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Abstract

The paper deals with a second order integro-partial differential equation in Rn
with a nonlocal, degenerate diffusion term. Nonlocal conditions, such as the Cauchy
multipoint and the weighted mean value problem, are investigated. The existence
of periodic solutions is also studied. The dynamic is transformed into an abstract
setting and the results comes from an approximation solvability method. It combines
a Schauder degree argument with an Hartman-type inequality and it involves a
Scorza-Dragoni type result. The compact embedding of a suitable Sobolev space
in the corresponding Lebesgue space is the unique amount of compactness which is
needed in this discussion. The solutions are located in bounded sets and they are
limits of functions with values in finitely dimensional spaces.
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1 Introduction

This paper deals with the partial integro-differential equation

utt = cut + bu(t, ξ) + u(t, ξ)

∫
Ω

k(ξ, η)u(t, η)dη + h(t, u(t, ξ)) (1.1)
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where Ω ⊂ Rn (n ≥ 2) is an open, bounded domain with C1-boundary, b and c are given
constants, h : [0, T ]× R→ R is a continuous function and k ∈ W 2,1(Ω× Ω;R).
If the integral term is replaced by the usual Laplace operator ∆u, then according to the
values of c and b, (1.1) becomes the damped wave equation or the telegraph equation
or the Klein-Gordon equation and it is a model for many phenomena. For example, it
governs the propagation of electro-magnetic waves in an electrically conducting medium,
the motion of a string or a membrane with external damping, the evolution of visco-elastic
fluids influenced by Maxwell theory and the heat propagation in a thermally conducting
medium (see e.g. [15, 18] and the references therein).
The classical diffusion equation implies an infinite velocity propagation of information;
namely, a change in temperature or concentration in some point of the domain is instan-
taneously felt everywhere. In recent years, to circumvent this drawback, many authors
have proposed alternatives to describe heat and mass transfer. A continuous diffusion
coefficient which vanishes when u = 0 is assumed in [12], to obtain a degenerate process
with finite speed of propagation. Alternatively, a fractional diffusion term is considered
in [9], instead of the standard Laplace operator.
Diffusion operators such as the integral contained in (1.1) introduce a memory effect in the
equation and are able to capture long distance interactions into the process that occur in
a number of applications; hence they are frequently preferable than the classical punctual
diffusions such as Laplace operator. As a consequence, several investigations recently
appeared, for first order dynamics, which include an integral diffusion term (see e.g. [14],
[16] and references therein). As far as we know, this is the first paper investigating a
nonlocal diffusion second order equation.
The presence of u as a non-constant diffusion coefficient (similarly as in [20]) means that
the diffusion has a degenerate nature as in [12]. This is an expected behavior in several
contexts. This term allows a super-linear growth of the right hand side of the equation,
also often appearing in many applications.
The main aim of this paper is to start a theory on some important classes of solutions of
(1.1). We assume the following conditions

(1) the partial derivative ∂h
∂z

: [0, T ] × R → R is continuous and there is a positive
constant N , such that∣∣∣∣∂h(t, z)

∂z

∣∣∣∣ ≤ N for all (t, z) ∈ [0, T ]× R.

(2) max{sup(ξ,η)∈Ω×Ω |k(ξ, η)|, sup(ξ,η)∈Ω×Ω ‖Dk(ξ, η)‖Rn} = K <∞,
where the symbol D stands for the derivative (i.e. the gradient) with respect to the
variables in the vector ξ ∈ Ω.

(3) b ≥ N+
√

6δK|Ω| where |Ω| denotes the Lebesgue measure of Ω and δ = max
t∈[0,T ]

|h(t, 0)|.

Example 1 The generalized mean curvature function h(t, z) = zβ

(1+z2)α
verifies (1) when

β ≥ 1, α > β−1
2
. In this case δ = 0 in (3).

A classical kernel describing dispersion is the Laplace kernel k(ξ, η) = 1
2d
e−‖ξ−η‖d, for

a given constant d (see [24]). It verifies (2) for any Ω ⊂ Rn.
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First we study the associated periodic problem
utt = cut + bu(t, ξ) + u(t, ξ)

∫
Ω

k(ξ, η)u(t, η)dη + h(t, u(t, ξ))

u(0, ξ) = u(T, ξ)

ut(0, ξ) = ut(T, ξ).

(1.2)

The existence of double periodic solutions is a classical result for the telegraph or Klein-
Gordon equation. On the contrary, just few results are known for periodic solutions having
a periodic derivative with respect to t (see [1, 10, 17, 25, 26]).
Then we consider nonlocal boundary conditions such as the Cauchy multipoint problem

utt = cut + bu(t, ξ) + u(t, ξ)

∫
Ω

k(ξ, η)u(t, η)dη + h(t, u(t, ξ))

u(0, ξ) =
k∑
i=1

αiu(ti, ξ)

u(T, ξ) =
k∑
i=1

βiu(ti, ξ)

(1.3)

with αi, βi ∈ R, i = 1, . . . , k, where 0 ≤ t1 < · · · < tk ≤ T ; and the mean value problem,

utt = cut + bu(t, ξ) + u(t, ξ)

∫
Ω

k(ξ, η)u(t, η)dη + h(t, u(t, ξ))

u(0, ξ) =
1

T

∫ T

0

p1(t)u(t, ξ) dt

u(T, ξ) =
1

T

∫ T

0

p2(t)u(t, ξ) dt

(1.4)

with p1, p2 ∈ L1([0, T ),R).
In the last two cases we also need, respectively, that:

(4)
∑k

i=1 |αi| ≤ 1 and
∑k

i=1 |βi| ≤ 1.

