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Abstract. This paper introduces complexes of linear varieties, called inclics (for INductively Con-
structible LInear ComplexeS). By assigning an order of vanishing (i.e., a multiplicity) to each mem-
ber of the complex, we obtain fat linear varieties (fat points if all of the linear varieties are points).
The scheme theoretic union of these fat linear varieties gives an inclic scheme X. For such a scheme,
we show there is an inductive procedure for computing the Hilbert function and a resolution of its
defining ideal IX , regardless of the choice of multiplicities. As an application, we show how our
results allow the computation of the Hilbert functions and of a resolution of fat points with all but
one point having support in a hyperplane. We also explicitly compute the Waldschmidt constants
α̂(IX) for galactic inclics X; these are special inclics constructed starting from a star configuration
to which we add general points in a larger projective space.

1. Introduction

There is a long tradition of research on ideals of unions of linear varieties in projective spaces.
Such an ideal is the intersection of ideals generated by linear forms. Examples include square free
monomial ideals, ideals of star configurations [GHM] and ideals of finite sets of points. Research
started with the radical case (see [D, DS, GO, HH, HS, L] for example) but there is also a lot of
interest in ideals of schemes of linear varieties with assigned multiplicities, including but not limited
to fat points (see [CHT, DHST, Fa, FHL, FaL, FrL, Fr, FMN, GHV1, V] for just a few examples).
The ideals in the uniform multiplicity case are symbolic power ideals; ideals in this special case are
also of interest and are receiving increasing attention (see [BH, BH2, GHM, GMS, GHV2, HaHu, M]
for example), but there are few cases where the Hilbert functions of arbitrary symbolic powers can
be determined.

In this paper we introduce inclic schemes. These are schemes whose components comprise a
complex of linear varieties called an inclic (for INductively Constructible LInear Complex; see Re-
mark 3.3 for examples motivating this terminology). An inclic scheme is obtained by arbitrarily
assigning a multiplicity (i.e., an assigned order of vanishing) to each component. Our main founda-
tional results provide a recursive procedure for computing Hilbert functions and free resolutions of
ideals of inclic schemes. These results can be applied to the case of fat points with all but one point
having support in a hyperplane. In certain cases this procedure can also be applied to compute
Hilbert functions and free resolutions of arbitrary symbolic powers of radical ideals. This substan-
tially extends the range of examples of ideals for which this is possible. As a further application,
we define galactic schemes and explicitly compute the Waldschmidt constants of certain galactic
schemes built up from star configurations. (A Waldschmidt constant is an asymptotic measure of
the initial degrees of the symbolic powers of an ideal. These have arisen in a range of previous
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research, such as [BH, Ch, DHST, GHV1, HaHu, M, W], and are related to work on multiplier
ideals; see [EV, HaHu] and [La, Proposition 10.1.1 and Example 10.1.3].) In section 2 we set up our
technical notation. In sections 3 and 4 we prove our main foundational results about, respectively,
Hilbert functions and free resolutions for ideals of inclics. In section 5 we apply the results of the
previous sections to the case of fat points with all but one point having support in a hyperplane
and in section 6 we compute galactic Waldschmidt constants.

2. Preliminaries and notation

To define inclics, let n > 0 be an integer. We work in the projective space Pn over an arbitrary
field K (some results will require the characteristic to be 0). An inclic

C = C(n, r, s;L0, L1, . . . , Lr,H0,H1, . . . ,Hs)

is a collection of linear subvarieties L0, L1, . . . , Lr,H0,H1, . . . , Hs ( Pn such that the following
conditions hold:

(C1) H0,H1, . . . , Hs are distinct hyperplanes;
(C2) Li ⊆ H0 for i > 0, but L0 ̸⊆ H0;
(C3) if Li ⊆ Lj , then i = j; and
(C4) for all i ≥ 0 and j > 0 we have Li ̸⊆ Hj .

Given such an inclic, an inclic scheme is a scheme of the form X =
∑

i≥0 liLi +
∑

j>0 hjHj , by

which we mean the scheme defined by the ideal IX = (∩i≥0I
li
Li
)
∩
(∩j>0I

hj

Hj
), where li and hj are non-

negative integers and for any linear subvariety V ⊆ Pn, the ideal IV ⊆ R = K[Pn] = K[x0, . . . , xn]
is the ideal generated by all forms vanishing on V . We note that ideals such as IV are homogeneous
and saturated. Moreover, if I =

√
IX , then I = (∩i≥0ILi)

∩
(∩j>0IHj ), and for any m ≥ 1, the

symbolic power I(m) is I(m) = (∩i≥0I
m
Li
)
∩
(∩j>0I

m
Hj

), so IX = I(m) in the case that li = hi = m for

all i and j.
If s = 0 and each Li is a point, then the inclic is just a choice of r points Li, 0 < i ≤ r, of the

hyperplane H0 and one point L0 that is not in H0. The case of a finite set of points, all of which
are in a hyperplane, is dealt with in [FHL]. Requiring that L0 ̸⊆ H0 thus takes us beyond [FHL].

Another special case of an inclic is related to what we call a galaxy. To define a galaxy, we start
with a star configuration S(n, e, u). We recall [GHM] that the star configuration S(n, e, u) is defined
by a set of u ≥ n distinct hyperplanes A1, . . . , Au

∼= Pn−1 in Pn such that, for each 1 ≤ i ≤ n,
the intersection of any i of the hyperplanes has dimension at most n − i. The star configuration
of codimension e ≤ n is the set S(n, e, u) of the

(
u
e

)
linear varieties arising as intersections of e

arbitrary distinct choices Ai1 , . . . , Aie of the hyperplanes. Let N ≥ 1 be an integer and regard Pn

as a linear subvariety of Pn+N . The galaxy G = G(n,N, e, h) = G(n,N, e, h;S(n, e, u),H) consists of
S(n, e, u) and a choice of h general points H = {P1, . . . , Ph} ∈ Pn+N ; in particular, for each i, Pi+1

is not in the span of Pn and P1, . . . , Pi. We refer to S(n, e, u) as the galactic center, to Pn as the
galactic (n-)plane, and to H as the galactic halo. (These astronomical references were prompted
by the connection to star configurations and give useful intuition, this intuition only goes so far.
For example, the restriction that the halo H consists of general points means that h ≤ N ; i.e., the
galactic halo is relatively sparse.) When h = N , then we get an inclic in which the components of
S(n, e, u) and the points P1, . . . , Ph−1 are the linear varieties Li, and there is only one hyperplane,
H0 (so again s = 0), this hyperplane being the hyperplane containing the linear span of Pn and the
points P1, . . . , Ph−1, but not containing Ph.

