);

(g.3) there exists a function h ∈ L1
+([0, T ]) such that for every bounded Ω1,Ω2 ⊂ L2([0, 1]),

χ2(g(t,Ω1(·),Ω2(·))) ≤ h(t) [χ2(Ω1) + χ2(Ω2)] , for a.e. t ∈ [0, T ],

where χ2 is the Hausdorff measure of noncompactness in L2([0, 1]).

The next proposition provide the properties of the map g̃ of problem (13).

Proposition 3.3 If (g.1)-(g.2) hold, then the map g̃ : [0, T ] × L2([0, 1]) × L2([0, 1]) →
L2([0, 1]) defined in (11) satisfies the Scorza-Dragoni property.

Proof. Fix ε > 0 and consider the set Cε from (g.1). Consider any (t0, v0, w0) ∈ Cε ×
L2([0, 1])×L2([0, 1]) and let {(tn, vn, wn)}n ⊂ Cε×L2([0, 1])×L2([0, 1]) be a sequence such
that (tn, vn, wn)→ (t0, v0, w0) in Cε × L2([0, 1])× L2([0, 1]).
By (11) and the continuity of g on the set Cε× IR× IR, from the above convergence we have

g̃(tn, vn, wn)(z) = g(tn, vn(z), wn(z))→ g(t0, v0(z), w0(z)) = g̃(t0, v0, w0)(z), a.e. z ∈ [0, 1].

This convergence and hypothesis (g.2) yield that we can apply the dominated convergence
theorem, so that g̃(tn, vn, wn)→ g̃(t0, v0, w0) in L2([0, 1]). 2

On the feedback control map W : L2([0, 1]) → P(L2([0, 1])), we assume that the functions
f1, f2 : [0, 1]× IR→ IR satisfy the following conditions:

(f.1) fi(·, r) ∈ AC([0, 1]), for every r ∈ IR, i = 1, 2;

(f.2)
∣∣∣∂fi∂z (z, r)

∣∣∣ ≤ l(z), for a.e. z ∈ [0, 1] and every r ∈ IR, i = 1, 2;

(f.3) f1(z, r) ≤ f2(z, r), for every z ∈ [0, 1] and every r ∈ IR;

(f.4) there exists c > 0 such that∣∣∣∣fi(z,∫ 1

0
ϕ(ζ)v(ζ) dζ

)∣∣∣∣ ≤ c ‖v‖2, a.e. z ∈ [0, 1], every v ∈ L2([0, 1]), i = 1, 2;

(f.5) f1(z, r0) ≥ lim supr→r0 f1(z, r), for every z ∈ [0, 1], r0 ∈ IR;

f2(z, r0) ≤ lim infr→r0 f2(z, r), for every z ∈ [0, 1], r0 ∈ IR.

Proposition 3.4 Suppose that (f.1)-(f.5) hold. Then, the multimap W : L2([0, 1]) →
P(L2([0, 1])) defined in (9) has the following properties:
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(W.1) W is nonempty closed convex valued;

(W.2) W is compact, i.e. it maps bounded sets into relatively compact sets;

(W.3) W is lower semicontinuous.

Proof. Throughout the proof we use the notation

rv =

∫ 1

0
ϕ(ζ)v(ζ)dζ, v ∈ L2([0, 1]).

(W.1) Let us fix v ∈ L2([0, 1]). By (f.1) and (f.2) it follows that the maps β1 := f1(·, rv) and
β2 := f2(·, rv) belong to W (v), so this set is nonempty. Moreover, by using [3, Theorem
0.3.4] and the Mazur’s Theorem, we can proceed as in the proof of [20, Proposition
3.2] and obtain that the set W (v) is closed and convex.

(W.2) Let Ω be a bounded subset of L2([0, 1]) and consider a sequence (βn)n in W (Ω).
Hence, there exists {vn}n ⊂ Ω such that βn ∈W (vn) for every n ∈ N and

f1(z, rvn) ≤ βn(z) ≤ f1(z, rvn), for every z ∈ [0, 1]. (17)