(5)
‖p1‖L1([0,T ],R)

T
≤ 1 and

‖p2‖L1([0,T ],R)

T
≤ 1.

Notice that the homogeneous Dirichlet condition in the variable t, i.e. u(0, ξ) = u(T, ξ) =
0 is included in our discussion since it is, for instance, a special case of problem (1.3)
when αi = βi = 0 for all i = 1, .., k. In addition, by exchanging the role of t and x,
for Ω = [0, B] and c = 0, the Dirichlet condition in x (see, e.g., [23]) can be studied as
well, for a suitable equation. Finally we remark that, in all previous problems (1.2), (1.3)
and (1.4), we can further assume that u satisfies the Dirichlet condition in x, i.e. that
u/∂Ω = 0.
Here are our main results:

Theorem 2 Under the assumptions (1)-(3) the problem (1.2) has at least a solution.

Theorem 3 Under the assumptions (1)-(4) the problem (1.3) has at least a solution.

Theorem 4 Under the assumptions (1)-(3) and (5) the problem (1.4) has at least a
solution.
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We assume that u(t, ·) belongs to the Sobolev space H := W 1,2(Ω) for all t ∈ [0, T ]
and we reformulate equation (1.1) in Section 2 in this abstract context (see (2.1)). Since
H is a separable Hilbert space, we can introduce an orthonormal basis (see Section 3 for
its definition) and hence a sequence of finitely dimensional subspaces Hn.
Now we briefly account of the techniques for attaching, in Section 4.1, the abstract periodic
problem (4.1). We first introduce, in (4.6), a sequence of approximating problems (Pn)
with values in the finite dimensional space Hn. A suitable combination of Schauder degree
arguments and Hartman-type inequalities allows to solve each (Pn). A Scorza-Dragoni
type result (see Theorem 9) is involved, in this part, for getting the global continuity of
the r.h.s. in the equation in (4.6). A limiting argument then leads to a solution of (4.6).
The compact embedding of W 1,2(Ω) in the Banach space L2(Ω) is the unique amount of
compactness which is needed in this discussion. A similar technique, in Section 4.2, is
introduced for solving the abstract nonlocal problem (4.14) which is the base for the study
of (1.3) and (1.4). In conclusion, the main idea developed in this part is an approximation
solvability method based on compact embedded Gel’fand triples with a Hilbert space and
on Hartman-type conditions. As a consequence, the solutions are limits of functions with
values in finite-dimensional subspaces. They are also localized in suitable bounded sets in
the sense that ‖u(t, ·)‖H ≤ R for some constant R which does not depend on t. The proof
of Theorems 1.2, 1.3 and 1.4 is in Section 5. When further assuming, in (1.2), (1.3) and
(1.4), that u/∂Ω = 0, then we need to replace W 1,2(Ω) with its closed subspace W 1,2

0 (Ω).
Section 3 contains notation and some preliminary results.

Some non-local problems, treated with different techniques, recently appeared in [5],
[6], [7] and [19]. They are all associated to first order dynamics; the first, in particular, is
based on an approximation technique similar to the one used in this paper. To the best of
our knowledge, this is the first application of this technique to the study of second order
dynamics.

2 Abstract formulation of the problem

In this section we transform the partial integro-differential equation (1.1) into an abstract
ordinary differential equation in a suitable infinite dimensional framework. By means of
this reformulation we will prove in Section 5 the existence of a solution, u : [0, T ]×Ω→ R,
of (1.1), which is twice differentiable with respect to t, with an absolutely continuous
derivative and a second derivative belonging to L1([0, T ],W 1,2(Ω,R)), such that at every
value t ∈ [0, T ] the function u(t, ·) belongs to the Sobolev space W 1,2(Ω,R).
The approximation solvability method we are going to show requires the introduction of
an Hilbert space compactly embedded in a Banach space.
To this aim, let H = W 1,2(Ω,R) and E = L2(Ω,R). It is well known that H is a separable
Hilbert space which is compactly embedded in E. Denoting with ‖ · ‖2 the norm in L2,
for every w ∈ H we put

‖w‖H =

√∫
Ω

(
w2(ξ) + ‖Dw(ξ)‖2

Rn
)
dξ =

(
‖w‖2

2 + ‖Dw‖2
2

) 1
2 .