For any homogeneous ideal I ⊆ R, the Hilbert function of I is the function h(I, t) of t defined
as h(I, t) = dimK It, where It is the K-vector space span of all forms in I of degree t. If IX ( R
is the saturated ideal defining a subscheme X ⊆ Pn, the Hilbert function of X is the function
h(X, t) = h(R, t) − h(IX , t) =

(
t+n
n

)
− h(IX , t). In all cases, we adopt the understanding that

Hilbert functions are 0 when t < 0.
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An important value associated to any homogeneous ideal (0) ̸= I ⊆ R is α(I), defined to be
the least degree t such that h(I, t) ̸= 0. In case I is of the form I = ∩jI

mj

Vj
for a finite set of

linear varieties Vj , none of which contains the other, we define the mth symbolic power I(m) of I

as I(m) = ∩jI
mmj

Vj
. We then define the Waldschmidt constant (introduced by Waldschmidt in [W]

in case I is the ideal of a finite set of points) to be

α̂(I) = lim
m→∞

α(I(m))

m
.

This limit exists by Fekete’s Lemma (see Section 1.10 of [S]), but in general is hard to compute
and not many specific values are known.

Another asymptotic measure related to α̂(I) is the resurgence [BH, BH2, GHV1], defined for any
homogeneous ideal (0) ̸= I ( R = K[Pn] as

ρ(I) = sup
{m
r

: I(m) ̸⊆ Ir
}
.

In general it is difficult to determine for which m and r we have I(m) ⊆ Ir. The interest of ρ(I)

is that it is the largest real c such that we always have I(m) ⊆ Ir for m/r > c, but it is difficult
to compute. It is not a priori even clear that it exists. It is known and easy to see that 1 ≤ ρ(I).

Much deeper is the fact that I(m) ⊆ Ir whenever m/r ≥ n [ELS, HoHu] from which it follows that
ρ(I) ≤ n and hence ρ(I) exists. This raises the issue of getting better bounds. One of the main

results for bounding and sometimes computing ρ(I) is that of [BH] which says that α(I)
α̂(I) ≤ ρ(I), and,

if I defines a 0-dimensional subscheme of Pn, that ρ(I) ≤ reg(I)
α̂(I) , where reg(I) is the Castelnuovo-

Mumford regularity of I, but these bounds depend on α̂(I) which has so far been computed in
relatively few cases, so obtaining additional cases for which α̂(I) can be computed is of interest.

Hereafter we study fat inclic schemes for some fixed hyperplane H0 ⊂ Pn. Clearly, we may choose
coordinates such that IH0 = (x0), so R′ = K[Pn−1] = K[H0] = K[x1, . . . , xn]. Since L0 ̸⊆ H0, we
may also assume that IL0 = (xk+1, . . . , xn) ⊂ K[Pn] = R for some 0 ≤ k < n. We fix such a choice
of coordinates for the rest of this article. We denote the linear forms defining Hj for j > 0 by
ηj . We also take Y to be the fat subscheme Y = l1L1 + · · · + lrLr of Pn. In addition we define
Y ′ = Y ∩H0 and Y ′

i = Yi ∩H0 for Yi = l1(i)L1 + · · ·+ lr(i)Lr, where lj(i) = max(0, lj − i). Thus
Y ′
0 = Y ′ and IY ′

i
= IYi ∩K[x1, . . . , xn]. Moreover, IYi = IY : (xi0). We set Z = l0L0, W = Y ∪ Z,

X = W
∪
∪j>0hjHj , L

′
0 = L0 ∩H0, Z

′ = Z ∩H0, W
′ = W ∩H0 and X ′ = X ∩H0.

The following notation will be useful. Let J ′ ⊆ R′ = K[x1, . . . , xn] be a homogeneous ideal;

keeping in mind that IL0 = (xk+1, . . . , xn), we set J ′(k,t) = J ′ ∩ (IL′
0
)t. Thus (J ′(k,t))i = (J ′)i ∩

((IL′
0
)t)i. Note that in the special case that k = 0 (i.e., that L0 is the point p defined in Pn by

(x1, . . . , xn)), we have (J ′(0,t))i = J ′
i for i ≥ t and (J ′(0,t))i = 0 for i < t; in short, if we know J ′,

then we immediately know J ′(0,t) for all t.
Note that R has a bi-grading; i.e., the direct sum R = ⊕ijRij has the property that RijRst =

Ri+s,j+t, where R′
i is the K-vector space span of the forms in R′ = K[x1, . . . , xn] of total degree

i, and Rij is the K-vector subspace xj0R
′
i ⊂ R. We say an element F ∈ R is bi-homogeneous if

F ∈ Rij for some i and j, and we say an ideal I ⊆ R is bi-homogeneous if I = ⊕ijIij , where
Iij = I ∩ Rij . As usual, I is bi-homogeneous if and only if I has bi-homogeneous generators, and
intersections, sums and products of bi-homogeneous ideals are bi-homogeneous.

3. Hilbert Function

We can now state and prove our main theorem about Hilbert functions.
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Theorem 3.1. Let Y ′, Y ′
i , Z, W and X be as above, let l′ = max(l1, . . . , lr). Then IX =

ηh1
1 · · · ηhs

s IW and IW is bihomogeneous, decomposing as a direct sum of R′-modules as

IW = ⊕jx
j
0(IY ′

j
)(k,l0) = (⊕0≤j<l′x

j
0(IY ′

j
)(k,l0))

⊕
⊕j≥l′x

j
0IZ′ = (⊕0≤j<l′x

j
0(IY ′

j
)(k,l0))

⊕
xl

′
0 IZ .