We observe that the sequence (vn)n is bounded in the reflexive Banach space L2([0, 1]),
so there exists a subsequence, that we denote as the sequence, which weakly converges
to a function v in L2([0, 1]). Now, let (βn)n be the subsequence corresponding to the
obtained (vn)n; since |β′n(z)| ≤ l(z) for a.e. z ∈ [0, 1] and every n ∈ N, and (17) holds,
we can say that there exist γ ∈ AC([0, 1]) and a further subsequence (βn)n uniformly
convergent to γ in [0, 1] such that (β′n)n weakly converges to γ′ in L1([0, 1]) (see [3,
Theorem 0.3.4]). Hence by the Mazur’s Theorem we can say that |γ′(z)| ≤ l(z) for
a.e. z ∈ [0, 1] (see the proof of [20, Proposition 3.2]). Further, by (f.4) we have the
following estimate:

|βn(z)| ≤ |f1(z, rvn)|+ |f2(z, rvn)| ≤ 2c‖vn‖2, for a.e. z ∈ [0, 1] and every n ∈ N;

recalling that the set {vn}n is bounded in L2([0, 1]), we have that the sequence (βn)n is
almost everywhere bounded on [0, 1] by a constant function. Therefore, we can apply
[4, Theorem 7.2] and obtain that βn → γ in L2([0, 1]). So, the set W (Ω) is relatively
compact in L2([0, 1]).

(W.3) Let us fix v ∈ L2([0, 1]), β ∈ W (v), {vn}n ⊂ L2([0, 1]) with vn → v in L2([0, 1]).
We can say that W is lower semicontinuous in v if there exists (βn)n, βn ∈ W (vn),
such that βn → β in L2([0, 1]) (see [17, Theorem 1.1.2]). Clearly, since (vn)n weakly
converges to v, we have rvn → rv in IR. Define

pn(z) = max{β(z), f1(z, rvn)}, for every z ∈ [0, 1],

βn(z) = min{pn(z), f2(z, rvn)}, for every z ∈ [0, 1].

It can be shown (see the proof of [20, Proposition 3.4]) that βn ∈ W (vn), n ∈ N and
that, thanks to (f.5), βn(z) → β(z) for every z ∈ [0, 1]. Moreover, by (f.4) we have
that

|βn(z)| ≤ 2c‖vn‖2, for a.e. z ∈ [0, 1] and every n ∈ IN,
hence the set {βn}n is bounded in L2([0, 1]). Therefore, as in the previous item we
have βn → β in L2([0, 1]). So the lower semicontinuity of W is proven. 2

8



3.3 Existence of admissible pairs

We provide the existence of impulsive mild admissible pairs for our problem. To this aim,
we advance a result on the properties of the map F of problem (15).

Lemma 3.1 Assume that maps g : [0, T ]× IR× IR→ IR, f1, f2 : [0, 1]× IR→ IR satisfy re-
spectively conditions (g.1)-(g.3), (f.1)-(f.5). Then the map F : [0, T ]×L2([0, 1])×L2([0, 1])→
P(L2([0, 1])) defined in (14) takes nonempty compact convex values and satisfies conditions

(F1) for every ε > 0 there exists a compact Cε ⊂ [0, T ] such that λ([0, T ] \ Cε) < ε and
F|Cε×L2([0,1])×L2([0,1]) is lower semicontinuous;

(F2) there exists α ∈ L1
+([0, T ]) such that

‖F (t, v, w)‖2 ≤ α(t)(1 + ‖v‖2 + ‖w‖2) , for a.e. t ∈ [0, T ] and all v, w ∈ L2([0, 1]);

(F3) there exists h ∈ L1
+([0, T ]) such that

χ2(F (t,Ω1,Ω2)) ≤ h(t) [χ2(Ω1) + χ2(Ω2)] , for a.e. t ∈ [0, T ],

for every Ω1,Ω2 bounded subsets of L2([0, 1]) .

Proof. Under our assumptions, we can apply Proposition 3.4. Therefore, by (W.1) and
(W.2) we deduce that the multimap F defined in (14) takes nonempty compact convex
values; while by hypothesis (g.1), (W.3) and by [17, Theorem 1.2.13] we can say that F
satisfies condition (F1).
Further, by (g.2), (f.4) the following estimate holds

‖F (t, v, w)‖2 ≤ ‖ψ‖2 + 2c‖v‖2 ≤ (‖ψ‖2 + 2c)(1 + ‖v‖2 + ‖w‖2),

for a.e. t ∈ [0, T ] and every v, w ∈ L2([0, 1]); therefore F satisfies (F2).
Finally, by (W.2) and (g.3) the multimap F satisfies (F3). 2

Theorem 3.1 Assume the maps b : [0, T ] × [0, 1] → IR, g : [0, T ] × IR × IR → IR, f1, f2 :
[0, 1] × IR → IR to satisfy respectively conditions (b.1)-(b.3), (g.1)-(g.3), (f.1)-(f.5). Then
there exists an impulsive mild admissible pair for (8).