Considering for each t ∈ [0, T ], the map x : [0, T ] → H defined as x(t) = u(t, ·), we can
substitute (1.1) with the following problem

x′′(t) = F (t, x(t), x′(t)), for a.e. t ∈ [0, T ], (2.1)
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where F : [0, T ]×H ×H → H, F (t, w, v) = cv + bw + g(w) + h(t, w) with

g : H → H, g(w)(ξ) = w(ξ)

∫
Ω

k(ξ, η)w(η) dη,

h : [0, T ]×H → H, h(t, w)(ξ) = h(t, w(ξ)).

The map F : [0, T ]×H ×H → H is well defined. Indeed for w ∈ H

‖g(w)‖2
H = ‖g(w)‖2

2 + ‖Dg(w)‖2
2.

By condition (2) we have that

‖g(w)‖2
2 =

∫
Ω

∣∣∣∣w(ξ)

(∫
Ω

k(ξ, η)w(η) dη

)∣∣∣∣2 dξ ≤ K|Ω|‖w‖4
2.

Moreover,

Dg(w)(ξ) = Dw(ξ)

(∫
Ω

k(ξ, η)w(η) dη

)
+ w(ξ)

(∫
Ω

Dk(ξ, η)w(η) dη

)
, for a.a. ξ ∈ Ω.

Hence, again by (2) it follows that g(w) ∈ H.
To prove that the map h is well defined as well, first of all, notice that, if we denote with
h′2(t, z) = ∂h(t,z)

∂z
, from (1) it follows that

|h(t, z)| = |h(t, 0) + h′2(t, η) z| ≤ |h(t, 0)|+N |z|, (2.2)

for all (t, z) ∈ [0, T ]× R, where η is a number between 0 and z. Moreover,

Dh(t, w(ξ)) = h′2(t, w(ξ))Dw(ξ) for a.a. ξ ∈ Ω.

Thus, by (1), h(t, w) ∈ H for any t ∈ [0, T ] and w ∈ H.

3 Solution technique

We study problem (2.1) localizing the solutions as a by product of the approximation
method. Precisely, we consider the abstract problem (2.1) in a separable Hilbert space
(H, ‖ · ‖).
Throughout the paper, I represents the real interval [0, T ]. Given A ⊂ H, let A

H
be the

closure of A with respect to the norm of H, while BR
H denotes the open ball BR = {w ∈

H : ‖w‖ < R}. By Hω and 〈·, ·〉 we denote respectively the space H endowed with the
weak topology and the inner product in H.
By C0(I,H), C1(I,H) and L1(I,H) we mean respectively the Banach space of all contin-
uous functions x : I → H with norm

‖x‖0 = max
t∈I
‖x(t)‖,

the Banach space of all functions x : I → H with norm

‖x‖C1 = max{‖x‖0, ‖x′‖0}

and the Banach space of summable functions with norm

‖x‖1 =

∫ T

0

‖x(t)‖ dt.
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It is well known that {xj} → x0 in C1(I,H) when j →∞ implies the point-wise conver-
gence of {xj} to x0 and of {x′j} to x′0.
We recall the following characterization of weak convergence in the space of continuous
functions.

Theorem 5 (see [8]) A sequence of continuous functions {xn} ⇀ x ∈ C(I;H) if and
only if

1. there exists N > 0 such that, for every n ∈ N and t ∈ I, ‖xn(t)‖ ≤ N ;

2. for every t ∈ I, xn(t) ⇀ x(t).

It follows that {xn}⇀ x ∈ C(I;H) implies that {xn}⇀ x ∈ L1(I;H).
Let S ⊆ R be a measurable subset. A subset A ⊂ L1(S,H) is called uniformly integrable
if for every ε > 0 there is δ > 0 such that Ω ⊂ S and µ(Ω) < δ implies∥∥∥∥∫

Ω

f dµ

∥∥∥∥ < ε for all f ∈ A,

where µ is the Lebesgue measure on R.
Consider the space of all functions x : I → H differentiable with an absolutely continuous
derivative x′ and a second derivative x′′ belonging to L1(I,H). It is well known (see e.g.
[4]) that this space can be identified with the Sobolev space W 2,1(I,H) and the embedding
W 2,1(I,H) ↪→ C1(I,H) is continuous.
We look for classical solutions x ∈ W 2,1(I,H), i.e. functions that satisfies the equation
(2.1) for a.a. t ∈ I and we obtain them by means of an approximation solvability method.
To this aim we consider an orthonormal basis {ei} of H: denoting with Hn the subspace
with basis {e1, · · · , en}, we approximate the original problem by a family of auxiliary
problems by means of the natural projections Pn : H → Hn (n ∈ N) (see (4.6) in Section
4). Then, by a limit argument, we obtain the existence of a solution for the original
problem.
Some of the main properties of the projection Pn are contained in the following.

Lemma 6 The projections Pn : H → Hn satisfies the following properties:

(a) Pn : Hω → Hn is continuous;

(b) if gn ⇀ g in H then Pngn ⇀ g in H.