Moreover, h(IX , t) = h(IW , t −
∑

j>0 hj) and h(IW , t) =
∑l′−1

j=0 h((IY ′
j
)(k,l0), t − j) + h(IZ , t − l′),

where h(IZ , t − l′) = 0 if t < l′ + l0 and h(IZ , t − l′) =
(
t−l′+n

n

)
−
∑

0≤i<l0

(
t−l′−i+k

k

)(
i+n−k−1
n−k−1

)
for

t ≥ l′ + l0.

Proof. It is obvious that IX = ηh1
1 · · · ηhs

s IW and h(IX , t) = h(IW , t −
∑

j>0 hj), so now we con-

sider IW and h(IW , t). To begin, note that the ideals ILi ⊂ R are bi-homogeneous (having bi-
homogeneous generators), so IY and IW = IY ∩ IZ are bi-homogeneous, hence IY = ⊕ij(IY )ij
and IW = ⊕ij((IY )ij ∩ (IZ)ij). But F ∈ (IY )ij if and only if F = xj0G where G ∈ (IY ′

j
)i; i.e.,

(IY )ij = xj0(IY ′
j
)i. Thus IY = ⊕ijx

j
0(IY ′

j
)i, and since (IZ)ij = xj0(IZ′)i, we have

(*) IW = ⊕ij((x
j
0(IY ′

j
)i) ∩ (IZ)ij) = ⊕ij((x

j
0(IY ′

j
∩ IZ′)i) = ⊕ij(x

j
0((IY ′

j
)(k,l0))i) = ⊕jx

j
0(IY ′

j
)(k,l0).

But for j ≥ l′ we have IY ′
j
= R′ and hence (IY ′

j
)(k,l0) = IZ′ , so

IW = ⊕jx
j
0(IY ′

j
)(k,l0) = (⊕0≤j<l′x

j
0(IY ′

j
)(k,l0))

⊕
⊕j≥l′x

j
0IZ′ = (⊕0≤j<l′x

j
0(IY ′

j
)(k,l0))

⊕
xl

′
0 IZ .

The fact that h(IW , t) =
∑l′−1

j=0 h((IY ′
j
)(k,l0), t − j) + h(IZ , t − l′) is now immediate, keeping in

mind that the Hilbert function is computed with respect to the singly graded structure of R; i.e.,
(IW )t = ⊕i+j=t(IW )ij . But the value of h(IZ , t− l′) is known; the formula given in the statement
of the theorem comes from [DHST, Lemma 2.1]. �

Recall that IL0 = (xk+1, . . . , xn). The case with k = 0 (i.e., that L0 is the point p defined in Pn

by (x1, . . . , xn)), is particularly simple; in this case, if we know the Hilbert functions of Y ′
j for all

j, then we know the Hilbert functions of W and hence X.

Corollary 3.2. Under the hypotheses of Theorem 3.1, let λ = min(l′ − 1, t − l0). If we also have
k = 0, then

h(IW , t) =

λ∑
j=0

h(IY ′
j
, t− j) +

t−l0∑
j=l′

(
t− j + n− 1

n− 1

)
,

which is h(IW , t) =
∑λ

j=0 h(IY ′
j
, t− j) for t < l′ + l0 and

h(IW , t) =

λ∑
j=0

h(IY ′
j
, t− j) +

(
t− l′ + n

n

)
−
(
l0 + n− 1

n

)
for t ≥ l′ + l0.

Proof. This follows immediately from Theorem 3.1, since (IZ′)i = R′
i (so h(IZ′ , t− j) =

(
t−j+n−1

n−1

)
and ((IY ′

j
)(0,l0))t−j = (IY ′

j
)t−j for t− j ≥ l0, that is, for j ≤ t− l0). �

Remark 3.3. Examples for which we would know the Hilbert functions of Y ′
j ⊂ H0 for all j can

be constructed inductively. For example, start with a flag of projective spaces V1 ⊂ V2 ⊂ · · · ⊂ Vn,
each contained in the next as a linear subvariety, with Vi ≃ Pi. Let U1 ⊂ V1 be any finite set of
points u11, . . . , u1s. Let U2 consist of a point u21 ∈ V2\V1 together with any lines u22, . . . , u2s2 ⊂ V2

not containing u21 or any component of U1 (i.e., not containing u1i for any i). Continue in this way,
so Ui consists of a point ui1 ∈ Vi \ Vi−1 and a finite set of hyperplanes uij ⊂ Vi not containing ui1
and not containing any of the components of Uj for j < i. Then U1∪· · ·∪Un defines an inclic and for
any multiplicities mij we can inductively compute h(IX , t) for any t, for X =

∑
ij mijuij . Indeed,
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define X1 =
∑

j m1ju1j , and then X2 = X1 +
∑

j m2ju2j , and in general Xk = Xk−1 +
∑

j mkjukj .

Since we know h((X1)i, t) for all i and t, Theorem 3.1 gives us h((X2)i, t) for all i and t, and
similarly h((Xk)i, t) for each k in turn for all i and t, and hence eventually h(Xn, t) for all t.

Our result also handles other constructions. For example, instead of starting with points in P1,
we could start with a star configuration of points in P2 (i.e., the points of pair-wise intersection of
a finite set of lines, no three of which meet at any single point, see [GHM]). Let S be the scheme
theoretic sum of the points of the star and consider the scheme iS. The Hilbert function of iS is
known for all i ([CHT]), so we can proceed as above to construct an Xn, as long as in this case
we assign the same multiplicity to each point of S (the Hilbert function is not always known if the
multiplicities of the points of S are allowed to vary).

Recall that given a closed subscheme X ⊂ Pn with corresponding ideal IX , we define α(X) =
α(IX) to be the least degree t such that there is a non-trivial form F ∈ (IX)t.

Lemma 3.4. With the previous notation, there is a least j ≥ 0 such that α((IY ′
j
)(k,l0)) = l0. Let

l′ = max(l1, . . . , lr) and let d be this least j. If, moreover, char(K) = 0, then

0 = α(IY ′
l′
) < α(IY ′

l′−1
) < α(IY ′

l′−2
) < . . . < α(IY ′

0
)

and

l0 = α((IY ′
d
)(k,l0)) < α((IY ′

d−1
)(k,l0)) < α((IY ′

d−2
)(k,l0)) < . . . < α((IY ′

0
)(k,l0)).