Proof. Our first goal is to prove the existence of an impulsive mild solution for (15), i.e. of
a function v ∈ PC([0, T ], L2([0, 1])) such that

v(t) = T (t, 0)α0 +
∑

0<ti<t

T (t, ti)Ii(v(ti)) +

∫ t

0
T (t, s)f̃(s)ds , t ∈ [0, T ],

for f̃ ∈ L1([0, T ], L2([0, 1])), f̃(s) ∈ F
(
s, v(s),

∫ s
0
eσ/T

T v(σ)dσ
)

a.e. s ∈ [0, T ].

Here {T (t, s)}0≤s≤t≤T , T (t, s) : L2([0, 1]) → L2([0, 1]), 0 ≤ s ≤ t ≤ T , is the evolution
system generated by the family {A(t)}t∈[0,T ] (see Proposition 3.2).

Further, by Lemma 3.1 we can apply [6, Theorem 3.1], so that there exists a Carathéodory
function f which is a selection of F , i.e. f(t, ·, ·) is continuous for every t ∈ [0, T ], f(·, v, w)
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is Borel-measurable (and then strongly measurable since L2([0, 1]) is separable) for every
v, w ∈ L2([0, 1]), f(t, v, w) ∈ F (t, v, w) for a.e. t ∈ [0, T ] and for every v, w ∈ L2([0, 1]).

From now on, we proceed by steps.

Step 1. Consider the interval [0, t1] and the Cauchy problem
v′(t) = A(t)v(t) + f

(
t, v(t),

∫ t
0
es/T

T v(s)ds
)
, t ∈ [0, t1],

v(0) = α0.

(18)

By (F2) and (F3) we have that the following estimates hold for a.e. t ∈ [0, t1]:

‖f(t, v, w)‖2 ≤ α(t)(1 + ‖v‖2 + ‖w‖2) , for all v, w ∈ L2([0, 1]); (19)

χ2(f(t,Ω1,Ω2)) ≤ h(t) [χ2(Ω1) + χ2(Ω2)] , for every bounded Ω1,Ω2 ⊂ L2([0, 1]). (20)

Therefore, recalling that f is a Carathéodory function, we can apply [5, Theorem 5.1] and
claim that problem (18) has at least one mild solution, namely a continuous function v0 :
[0, t1]→ L2([0, 1]) such that

v0(t) = T (t, 0)α0 +

∫ t

0
T (t, s)f

(
s, v0(s),

∫ s

0

eσ/T

T
v0(σ)dσ

)
ds , for all t ∈ [0, t1]. (21)

Step 2. Consider the interval [t1, t2] and the Cauchy problem associated to v0{
v′(t) = A(t)v(t) + f1

(
t, v(t),

∫ t
t1
es/T

T v(s)ds
)
, t ∈ [t1, t2],

v(t1) = v0(t1) + I1(v0(t1)),
(22)

where

f1(t, v, w) = f

(
t, v,

∫ t1

0

es/T

T
v0(s)ds+ w

)
, t ∈ [0, T ], v, w ∈ L2([0, 1]). (23)

Function f1 satisfies for a.e. t ∈ [t1, t2] the estimate analogous to (19)

‖f1(t, v, w)‖2 =

∥∥∥∥∥f
(
t, v,

∫ t1

0

es/T

T
v0(s)ds+ w

)∥∥∥∥∥
2

≤ α(t)

(
1 + ‖v‖2 +

∥∥∥∥∥
∫ t1

0

es/T

T
v0(s)ds+ w

∥∥∥∥∥
2

)

≤ α(t)

(
1 +

∣∣∣∣∣
∫ t1

0

es/T

T
v0(s)ds

∣∣∣∣∣
)

(1 + ‖v‖2 + ‖w‖2) , for all v, w ∈ L2([0, 1])

and the analogous of (20) as well. Moreover, f1 is also a Carathéodory function, so we can
apply [5, Theorem 5.1] again. Let v1 : [t1, t2]→ L2([0, 1]) be a mild solution of (22),

v1(t) = T (t, t1)[v0(t1) + I1(v0(t1))] + (24)