Proof.
(a) We have that Pnw =

∑n
k=1〈ek, w〉ek for every w ∈ H, thus by the definition of weak

convergence Pnwj → Pnw0 for wj ⇀ w0.
(b) For every w ∈ H, due to Pnw → w in H, we have

〈Pngn − g, w〉 = 〈Pngn − Png, w〉+ 〈Png − g, w〉 = 〈gn − g, Pnw〉+ 〈Png − g, w〉
= 〈gn − g, Pnw − w〉+ 〈gn − g, w〉+ 〈Png − g, w〉 → 0

and we get the thesis.
We solve the family of approximating auxiliary problems using a continuation principle
in a Banach space F . Namely,

Theorem 7 (see e.g. [2]) Let Q be a closed, convex subset of a Banach space F with
nonempty interior and T : Q × [0, 1] → F be a compact map having a closed graph such
that T (Q, 0) ⊂ intQ and T (·, λ) is fixed point free on the boundary of Q for all λ ∈ [0, 1).
Then there exists y ∈ F such that y = T (y, 1).
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The continuation principle consists into associating to the problem to be solved a one-
parameter family of linearized problems. One f the conditions for its application requires
in particular that no linearized problem has solutions tangent to the boundary of a given
non-empty closed bounded set. We apply the mentioned continuation principle in the
Banach space C1(I,Hn). It involves a suitable set Qn ⊆ C1(I,Hn) of candidate solutions
of the approximating finite dimensional problem. We ensure that the candidate solutions
are non tangent to the boundary of Qn by means of Hartman-type conditions (see (4.3)
below) and the following result based on Nagumo conditions.

Theorem 8 (see [21, Lemma 2.1]) Let ψ : [0,+∞)→ [0,+∞) be a continuous and non
decreasing function, with

lim
s→∞

s2

ψ(s)
ds =∞, (3.1)

and R be a positive constant. Then there exists a positive constant B such that if x ∈
W 2,1(I,H) is such that ||x′′(t)|| ≤ ψ(||x′(t)||) for a.a. t ∈ I and ||x(t)|| ≤ R for every
t ∈ I, it holds ||x′(t)|| ≤ B for every t ∈ I.

In [21] the result is given for x ∈ C2(I,H). It is easy to prove (see, e.g., [3]) that the
statement holds also for x ∈ W 2,1(I,H).
For our purposes it is sufficient to assume strictly localized Hartman-type conditions. This
restriction requires an approximation argument based on a Scorza-Dragoni type result.
The following theorem is a special case of [13, Proposition 7.11].

Theorem 9 Let g : I × Rp → Rn be such that

i) g(·, w) is measurable for every w ∈ Rp;

ii) g(t, ·) is continuous for a.e. t ∈ I.

Then there exists a decreasing sequence of open subsets {θm} of I such that for every
m ∈ N, µ(θm) < 1

m
and g is continuous in (I\θm)× Rp.

Finally, notice that the assumption of the compactness of the operator T in Theorem 7 is
quite a difficult assumption to check in infinite dimensional Banach spaces. We overcome
this difficulty considering throughout the paper the Hilbert space H compactly embedded
in a Banach space (E, ‖ · ‖E) with the relation of norms:

‖w‖E ≤ q‖w‖ for all w ∈ H, (3.2)

for some q > 0.

4 Abstract existence results

To obtain existence results of solutions of equation (2.1) we consider at first an abstract
equation associated to a periodic condition and to a nonlocal boundary condition.
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4.1 Periodic boundary conditions

In this subsection we study the abstract periodic problem:
x′′(t) = f(t, x(t), x′(t)), for a.e. t ∈ [0, T ],

x(0) = x(T ),

x′(0) = x′(T )

(4.1)

under the following assumptions:

(F1) for every x, y ∈ H the function f(·, x, y) : I → H is measurable;

(F2) for a.e. t ∈ I the function f(t, ·, ·) : H×H → H is continuous from (H×H) to Hω;

(F3) for a.e. t ∈ I the function f(t, ·, ·) : H × H → H is continuous in the topology of
the space E;

(F4) there exist a positive constant R and a function β : [0,+∞)→ [0,+∞) continuous
and non decreasing satisfying (3.1) such that

‖f(t, x, y)‖ ≤ β(‖y‖) for a.e. t ∈ I, every x, y ∈ H with ‖x‖ ≤ R. (4.2)

By classical solutions of problem (4.1), we mean functions x ∈ W 2,1(I,H) such that
x(0) = x(T ), x′(0) = x′(T ) and

x′′(t) = f(t, x(t), x′(t)) for a.e. t ∈ I.

Theorem 10 Let conditions (F1) − (F4) hold. In addition, assume that for a.e. t ∈ I,
for all x, y ∈ H with ‖x‖ = R and 〈x, y〉 = 0 it holds

〈x, f(t, x, y)〉+ ‖y‖2 ≥ 0. (4.3)

Then problem (4.1) admits a solution with values in BR
H .

The proof of Theorem 10 is based on the following results of existence and characterization
of the solution for finite dimensional linear problems.