Proof. By definition, (IY ′
j
)(k,l0) ⊂ (xk+1, . . . , xn)

l0 so α((IY ′
j
)(k,l0)) ≥ l0 for all j. But for j ≥ l′

we have ((IY ′
j
)(k,l0)) = (xk+1, . . . , xn)

l0 so α((IY ′
j
)(k,l0)) = l0. Thus there is a least j such that

α((IY ′
j
)(k,l0)) = l0 so d is defined.

Since Y ′
l′ = ∅, we have IY ′

l′
= (1), so α(IY ′

l′
) = 0. Now assume char(K) = 0. Consider any

non-zero homogeneous element F ∈ IY ′
j
for j < l′. By Euler’s identity, not all of the partials of F

are 0. However, they all belong to IY ′
j+1

and the non-zero ones have degree deg(F )− 1. Therefore

α(IY ′
j+1

) ≤ α(IY ′
j
)− 1, so we have

0 = α(IY ′
l′
) < α(IY ′

l′−1
) < α(IY ′

l′−2
) < . . . < α(IY ′

0
)

as claimed.
The argument for the second claim is similar. Let j < d and consider any non-zero homogeneous

element F ∈ (IY ′
j
)(k,l0)) ⊆ IY ′

j
, so deg(F ) > l0, since also F ∈ (IL′

0
)l0 . Again not all of the partials

of F are 0 but they all belong to IY ′
j+1

. Since deg(F ) > l0, they all also belong to (xk+1, . . . , xn)
l0

and hence to (IY ′
j+1

)(k,l0). Therefore α((IY ′
j+1

)(k,l0)) ≤ α((IY ′
j
)(k,l0))− 1, so we have

l0 = α((IY ′
d
)(k,l0)) < α((IY ′

d−1
)(k,l0)) < α((IY ′

d−2
)(k,l0)) < . . . < α((IY ′

0
)(k,l0)).

�

Corollary 3.5. Let L0, L1, . . . , Lr,H0, H1, . . . , Hs ( Pn be an inclic, and let W =
∑

i≥0 liLi and

X =
∑

i≥0 liLi +
∑

j>0 hjHj for non-negative integers li and hi. Let Y ′
i be as above, and let

l′ = max(l1, . . . , lr) and h = h1+ · · ·+hs. Then α(X) = h+α(W ) and max(l′, l0) ≤ α(W ) ≤ l′+ l0.

Moreover, there is a least j ≥ 0 such that α((IY ′
j
)(k,l0)) = l0. Taking this least j to be d, we have

α(W ) ≤ l0 + d,

with α(W ) = l0 + d if char(K) = 0.
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Proof. Since IX = ηh1
1 · · · ηhs

s IW , where ηi is the linear form defining Hi, we see that α(X) =

h+α(W ). Since l1, . . . , lr, l0 ≤ α(W ), the lower bound max(l′, l0) ≤ α(W ) holds. Since xl
′
0x

l0
n ∈ IW ,

the upper bound α(W ) ≤ l′ + l0 also holds.
To get more precise information, note by (∗) in the proof of Theorem 3.1 that

α(W ) = α(IW ) = min
j

α(xj0(IY ′
j
)(k,l0)) = min

j
{j + α((IY ′

j
)(k,l0))}.

By definition, (IY ′
j
)(k,l0) ⊂ (xk+1, . . . , xn)

l0 so α((IY ′
j
)(k,l0)) ≥ l0 for all j. But for j ≥ l′ we have

((IY ′
j
)(k,l0)) = (xk+1, . . . , xn)

l0 so α((IY ′
j
)(k,l0)) = l0 and hence α(IW ) ≤ l′+ l0. Thus there is a least

j such that α((IY ′
j
)(k,l0)) = l0 so d is defined. Thus we have α(IW ) ≤ d + l0, and in addition we

have d+ l0 ≤ j + α((IY ′
j
)(k,l0)) for all j ≥ d.

Now assume char(K) = 0. By Lemma 3.4 we have

l0 + d ≤ α((IY ′
d−1

)(k,l0)) + (d− 1) ≤ α((IY ′
d−2

)(k,l0)) + (d− 2) ≤ . . . ≤ α((IY ′
0
)(k,l0)) + (d− d),

and hence α(I
Y ′
j
(k,l0)) + j ≥ l0 + d for all j < d, and therefore α(W ) = l0 + d, as claimed. �

4. Sets of generators and resolutions

Now we work out a free resolution for IW (and hence IX , which is the same as for IW except
for a shift in the grading). The idea is to mimic what is done in [FHL], using the structure of IW
as an R′-module as given in Theorem 3.1. This immediately gives graded generators over R′, from
which a set B of graded generators over R can be obtained, which we can reduce to a smaller set
B∗. When char(K) = 0 and L0 is a single point, B∗ is a minimal set of homogeneous generators
over R. Using the approach of [FHL], the nonminimal generators B extend to a free resolution, as
we will show, but it is not clear how in general to obtain a minimal set of generators for IW much
less a minimal free resolution.

We begin by finding a set of generators for IW . By Theorem 3.1, IW is a direct sum of the
graded R′-modules xi0(IY ′

j
)(k,l0), so graded generators over R can be obtained by taking a minimal

set Bj of graded R′-generators for each xj0(IY ′
j
)(k,l0). Thus Bj = xj0B

′
j , where B′

j is a minimal set

of graded generators for the R′-ideal (IY ′
j
)(k,l0). The union ∪jBj≥0 is a set of graded R-generators

for IW . This is an infinite set since there is no bound on j. This is because IW is not a finitely

generated R′-module, but, as Theorem 3.1 shows, ⊕j≥l′x
j
0(IY ′

j
)(k,l0) = xl

′
0 IZ , and since Bl′ generates

xl
′
0 (IY ′

l′
)(k,l0) = xl

′
0 IZ′ over R′, which in turn generates xl

′
0 IZ over R, we see that B = ∪0≤j≤l′B is a

finite set of graded R-generators for IW .
These are typically redundant, however, since for all j ≥ d the initial degree of (IY ′

j
)(k,l0) is l0,

so we have

((IY ′
d
)(k,l0))l0 ⊆ ((IY ′

d+1
)(k,l0))l0 ⊆ · · · .