+

∫ t

t1

T (t, s)f1

(
s, v1(s),

∫ s

t1

eσ/T

T
v1(σ)dσ

)
ds , for all t ∈ [t1, t2].
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Step 3. By using an iterative process, we can claim that for every i = 1, . . . , p each Cauchy
problem {

v′(t) = A(t)v(t) + fi

(
t, v(t),

∫ t
ti
es/T

T v(s)ds
)
, t ∈ [ti, ti+1],

v(ti) = vi−1(ti) + Ii(vi−1(ti)),

where fi(t, v, w) = fi−1

(
t, v,

∫ ti
ti−1

es/T

T vi−1(s)ds+ w
)

, t ∈ [0, T ], v, w ∈ L2([0, 1]) (with

f0 = f), admits a mild solution

vi(t) = T (t, ti)[vi−1(ti) + Ii(vi−1(ti))] +

+

∫ t

ti

T (t, s)fi

(
s, vi(s),

∫ s

ti

eσ/T

T
vi(σ)dσ

)
ds , for all t ∈ [ti, ti+1].

Step 4. We show that the piecewise continuous function

v̄(t) =


v0(t) , t ∈ [0, t1],

v1(t) , t ∈]t1, t2],

. . .

vp(t) , t ∈]tp, T ]

(25)

is an impulsive mild solution for problem (15).

If t ∈ [0, t1], then by (21) and (25) we have

v̄(t) = v0(t) = T (t, 0)α0 +

∫ t

0
T (t, s)f

(
s, v0(s),

∫ s

0

eσ/T

T
v0(σ)dσ

)
ds

= T (t, 0)α0 +

∫ t

0
T (t, s)f

(
s, v̄(s),

∫ s

0

eσ/T

T
v̄(σ)dσ

)
ds ;

if t ∈]t1, t2], then by (24), (23), (21), (25) and the properties of evolution systems (see Section
4), we have

v̄(t) = v1(t) = T (t, t1)[v0(t1) + I1(v0(t1))] +

∫ t

t1

T (t, s)f1

(
s, v1(s),

∫ s

t1

eσ/T

T
v1(σ)dσ

)
ds

= T (t, t1)

[
T (t1, 0)α0 +

∫ t1

0
T (t1, s)f

(
s, v0(s),

∫ s

0

eσ/T

T
v0(σ)dσ

)
ds

]
+

+T (t, t1)I1(v0(t1)) +

+

∫ t

t1

T (t, s)f

(
s, v1(s),

∫ t1

0

eσ/T

T
v0(σ)dσ +

∫ s

t1

eσ/T

T
v1(σ)dσ

)
ds

= T (t, 0)α0 + T (t, t1)I1(v̄(t1)) +

∫ t

0
T (t, s)f

(
s, v̄(s),

∫ s

0

eσ/T

T
v̄(σ)dσ

)
ds .
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By proceeding iteratively, we have

v̄(t) = T (t, 0)α0 +
∑

0<ti<t

T (t, ti)Ii(v̄(ti)) +

∫ t

0
T (t, s)f

(
s, v̄(s),

∫ s

0

eσ/T

T
v̄(σ)dσ

)
ds

= T (t, 0)α0 +
∑

0<ti<t

T (t, ti)Ii(v̄(ti)) +

∫ t

0
T (t, s)f̃(s) ds, t ∈ [0, T ], (26)

where we put

f̃(s) = f

(
s, v̄(s),

∫ s

0

eσ/T

T
v̄(σ)dσ

)
, s ∈ [0, T ]. (27)

Clearly f̃(s) ∈ F
(
s, v̄(s),

∫ s
0
eσ/T

T v̄(σ)dσ
)

for a.e. s ∈ [0, T ].

Moreover, since f̃ is the superposition of the Carathéodory function f with the piecewise

continuous function s 7→
(
v̄(s),

∫ s
0
eσ/T

T v̄(σ)dσ
)

, we have that f̃ is Borel-measurable; so,

by the growth condition on f (by (19) and the analogous ones on the other intervals), we
achieve that f̃ ∈ L1([0, T ], L2([0, 1])).

Therefore the function v̄ ∈ PC([0, T ], L2([0, 1])) is an impulsive mild solution for (15).