Lemma 11 Given a function g ∈ L1([0, T ],Rn×Rn) and the matrix A =

(
0 I
I 0

)
, where

I denotes the identity in the space Rn, the problem{
z′(t) + Az(t) = g(t) for a.e. t ∈ [0, T ]

z(0) = z(T ),
(4.4)

has a unique solution given by

z(t) = eAt(Id− eAT )−1

∫ T

0

eA(T−s)g(s)ds+

∫ t

0

eA(t−s)g(s)ds, (4.5)

where eAt denotes the semigroup generated by A and Id denotes the identity in the space
Rn × Rn.
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Proof. By the definition of the matrix A, the associated homogeneous problem has only
the trivial solution, then it follows that the linear operator Id− eAT is invertible and the
claimed result follows easily.

The next result trivially follows.

Lemma 12 Given a function f ∈ L1([0, T ],Rn), a function x ∈ W 2,1([0, T ];Rn) is a
solution of the second order problem

x′′(t)− x(t) = f(t) for a.e. t ∈ [0, T ]

x(0) = x(T ),

x′(0) = x′(T ).

if and only if the vector valued function z : [0, T ] → Rn × Rn, z(t) = (x(t), x′(t)) is a
solution of the periodic first order problem (4.4) with g(t) = (0, f(t)).

Proof of Theorem 10.
First of all, let us consider the map ψ : [0,+∞)→ [0,+∞) defined as ψ(s) = 2β(s)+R+1,
where β and R are the map and the positive constant defined in condition (F4). Since
β is a continuous and non decreasing function, the function ψ is continuous and non
decreasing as well and there exists lims→∞ β(s) = l ∈ (0,∞]. Therefore, by (F4)

lim
s→∞

s2

ψ(s)
= lim

s→∞

s2

β(s)(2 + R+1
β(s)

)
= +∞,

both when l is finite or infinite. Hence by Theorem 8 there exists a constant B > 0 such
that for every x ∈ W 2,1(I,H) with ||x′′(t)|| ≤ ψ(||x′(t)||) for a.a. t ∈ I and ||x(t)|| ≤ R
for every t ∈ I, it holds ||x′(t)|| ≤ B for every t ∈ I.
From now on, the proof splits into several steps.

Step 1. Introduction of a sequence of problems in a finite dimensional space.
For every n ∈ N, let us consider the problem

x′′(t) = Pnf(t, x(t), x′(t)), for a.e. t ∈ I,
x(0) = x(T ),

x′(0) = x′(T ).

(4.6)

We shall prove that problem (4.6) has a solution in the closed, convex set with nonempty
interior

Qn = {q ∈ C1(I,Hn) : ‖q(t)‖ ≤ R, ‖q′(t)‖ ≤ 2B for every t ∈ I}, (4.7)

where R > 0 and B > 0 are defined as above.
Fix ε ∈ (0, R). According to Urisohn lemma, there exists a continuous function µ : H →
[0, 1] such that µ ≡ 0 on {w ∈ H : ‖w‖ ≤ R − ε or ‖w‖ ≥ R + ε} and µ ≡ 1 on
{w ∈ H : R− ε

2
≤ ‖w‖ ≤ R + ε

2
}. It follows that φ : H → H defined by

φ(w) =

{
µ(w) w

‖w‖ R− ε ≤ ‖w‖ ≤ R + ε

0 otherwise
(4.8)

is well-defined, continuous, bounded on all H and ‖φ(w)‖ ≤ 1 for every w ∈ H.
Since, by Lemma 6, Pn : Hω → Hn is continuous and f satisfies (F1)-(F4), it is easy to
prove that Pnf/Hn×Hn : I × Hn × Hn → Hn satisfies (i)-(ii) of Theorem 9. Thus there
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exists a decreasing sequence of open subset {θm} of I such that µ(θm) < 1
m

and Pnf is
continuous on (I\θm)×Hn ×Hn for every m ∈ N. Now, by means of the sequence {θm}
we can construct a family of approximating problems of (4.6).

Step 2. Solvability of a sequence of traslated problems.
For every m ∈ N, let us consider the problem

x′′(t)− x(t) = −x(t) + Pnf(t, x(t), x′(t)) + φ(x(t))(β(‖x′(t)‖)χθm(t) + 1
m

),

for a.e. t ∈ I,
x(0) = x(T ),

x′(0) = x′(T ).

(4.9)

Fix q ∈ Qn and λ ∈ [0, 1], by Lemma 12 the linear periodic problem
x′′(t)− x(t) = −λq(t) + λPnf(t, q(t), q′(t)) + φ(q(t))(β(‖q′(t)‖)χθm(t) + 1

m
),

for a.e. t ∈ I,
x(0) = x(T )

x′(0) = x′(T )

(4.10)

has a unique solution such that z(t) = (x(t), x′(t)), t ∈ I verifies (4.5) with g : I → Rn×Rn

defined as

g(t) =

(
0,−λq(t) + λPnf(t, q(t), q′(t)) + φ(q(t))

(
β(‖q′(t)‖)χθm(t) +

1

m

))
. (4.11)

We can then define the map T mn : Qn × [0, 1] → C1(I,Hn) that associate to (q, λ) ∈
Qn × [0, 1] the solution T mn (q, λ) of (4.10). It is clear that x is a solution of (4.9) if and
only if x = T mn (x, 1). We then apply Theorem 7 to prove the existence of fix points of
T mn (·, 1).