Thus for example, B′
d contains a basis for ((IY ′

d
)(k,l0))l0 and B′

d+1 contains a basis for ((IY ′
d+1

)(k,l0))l0 ,

but the vector space span xd+1
0 ((IY ′

d+1
)(k,l0))l0 ofBd+1 contains the vector space span xd+1

0 ((IY ′
d
)(k,l0))l0

of x0Bd. There may be other redundancies, but to avoid redundancies of this kind at least, for
each j ≥ 0 starting with j = 0 we pick a basis A′

j of ((IY ′
j
)(k,l0))l0 , extend to a basis A′

j+1 of

((IY ′
j+1

)(k,l0))l0 , which we extend to a basis A′
j+2 of ((IY ′

j+2
)(k,l0))l0 , etc. (Note that A′

j = ∅ for

j < d.) Now define Aj = xj0A
′
j for j ≥ d (and Aj = ∅ for j < d). For each j ≥ 0, we then extend

A′
j to a minimal set B′

j of graded generators for ((IY ′
j
)(k,l0))l0 , and set B∗

j = xj0(B
′
j \ A′

j−1) (so

B∗
j = xj0B

′
j for j ≤ d). Then B∗ = ∪0≤j≤l′B

∗
j is a set of R-generators for IW .
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Theorem 4.1. If char(K) = 0 and L0 is a single point, then the set B∗ is in fact a minimal set
of generators for IW .

Proof. It is clear by construction that B∗ generates. We need to check that it is minimal. By
construction, each element of B∗ is bigraded; i.e., it is a power of x0 times a homogeneous form

in R′, hence is in Rij . So take an element g ∈ B∗. Thus g = xj0f ∈ Rij for some i and j, where
f ∈ B′

j \ A′
j−1. Suppose the elements of B∗ without g still generate IW ; i.e., suppose that g is an

R-linear combination of the other elements of B∗. Note that (IW )rs = (0) for r < l0. Thus i ≥ l0.
If i = l0, then f ∈ A′

j and g being an R-linear combination of the other elements of B∗ means g

is a K-linear combination of the other elements of xj0B
∗
0 ∪ xj−1

0 B∗
1 ∪ · · · ∪ xj−j

0 B∗
j of R′-degree l0,

i.e., g is a K-linear combination of the other elements of ∪d≤s≤jx
j
0(A

′
s \ A′

s−1) = xj0A
′
j , hence f is

in the K-vector space span of the other elements of A′
j , but A′

j is a basis and f ∈ A′
j , so this is

impossible.

Say i > l0. Then g is an R′-linear combination of other elements of the union of xj−s
0 B∗

s =

xj0(B
′
s \ A′

s−1) for s ≤ j of R′-degrees r ≤ i. Thus f is in the ith homogeneous component of

the R′-module generated by the union ∪s≤j(B
′
s \ A′

s−1) = ∪s≤jB
′
s. Since B′

s generates (IY ′
s
)(0,l0)

and (IY ′
s
)(0,l0) ⊆ (IY ′

s+1
)(0,l0), f must be in the ith homogeneous component of the R′-module

generated by B′
j \ {f}, modulo ((IY ′

j−1
)(0,l0))i. But ((IY ′

j−1
)(0,l0))i ⊂ R′

1((IY ′
j
)(0,l0)) (as will be seen

in a moment). Thus the image of B′
j \{f} in the quotient ((IY ′

j
)(0,l0))/(R′

1(IY ′
j
)(0,l0)) must generate

what the image of B′
j generates, which is the whole quotient. However, homogeneous elements

of (IY ′
j
)(0,l0) whose images generate this particular quotient also generate (IY ′

j
)(0,l0); i.e., B′

j \ {f}
generates (IY ′

j
)(0,l0). This is a contradiction, since B′

j is a minimal set of homogeneous generators

for (IY ′
j
)(0,l0).

Thus B∗ is in fact a minimal set of bihomogeneous generators for IW ; we just need to justify
((IY ′

j−1
)(0,l0))i ⊂ R′

1((IY ′
j
)(0,l0)) for i > l0. Let u ∈ ((IY ′

j−1
)(0,l0))i. Then u ∈ IY ′

j−1
, so u vanishes on

each component of Y ′
j−1 to order at least 1 more than is needed to be in IY ′

j
, but taking partials

drops the order of vanishing at most 1, so (for each 1 ≤ t ≤ n) ∂u/∂xt has sufficient order of

vanishing to be in IY ′
j
. Moreover, u ∈ ((IY ′

j−1
)(0,l0))i ⊆ (IZ′)i = (I l0L0

)i = ((x1, . . . , xn)
l0)i for i > l0,

so ∂u/∂xt vanishes to order at least l0 on L0. Thus ∂u/∂xt ∈ (IY ′
j
)(0,l0) for 1 ≤ t ≤ n, hence by

Euler’s identity we have u ∈ R′
1(IY ′

j
)(0,l0). �

We now consider the problem of constructing a free resolution of IW . We start with some
preliminary results.

Lemma 4.2. Let M , N , F and G be graded R′-modules with F a free R′-module, and let α : F →
M , β : G → N and h : M → N be graded R′-homomorphisms with Im(h ◦ α) ⊆ Im(β). Then there
exists a graded homomorphism h0 : F → G such that β ◦h0 = h ◦α, and hence h0(ker(α)) ⊆ ker(β)
(and so h0((kerα)i) ⊆ (kerβ)i for all i ≥ 0).