Conclusion. Recalling (14), we can write

f̃(s) ∈ g̃

(
s, v̄(s),

∫ s

0

eσ/T

T
v̄(σ)dσ

)
+W (v̄(s)), a.e. s ∈ [0, T ]. (28)

Let us define the functions ū, ω̄ : [0, T ]× [0, 1]→ IR by

ū(t, z) = v̄(t)(z);

ω̄(t, z) = f̃(t)(z)− g̃

(
t, v̄(t),

∫ t

0

es/T

T
v̄(s)ds

)
(z)

= f

(
t, ū(t, z),

∫ t

0

es/T

T
ū(s, z)ds

)
− g

(
t, ū(t, z),

∫ t

0

es/T

T
ū(s, z)ds

)
,

for all t ∈ [0, T ], z ∈ [0, 1] (see (27) and (11)).

By the above definitions and by (28), we get that ω̄(s, ·) ∈W (ū(s, ·)) for a.e. s ∈ [0, T ].

Finally, by (26), (16), (12) and the fact that

f̃(t)(z) = g

(
t, ū(t, z),

∫ t

0

es/T

T
ū(s, z)ds

)
+ ω̄(t, z),

the identity of Definition 2.1 is satisfied by the couple (ū, ω̄), which is then an impulsive
mild admissible pair for (8). 2

We provide an example of nonlinearity satisfying the properties needed in our existence
result and involving a dispersal kernel.
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Example 3.1 Let us consider the function g : [0, T ]× IR× IR→ IR defined by

g(t, p, q) =
et/T

1 + |q|
, (t, p, q) ∈ [0, T ]× IR× IR.

Then the integro-partial differential equation driving (8) reads as

∂u

∂t
(t, z) = −b(t, z)u(t, z) +

1

e−t/T +
∣∣∣∫ t0 e−(t−s)/T

T u(s, z) ds
∣∣∣ + ω(t, z), t ∈ [0, T ], a.e. z ∈ [0, 1].

We notice that the map g here defined trivially satisfies (g.1) and (g.2).

Further, we show that also (g.3) is satisfied. Let us recall that in the space L2([0, 1]) the
Hausdorff measure of noncompactness χ2 is equivalent to the measure of noncompactness

χ∗(Ω) = lim
h→0

sup
θ∈Ω

{∫ 1

0
[θ(z + h)− θ(z)]2dz

}1/2

,

in the sense that

χ2(Ω) ≤ χ∗(Ω) ≤ 2χ2(Ω), (29)

for all bounded sets Ω ⊂ L2([0, 1]) (see [2, Theorem 2.2]).

Fix Ω1,Ω2 ⊂ L2([0, 1]) and t ∈ [0, T ]; we have

χ∗(g(t,Ω1(·),Ω2(·))) = lim
h→0

sup
θ∈g(t,Ω1(·),Ω2(·))

{∫ 1

0
[θ(z + h)− θ(z)]2dz

}1/2

= lim
h→0

sup
q(·)∈Ω2


∫ 1

0

[
et/T

1 + |q(z + h)|
− et/T

1 + |q(z)|

]2

dz


1/2

= et/T lim
h→0

sup
q(·)∈Ω2

{∫ 1

0

[
|q(z + h)| − |q(z)|

(1 + |q(z + h)|)(1 + |q(z)|)

]2

dz

}1/2

≤ et/T lim
h→0

sup
q(·)∈Ω2

{∫ 1

0
[|q(z + h)| − |q(z)|]2 dz

}1/2

= et/Tχ∗(Ω2).

Hence, by using (29) we have

χ2(g(t,Ω1(·),Ω2(·))) ≤ χ∗(g(t,Ω1(·),Ω2(·))) ≤ et/Tχ∗(Ω2)

≤ 2et/Tχ2(Ω2) ≤ 2et/T [χ2(Ω1) + χ2(Ω2)] ,

so (g.3) is satisfied for h(t) = 2et/T , t ∈ [0, T ].

4 On the impulse functions

In the next example we present a case in which at a priori fixed times the solution trajectory
is forced, due to the impulses’ action, to come back in a fixed range.
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Example 4.1 For the sake of simplicity, let us suppose p = 1.

Let R > 0 be a given threshold value and I1 : IR → IR be the regulation impulse function
defined by

I1(ξ) =

{
0 , ξ ≤ R,
− n
n+1ξ , ξ ∈]nR, (n+ 1)R] , n ≥ 1 .