(a) We show that the multimap T mn has a closed graph in the space Qn×[0, 1]×C1(I,Hn).
Assume that (qj, λj, xj) → (q0, λ0, x0) ∈ Qn × [0, 1] × C1(I,Hn), where xj = T mn (qj, λj),
in particular, taking the limit as j → ∞, we get x0(0) = x0(T ) and x′(0) = x′(T ). From
(F2) and the continuity of φ, β and Pn it follows that, for a.e. t ∈ I, the sequence

xj(t)− λjqj(t) + λjPnf(t, qj(t), q
′
j(t)) + φ(qj(t))

(
β(‖q′j(t)‖)χθm(t) +

1

m

)
converges to

x0(t)− λ0q0(t) + λ0Pnf(t, q0(t), q′0(t)) + φ(q0(t))

(
β(‖q′0(t)‖)χθm(t) +

1

m

)
.

Moreover, since convergent sequences are bounded, there exists a positive constant D
such that ‖xj(t)‖ ≤ D for every t ∈ [0, T ]. Thus, according to the definition of Qn and to
(F4) we obtain that

||xj(t)− λjqj(t) + λPnf(t, qj(t), q
′
j(t)) + φ(qj(t))(β(‖q′j(t)‖)χθm(t) + 1

m
)|| ≤

D +R + 2β(2B) + 1.
(4.12)

Therefore, Lebesgue’s dominated convergence Theorem implies that the sequence

x′j(t) = x′j(0) +

∫ t

0

[xj(s)− λjqj(s)] ds+

λj

∫ t

0

[
Pnf(s, qj(s), q

′
j(s)) + φ(qj(s))

(
β(‖q′j(s)‖)χθm(s) +

1

m

)]
ds
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converges to

x′0(0)+

∫ t

0

[
x0(s)− λ0q0(s) + λ0Pnf(s, q0(s), q′0(s)) + φ(q0(s))

(
β(‖q′0(s)‖)χθm(s) +

1

m

)]
ds

for every t ∈ I. Thus, the uniqueness of the limit yields, for every t ∈ I,

x′0(t) = x′0(0)+

∫ t

0

[
x0(s)− λq0(s) + λ0Pnf(s, q0(s), q′0(s)) + φ(q0(s))

(
β‖q′0(s)‖)χθm(s) +

1

m

)]
ds,

i.e. that x0 = T mn (λ0, q0). We have thus proved the closure of the graph.

(b) We prove that T mn is a compact map, i.e. that T mn (Qn × [0, 1]) is relatively compact.
Again by Lemma 12 for any q ∈ Qn and λ ∈ [0, 1] the unique solution x = T mn (q, λ)
of (4.10) is such that z(t) = (x(t), x′(t)) satisfies (4.5) with g defined in (4.11). Thus,
according to (F4), since ||A|| = 1 we get that, for a.e. t ∈ I,

max{||x(t)||, ||x′(t)||}
≤ ||z(t)|| ≤ [eT [||(Id− eAT )−1||) + 1]eT (RT + β(2B)T + β(2B) + T ) .

(4.13)

Hence {x′ : x ∈ T mn
(
Qn × [0, 1]

)
} and T mn

(
Qn × [0, 1]

)
are bounded in C(I,Hn). From

(4.10) it follows that the set {x′′ : x ∈ T mn
(
Qn × [0, 1]

)
} is bounded in L1(I,Hn), thus

{x′ : x ∈ T mn
(
Qn× [0, 1]

)
} is equicontinuous. Moreover T mn

(
Qn× [0, 1]

)
is equicontinuous

too. By Ascoli-Arzelá Theorem we get the conclusion.

(c) We show that Tmn (Qn, 0) ⊂ int Qn.
Consider q ∈ Qn and let x = T mn (q, 0). Then x is a solution of the periodic problem

x′′(t)− x(t) = φ(q(t))(β(‖q′(t)‖)χθm(t) + 1
m

), for a.e. t ∈ I,
x(0) = x(T )

x′(0) = x′(T ).

Similarly as in (b), we can prove that, for a.e. t ∈ I,

max{||x(t)||, ||x′(t)||} ≤ ||z(t)|| ≤ [eT [||(Id− eAT )−1||) + 1]eT
(
β(2B)

1

m
+
T

m

)
.

Thus, we obtain that T mn (Qn×{0}) ⊂ int Qn for every m ≥ m, with m sufficiently large.