Proof. Let S be a minimal set of homogeneous generators for F . For each f ∈ S, h(α(f)) is
homogeneous and β is a graded map such that Im(h ◦ α) ⊆ Im(β), so there is an element gf ∈ Gi

where i = deg(f) such that β(gf ) = h(α(f)). Setting h0(f) = gf for each f ∈ S gives a graded
map h0 : F → G such that β ◦ h0 = h ◦ α, and hence h0((kerα)i) ⊆ (kerβ)i for all i ≥ 0. �
Corollary 4.3. Let M and N be graded R′-modules and let F• and G• be minimal graded free
resolutions of M and N respectively. Let ϕj : Fj → Fj−1, j ≥ 0, be the differentials for F• (where
ϕ0 is the augmentation map, so F−1 signifies M), and likewise let γj : Gj → Gj−1, j ≥ 0, be the
differentials for G•, and let h−1 = h : M → N be a graded homomorphism. Then there exist graded
homomorphisms hj : Fj → Gj, j ≥ 0, compatible with the differentials of the resolutions.
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Gi+1,j+1(−i− 1)
ϕi+1,j+1
−−−−−−→ Gi+1,j(−i− 1)

ϕi+1,j−→ Gi+1,j−1(−i− 1)
hi,j+1↗ hij↗

Gi,j+1(−i− 1)
ϕi,j+1
−−−−→ Gij(−i− 1)

ϕij
−→ Gi,j−1(−i− 1)

µi,j+1↘ µij↘
Gi,j+1(−i)

ϕi,j+1
−−−−→ Gij(−i)

ϕij
−→ Gi,j−1(−i)

Figure 1.

Proof. We prove the statement by induction on j. Since F• and G• are resolutions, ϕ0 and γ0 are
surjective, so we have Im(h−1 ◦ ϕ0) ⊆ Im(γ0), hence the case j = 0 is immediate from Lemma 4.2,
which also gives h0(ker(ϕ0)) ⊆ ker(γ0). By induction we may assume ht−1(ker(ϕt−1)) ⊆ ker(γt−1)
for 1 ≤ t ≤ j. Because F• and G• are resolutions, we thus have Im(hj−1 ◦ ϕj) = hj−1(Im(ϕj)) =
hj−1(ker(ϕj−1)) ⊆ ker(γj−1) = Im(γj). By Lemma 4.2 and induction we now have hj for all j ≥ −1
as desired, with hj(ker(ϕj)) ⊆ ker(γj). �

Now, consider Y ′, Y ′
i , Z, W and X as in section 2 and a minimal free resolution of each I

(k,l0)
Y ′
i

over R′ = K[x1, . . . , xn] :

· · · → G′
i,j → G′

i,j−1 → · · · → G′
i,0 → (IY ′

i
)(k,l0) → 0,

where G′
i,j is isomorphic as a graded R′-free module to ⊕ℓR

′(−ℓ)βi,j,ℓ (for an appropriate graded

Betti number βi,j,ℓ). We denote the differentials by ϕ′
i,j and graded generators of the component of

G′
i,j corresponding to R′(−ℓ)βi,j,ℓ by {si,j,l,k} where k runs over 1 to βi,j,ℓ. From this data we will

construct a free graded R-resolution F• of IW .

To do so we will need maps between the resolutions of I
(k,l0)
Y ′
i

and I
(k,l0)
Y ′
i+1

. Let h′i : I
(k,l0)
Y ′
i

↪→ I
(k,l0)
Y ′
i+1

be the inclusion induced by the inclusion Y ′
i+1 ⊆ Y ′

i of closed subschemes, which we also denote by

h′i,−1 = h′i, where we regard I
(k,l0)
Y ′
i

and I
(k,l0)
Y ′
i+1

as G′
i,−1 and G′

i+1,−1. Corollary 4.3 applied to the

resolution of each (IY ′
i
)(k,l0) now gives maps h′ij : G′

i,j → G′
i+1,j giving a morphism h′i• : (G′

i)• →
(G′

i+1)• of resolutions. We get free R-modules Gi = G′
i⊗R′ R by tensoring by R and we denote the

induced map h′i ⊗ idR : Gi → Gi+1 by hi. With the maps ϕi,j = ϕ′
i,j ⊗ idR as differentials, (Gi)• is

a minimal graded free R-resolution of I
(k,l0)
Y ′
i

⊗R′ R. Finally we define µij : Gij(−1) → Gij , given by

multiplication by x0. Putting these all together we get for all i and j the commutative diagrams
shown in Figure 1.

We now can define the graded free R-modules Fj for our resolution F• of IW . Recalling that
l′ = max{l1, . . . , lr}, define

F0 =

l′⊕
i=0

Gi,0(−i)

and, for j > 0,

Fj = Gl′,j(−l′)⊕

(
l′−1⊕
i=0

(
Gi,j(−i)⊕Gi,j−1(−i− 1)

))
.

The structure of F0 follows from the fact that IW is generated by the R′-submodules xi0I
(k,l0)
Y ′
i

,

0 ≤ i ≤ l′, so Gi,0(−i) corresponds to xi0I
(k,l0)
Y ′
i

. The jth syzygy module Fj being a sum of modules

of the form Gi,j(−i) ⊕ Gi,j−1(−i − 1) comes from the fact that there are two types of syzygies.

The component Gi,j(−i) corresponds to jth R′-syzygies of I
(k,l0)
Y ′
i

, which naturally carry over to jth
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R-syzygies of xi0I
(k,l0)
Y ′
i

. The component Gi,j−1(−i−1) corresponds to jth syzygies between xi0I
(k,l0)
Y ′
i

and xi+1
0 I

(k,l0)
Y ′
i+1

. Recall that I
(k,l0)
Y ′
i

⊆ I
(k,l0)
Y ′
i+1

, so an element f ∈ I
(k,l0)
Y ′
i

is also an element of I
(k,l0)
Y ′
i+1

.

Thus, for example, we have a first syzygy xi0f ⊗ x0 − xi+1
0 f ⊗ 1 between elements of xi0I

(k,l0)
Y ′
i

⊗ x0

and xi+1
0 I

(k,l0)
Y ′
i+1

⊗ 1.