We suppose that the initial condition α0 ∈ L2([0, 1]) is such that α0(z) ≤ R, for every
z ∈ [0, 1].

By the definition of regulation impulse function, after the jump time the solution trajectory
is forced to come back in the interval ]−∞, R]. Indeed, if u : [0, T ]× [0, 1]→ IR is a solution
for the problem (8) when p = 1, then it is easy to see that

u(t+1 , z) = u(t1, z) + I1(u(t1, z)) ≤ R , for every z ∈ [0, 1] .

We wish to underline that in our results we do not require any assumption on the impulse
functions Ii and, as a consequence, on Ii; so in problem (8) we can consider any type
of impulse function. This means that one can act on the system with any instantaneous
external force. Hence, differently with respect to most of the existing literature, impulse
functions which are not continuous can be admitted.

Example 4.2 The impulse function I1 presented in Example 4.1 is such that its associated
map I1 : L2([0, 1]) → L2([0, 1]) (see (12)) is not continuous in v̂ ∈ L2([0, 1]), where v̂ is
defined by

v̂(z) = R , z ∈ [0, 1] .

In fact, considered the sequence (vm)m in L2([0, 1]) defined as

vm(z) =
m+ 1

m
R , for every z ∈ [0, 1] , m ∈ IN,

we have

‖vm − v̂‖22 → 0 ;

but, since vm(z) ∈]R, 2R] for every z ∈ [0, 1] and m ∈ IN , we obtain

I1(vm)(z) = −m+ 1

2m
R and I1(v̂)(z) = 0 , for every z ∈ [0, 1] ;

therefore we get

‖I1(vm)− I1(v̂)‖22 →
R2

4
6= 0 .
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Appendix: List of symbols and definitions

E real Banach space endowed with the norm ‖ · ‖;

P(E) the family of all nonempty subsets of E;

C(J,E) the space of E-valued continuous functions on a closed bounded interval J ⊂ IR;

AC(J,E) the space of E-valued absolutely continuous functions on J (shortly, AC(J) if
E = IR);

Lp(J,E) the space of all E-valued functions on J such that their p-power is Bochner

integrable with norm ‖v‖p =
[∫
J ‖v(z)‖p dz

] 1
p (shortly, Lp(J) if E = IR), p = 1, 2;

L1
+(J) = {f ∈ L1(J) : f(t) ≥ 0, for a.a. t ∈ J};

PC([0, T ], E) =

{
x : [0, T ]→ E :

x| Ji is continuous , i = 0, . . . , p, and

there exists x(t+i ) ∈ E , i = 1, . . . , p

}
,

where: {t0, . . . , tp+1} ⊂ [0, T ] such that 0 = t0 < t1 < · · · < tp < tp+1 = b; J0 = [0, t1],
Ji =]ti, ti+1], i = 1, . . . , p; x(t+i ) = lims→t+i

x(s), i = 1, . . . , p;

(PC([0, T ], E), ‖ · ‖PC) Banach space endowed with the norm ‖x‖PC = sup0≤t≤T ‖x(t)‖,
x ∈ PC([0, T ], E);

χ the Hausdorff measure of noncompactness in E

χ(Ω) = inf{ε > 0 : Ω has a finite ε-net} , for all bounded Ω ⊂ E;

{T (t, s)}(t,s)∈∆ is an evolution system (see, e.g., [23]) if T (t, s) : E → E is a bounded linear
operator, (t, s) ∈ ∆ = {(t, s) ∈ [0, T ] × [0, T ] : s ≤ t}, and the following properties
hold

(T1) T (s, s) = I, T (t, r)T (r, s) = T (t, s) for 0 ≤ s ≤ r ≤ t ≤ T ;

(T2) (t, s) 7→ T (t, s) is strongly continuous on ∆ (i.e. the map ξx : (t, s) 7→ T (t, s)x
is continuous on ∆, for every x ∈ E).

F : X → P(E), X a topological space, is lower semicontinuous at x0 ∈ X if, for all
V ⊆ E open such that F (x0) ∩ V 6= ∅, there exists a neighborhood U of x0 such that
F (x) ∩ V 6= ∅ for all x ∈ U ;

the multimap F is lower semicontinuous if it is lower semicontinuous at every x0 ∈ X.
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