(d) We prove that T mn (·, λ) is fixed point free on the boundary of Qn for all λ ∈ [0, 1).
Since we already showed that T mn (·, 0) has no fixed points on ∂Qn, it remains to prove
this property for T mn (·, λ) with λ ∈ (0, 1).
We reason by contradiction assuming the existence of (q, λ) ∈ ∂Qn × (0, 1) such that
q = T mn (q, λ). Then there exists t0 ∈ [0, T ] such that ‖q(t0)‖ = R or ‖q′(t0)‖ = 2B. Since
for a.a. t ∈ I and every λ ∈ [0, 1] we have

‖q′′(t)‖ =

∥∥∥∥(1− λ)q(t) + λPnf(t, q(t), q′(t)) + φ(q(t))

(
β(‖q′(t)‖)χθm(t) +

1

m

)∥∥∥∥
≤ R + 2β(‖q′(t)‖) + 1 = ψ(‖q′(t)‖)

with ‖q(t)‖ ≤ R for every t ∈ I and ψ satisfying (3.1), Theorem 8 implies that ‖q′(t)‖ ≤ B
for every t ∈ I. Hence it must hold ‖q(t0)‖ = R. Consider now the function v : [0, T ]→ R
defined as v(t) = 1

2
(‖q(t)‖2 −R2). Then clearly v ∈ C1(I,R) and it has a local maximum

point in t0. If t0 ∈ (0, T ), then v′(t0) = 0. If t0 /∈ (0, T ) since q satisfies the boundary
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conditions, then both 0 and T are local maximum points for v. Hence v′(0) ≤ 0 and
v′(T ) ≥ 0. Since v′(t) = 〈q(t), q′(t)〉 for every t, we then get

0 ≥ v′(0) = 〈q(0), q′(0)〉 = 〈q(T ), q′(T )〉 = v′(T ) ≥ 0

i.e. v′(0) = v′(T ) = 0. Therefore without loss of generality, we may assume t0 ∈ (0, T ] and
〈q(t0), q′(t0)〉 = 0. Moreover there exists h > 0 such that v′(t0−h) ≥ 0 and ‖q(s)‖ ≥ R− ε

2

for every s ∈ [t0 − h, t0]. Therefore, for a.e. t ∈ [t0 − h, t0], there exists

v′′(t) = (1−λ)‖q(t)‖2+‖q′(t)‖2+λ〈q(t), Pnf(t, q(t), q′(t))〉+
(
χθm(t)β(‖q′(t)‖) +

1

m

)
‖q(t)‖.

Consequently,

0 ≥ v′(t0)− v′(t0 − h)

=

∫ t0

t0−h
[(1− λ)‖q(s)‖2 + ‖q′(s)‖2 + λ〈q(s), Pnf(s, q(s), q′(s))〉+

(χθm(s)β(‖q′(s)‖) + 1
m

)‖q(s)‖]ds

=

∫
[t0−h,t0]∩θm

[(1− λ)‖q(s)‖2 + ‖q′(s)‖2 + λ〈q(s), Pnf(s, q(s), q′(s))〉+

(β(‖q′(s)‖) + 1
m

)‖q(s)‖]ds+∫
[t0−h,t0]\θm

[(1− λ)‖q(s)‖2 + ‖q′(s)‖2 + λ〈q(s), Pnf(s, q(s), q′(s))〉+ 1
m
‖q(s)‖]ds

≥
∫

[t0−h,t0]∩θm
[‖q(s)‖(−‖f(s, q(s), q′(s))‖+ β(‖q′(s)‖)) + 1

m
‖q(s)‖]ds

+

∫
[t0−h,t0]\θm

[‖q′(s)‖2 + λ〈q(s), Pnf(s, q(s), q′(s))〉+ 1
m
‖q(s)‖]ds.

From condition (F4) we get

0 ≥
∫

[t0−h,t0]∩θm
[‖q(s)‖(−‖f(s, q(s), q′(s))‖+ β(‖q′(s)‖)) + 1

m
‖q(s)‖]ds

+

∫
[t0−h,t0]\θm

[‖q′(s)‖2 + λ〈q(s), Pnf(s, q(s), q′(s))〉+ 1
m
‖q(s)‖]ds

≥ 1
m

∫
[t0−h,t0]∩θm ‖q(s)‖ds

+

∫
[t0−h,t0]\θm

[‖q′(s)‖2 + λ〈q(s), Pnf(s, q(s), q′(s))〉+ 1
m
‖q(s)‖]ds

>

∫
[t0−h,t0]\θm

[‖q′(s)‖2 + λ〈q(s), Pnf(s, q(s), q′(s))〉+ 1
m
‖q(s)‖]ds.

Clearly, t0 ∈ θm implies, for h sufficiently small, [t0 − h, t0] \ θm = ∅ thus a contradiction.
On the other hand, if t0 6∈ θm, we consider the function g : [0, T ]→ R defined as:

g(s) = ‖q′(s)‖2 + λ〈q(s), Pnf(s, q(s), q′(s))〉+
1

m
‖q(s)‖.

Notice that the function ` : [0, 1]→ R

`(λ) = λ〈q(t0), f(t0, q(t0), q′(t0))〉+ ‖q′(t0)‖2
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is monotone on [0, 1], thus (4.3), q ∈ Qn, ‖q(t0)‖ = R and 〈q(t0), q′(t0)〉 = 0 imply that
g(t0) ≥ R

m
. Since, according to Theorem 9, g is continuous on [0, T ] \ θm, for h sufficiently

small we have g(t) > 0 for every t ∈ [t0 − h, t0] \ θm and we get again a contradiction.
Hence, Theorem 7 for any m ∈ N guarantees the existence of xm ∈ W 2,1(I,Hn) ∩ Qn

solution of problem (4.9).