Finally, we define the differential maps ϕj : Fj → Fj−1. Mimicking [FHL], we set

ϕ0(si,0,ℓ,k ⊗ 1R) = ϕi,0(si,0,ℓ,k ⊗ xi0),

ϕ1(si,1,ℓ,k ⊗ 1R) = ϕi,1(si,1,ℓ,k ⊗ 1R),

ϕ1(si,0,ℓ,k ⊗ 1R) = si,0,ℓ ⊗ x0 − hi,0(si,0,ℓ,k ⊗ 1R)

and, for j > 1,
ϕj(si,j,ℓ,k ⊗ 1R) = ϕi,j(si,j,ℓ,k ⊗ 1R),

and
ϕj(si,j−1,ℓ,k ⊗ 1R) = si,j−1,ℓ,k ⊗ x0 − hi,j−1(si,j−1,ℓ,k ⊗ 1R)− ϕi,j−1(si,j−1,ℓ,k ⊗ 1R).

Proposition 4.4. The sequence

F• : · · · → Fj → Fj−1 → · · · → F0,

with differentials ϕj as defined above, is a complex with ϕ0 ◦ ϕ1 = 0.

Proof. The proof is the same as given for Lemma 2.3 of [FHL]. It follows from commutativity of
the diagram in Figure 1 and the fact for each i and j that ϕ′

i,j−1ϕ
′
i,j = 0 (since (G′

i)• is a resolution,

hence a complex). �
Theorem 4.5. The complex F• is a resolution of IW with augmentation map ϕ0.

Proof. First of all, since B is in the image of ϕ0 and since B generates IW , ϕ0 is surjective.
Now we have to prove that ker(ϕj−1) = Im(ϕj), for each j > 0. By Proposition 4.4, we have

Im(ϕj) ⊆ ker(ϕj−1). As for the other inclusion, the proof given in Lemma 2.4 of [FHL] works
throughout with minor changes. �
Remark 4.6. The result of Theorem 4.5 gives an explicit resolution F• over R in cases where we

have explicit resolutions of the ideals I
(k,l0)
Y ′
i

over R′. In such cases, although the free resolution

in Theorem 4.5 is not minimal, we can in principle determine the graded Betti numbers for the
minimal resolution from the graded Betti numbers for F• since we would have explicit matrices
for the differential maps, and so could tell how many columns have nonzero scalar entries. This
determines how much the graded Betti numbers for F• exceed those for a minimal resolution.

5. Fat points

In this section we apply the results of the previous sections to the case of fat points with all but
one point having support in a hyperplane. In this case, W = l0p0 + · · · + lrpr (whence s = 0 and
L0 = p0), with p1, . . . , pr ∈ H0, for some hyperplane H0 ⊂ Pn, but p0 ̸∈ H0 (note that taking l0 = 0
reduces to the case of points contained in a hyperplane, considered in [FHL]).

We define the tth truncation of a graded R′-module M = ⊕ℓ≥0Mℓ with homogeneous components
Mℓ to be

(M)≥t =
⊕
ℓ≥t

Mℓ.

As usual, for simplicity we assume that H0 is defined by x0 = 0 and that Ip0 = (x1, . . . , xn). Then

I
(0,l0)
Y ′
i

= IY ′
i
∩ (x1, . . . , xn)

l0 =
⊕
ℓ≥l0

(IY ′
i
)ℓ = (IY ′

i
)≥l0
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is nothing but the l0th truncation of IY ′
i
.

Note for t large enough or for i small enough we get some simplifications. Of course, for t < l0,
we have h((IY ′

i
)≥l0 , t) = 0, but for t ≥ l0, we have h((IY ′

i
)≥l0 , t) = h(IY ′

i
, t). If i < d, with d as

in Lemma 3.4, then we have α((IY ′
i
)≥l0) > l0, hence also α(IY ′

i
) > l0. Thus (IY ′

i
)≥l0 = IY ′

i
and so

h((IY ′
i
)≥l0 , t) = h(IY ′

i
, t) holds for all t ≥ 0. We also have (IY ′

l′
)≥l0 = (Ip0)

l0 .

The results of Theorem 3.1 can be written in terms of the l0th truncations of the ideals IY ′
i
as a

direct sum of R′-modules as

IW = ((IY ′
0
)≥l0)⊕ (x0(IY ′

1
)≥l0)⊕ · · · ⊕ (xl

′−1
0 (IY ′

l′−1
)≥l0))⊕ (xl

′
0 (IY ′

l′
)≥l0))⊕ (xl

′+1
0 (IY ′

l′
)≥l0))⊕ · · ·

and so

h(IW , t) =

t−l0∑
i=0

h((IY ′
i
)≥l0 , t− i).

Although our resolutions are not in general minimal, we can in some cases say something about
minimal resolutions. For example, in the case above by Lemma 2.3 of [FMN], we have

βi,j,ℓ((IY ′
i
)≥l0) = βi,j,ℓ(IY ′

i
),

for each ℓ > l0 + j.
For another example, say the points pi are in P2, hence pi for i > 0 colinear with p0 not on that

line. Since the codimension is 2, the minimal free resolution of IW is of the form

0 → F1 → F0 → IW → 0.

But by Theorem 4.1 we have a minimal set of homogeneous generators (hence we know the graded
Betti numbers for F0 and so F0 itself up to graded isomorphism), and as above (i.e., by Theorem
3.1) we know the Hilbert function of IW . From this we know the graded Betti numbers of F1 and
hence F1 up to graded isomorphism.

6. Galaxies

As another application of our results we compute galactic Waldschmidt constants. In order to do
this we need to prove a lemma. Let X ⊂ Pn be a set of c points regarded as a reduced subscheme.
It is well known that reg(IX) = τ + 1 where τ is the least degree t such that the points impose
independent conditions on forms of degree t (i.e., such that h(IX , t) =

(
t+n
n

)
− c).

Lemma 6.1. Let H ⊂ Pn be a hyperplane and let X ⊂ Pn be a set of c + 1 points regarded as a
reduced subscheme, with exactly c of the points lying in H. Let X ′ = X∩H, then reg(IX′) = reg(IX).

Proof. Choose coordinates such that IH = (x0), where K[Pn] = K[x0, . . . , xn] and so K[H] =
K[x1, . . . , xn]. Let τ ′ = reg(IX′) − 1 and let τ = reg(IX) − 1. Thus the points of X ′ impose
independent conditions on forms of degree τ ′ in K[H], and hence also in K[x0, . . . , xn]. Let p be
the point of X not in H; up to choice of coordinates we can regard p as being general, hence it
imposes an additional independent condition. Thus τ ≤ τ ′. On the other hand, it follows from [FrL,
Corollary 3.3] and from [DG, Proposition 2.1] that τ ′ ≤ τ , hence τ = τ ′, so reg(IX′) = reg(IX). �

To state our result let G = G(n,N, e,N). Let G ⊂ Pn+N be the reduced Galactic inclic scheme
whose components are the elements of G; i.e., G is the reduced scheme theoretic union of the N
points of G and the

(
u
e

)
e-wise intersections of the associated star configuration S(n, e, u).

In order to compute α̂(IX), we will determine α((IX)(j)) for an unbounded sequence of values of
j. Our inductive procedure requires information about star configurations as a starting point. The
following result is from [BH].
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Theorem 6.2. Let 1 ≤ e ≤ n < u be integers. Let A ⊂ Pn be the reduced scheme theoretic union
of the linear varieties comprising the star configuration S(n, e, u). Then for each integer r > 0 we
have α(reA) = ru, α(IA) = u− e+ 1 and, if e = n, reg(IA) = u− n+ 1.

Finally we have

Theorem 6.3. Let G be a reduced galactic inclic scheme as above.

(a) Then

2

α̂(IG)
≤ ρ(IG)

and if in addition e = n, then

ρ(IG) ≤
u− n+ 1

α̂(IG)
.

(b) If K has characteristic 0, then

α̂(IG) =
N(u− e) + u

N(u− e) + e
.

Proof of Theorem 6.3. Let G = G(n,N, e,N ;S(n, e, u),H) and let the points of the galactic halo H
be p1, . . . , pN . LetG0 = S(n, e, u) = A ⊂ Pn, G1 = A+p1 ⊂ Pn+1, . . . , G = GN = A+p1+· · ·+pN ⊂
Pn+N .

(a) The bounds on ρ(IG) come from α(IG)/α̂(IG) ≤ ρ(IG) and, when e = n, ρ(IG) ≤ reg(IG)/α̂(IG)
[BH]. Since G spans Pn+N , we see 1 < α(IG), but G is contained in the span of Pn and N points,
each of which is contained in a hyperplane in Pn+N , so α(IG) ≤ 2; thus α(IG) = 2. And by Lemma
6.1 with e = n, reg(IG) = reg(IG0), but reg(IG0) = u− n+ 1 by Theorem 6.2.

(b) Now define the following sequence: a0 = re, a1 = ru, and for i ≥ 0, let ai+2 = 2ai+1−ai. It’s
easy to check that ai = iru− (i−1)re. In what comes below, for each i we regard IGi as an ideal in
K[Pn+i]. We begin by noting that a1 = α(Ia0G0). We will show by induction that ai+1 = α(IaiGi),
and hence that α(IaNGN

) = (N + 1)ru − Nre, so α̂(IGN
) = limr→∞((N + 1)ru − Nre)/(Nru −

(N − 1)re) = ((N + 1)u−Ne)/(Nu− (N − 1)e), as claimed.
To show that ai+1 = α(IaiGi) we will apply Corollary 3.5. The W of Corollary 3.5 is Gi; L0 = pi

and the Lj , j > 0 are the components of A and the points p1, . . . , pi−1; H0 is the linear span of Pn

and p1, . . . , pi−1; Pn there is Pn+i here; and l′ = lj = ai for all j. Moreover, k in the corollary is 0,
since L0 is a point. (Here there are no Hj for j > 0. Here l0 = ai.) The result of the corollary is

that α(aiGi) = ai+d, where d is the least j such that what is there called Y ′
j has α((IY ′

j
)(0,l0)) = l0.

But Y ′
j = (ai − j)Gi−1 (as long as ai − j ≥ 0), and (IY ′

j
)(0,l0) is just the truncation of IY ′

j
at degree

l0. Thus the least j such that α((IY ′
j
)(0,l0)) = l0 is the least j such that α((ai − j)Gi−1) ≤ ai.

But α((ai − j)Gi−1) = ai for j = ai − ai−1 by induction, and α((ai−1)Gi−1) < α((ai − j)Gi−1) for
j < ai − ai−1 by Lemma 3.4, so ai − ai−1 is the least j. Thus α(IaiGi) = ai + (ai − ai−1) = ai+1, as
claimed. �

In the case that N = 1, e = n and u = n+1, we can, up to choice of coordinates, regard G as the
coordinate vertices in Pn+1. In this case, u = n+1 so the ideal IG can be chosen to be a monomial

ideal and, in characteristic 0, we recover the known facts that α̂(IG) = n+2
n+1 and ρ(IG) = 2(n+1)

n+2 .

We note that the bound 2
α̂(IG) ≤ ρ(IG) is always better than the bound 1 ≤ ρ(IG), and the bound

ρ(IG) ≤ u−n+1
α̂(IG) is often better than the bound ρ(IG) ≤ n+N (for example, if the characteristic is

0 and 1 < n ≤ u ≤ 2n+N , then we have u−n+1
α̂(IG) < n+N).
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12, M-J Bertin, editor, Birkhäuser, Boston-Basel-Stutgart (1981).

[CHT] S. Cooper, B. Harbourne and Z. Teitler. Combinatorial bounds on Hilbert functions of fat points in projective
space, J. Pure Appl. Algebra 215:9 (2011) 2165–2179.

[D] H. Derksen. Hilbert series of subspace arrangements, J. Pure Appl. Algebra 209:1 (2007) 91–98.
[DG] E. Davis, A. V. Geramita. The Hilbert function of a special class of 1-dimensional Cohen-Macaulay graded

algebras, The Curves Seminar at Queen’s, Vol. X, Queen’s Papers in pure and Applied Mathematics, Vol.67
(1984), 1H-29H.

[DS] H. Derksen and J. Sidman. A sharp bound for the Castelnuovo-Mumford regularity of subspace arrangements,
Adv. Math. 172 (2002), no. 2, 151–157.

[DHST] M. Dumnicki, B. Harbourne, T. Szemberg and H. Tutaj-Gasińska. Linear subspaces, symbolic powers and
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