Step 3. Solvability of the sequence of finite dimensional problems.
For any m ∈ N let xm be the solution of problem (4.9) obtained in Step 2. Reasoning as in
(b), inequality (4.13) implies that the sequence {xm} has a subsequence, still denoted as
the sequence, that converges to x ∈ Qn in C1(I,Hn) and x′′m ⇀ x′′ in L1(I,Hn). Notice,
moreover, that since φ is bounded, β is continuous, lim

m→∞
χθm(t) = 0 for every t /∈ ∩∞m=1θm,

and µ (∩∞m=1θm) = 0, it follows that

φ(xm(t))(β(x′m(t))χθm(t) + 1/m)→ 0, for a.a. t ∈ [0, T ].

Consequently, a standard limit argument implies that, for every n ∈ N, there exists
xn ∈ Qn solution of (4.6).

Step 4. Solvability of problem (4.1).
For any n ∈ N let xn be the solution of the problem (4.6) obtained in Step 3. According
to (F4), we get that for a.e. t ∈ I and every n ∈ N, ‖f(t, xn(t), x′n(t))‖ ≤ β(2B). Thus,
denoting by fn(t) = f(t, xn(t), x′n(t)), we get that the sequence {fn} is bounded and
uniformly integrable in L1(I,H) and the set {fn(t)} is bounded for a.e. t ∈ I. Hence by
the reflexivity of the space H, the sequence {fn} is relatively weakly compact in L1(I,H)
(see [11]). W.l.o.g. assume that fn ⇀ f0 ∈ L1(I,H). Lemma 6 implies then that

x′′n = Pnfn ⇀ f0 ∈ L1(I,H).

Since ‖x′n(t)‖ ≤ 2B for every t ∈ I, w.l.o.g. we can assume that

x′n(0) ⇀ γ0 ∈ H.

Define y0(t) := γ0 +
∫ t

0
f0(s) ds, t ∈ I. It is easy to see that

x′n(t) = x′n(0) +

∫ t

0

x
′′

n(s) ds ⇀ y0(t)

for all t ∈ I. Therefore, from Theorem 5, x′n ⇀ y0 in C(I,H). Consequently, x′n(0) =
x′n(T ) ⇀ y0(T ) i.e. y0(0) = y0(T ). Moreover y0 is differentiable and y′0(t) = f0(t) for a.a.
t ∈ I. Now, notice that the weak convergence of x′n to y0 in C(I,H) implies the weak
convergence of x′n in L1(I,H), and that ‖xn(t)‖ ≤ R for every t ∈ I and n ∈ N. Hence,
denoting by

x0(t) = x0(0) +

∫ t

0

y0(s)ds,

for some suitable x0(0) ∈ H, analogously to the above reasoning, we can prove that
xn ⇀ x0 in C(I,H) with x0(0) = x0(T ). Therefore x0 ∈ W 2,1(I,H), x′0(t) = y0(t) for
every t ∈ I and x′′0(t) = f0(t) for a.a. t ∈ I.
By the Mazur Lemma, there exists a sequence of convex combinations hn =

∑∞
k=n θnkfk

which converges to x′′0 in L1(I,H) , with θnk ≥ 0,
∑∞

k=n θnk = 1 and for every n there exists
k0(n) such that θnk = 0 for k > k0(n). The convergence of hn to x′′0 in L1(I,H) implies its
convergence almost everywhere, i.e. fn(t)→ x′′0(t) inH for a.a. t ∈ I, thus by the compact
embedding (3.2) we obtain fn(t) → x′′0(t) in E for a.a. t ∈ I. Moreover, according to
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Theorem 5 we have xn(t) → x0(t) and x′n(t) → x′0(t) in E for every t ∈ I and from (F3)
we get f(t, xn(t), x′n(t))→ f(t, x0(t), x′0(t)) in E. Hence fn(t)→ f(t, x0(t), x′0(t)) for a.a.
t ∈ I. The uniqueness of the limit implies x′′0(t) = f(t, x0(t), x′0(t)) a.e. in I and the
theorem is proved.

4.2 Nonlocal boundary conditions

To study problems (1.3) and (1.4) we consider the following abstract problem:
x′′(t) = f(t, x(t), x′(t)), for a.e. t ∈ [0, T ],

x(0) = Mx,

x(T ) = Lx

(4.14)

under the conditions (F1)-(F4) of Section 4.1 and we assume that:

(M) M : C(I,H)→ H is a linear bounded operator with ‖M‖ ≤ 1;

(L) L : C(I,H)→ H is a linear bounded operator with ‖L‖ ≤ 1.

Again by an approximation solvability method we find classical solutions of problem
(4.14), i.e. functions x ∈ W 2,1(I,H) such that x(0) = Mx, x(T ) = Lx and

x′′(t) = f(t, x(t), x′(t)) for a.e. t ∈ I.

Theorem 13 Let conditions (F1)− (F4), (M), (L) and (4.3) hold. Then problem (4.14)

admits a solution with values in BR
H .

Analogously to Lemma 11 it is easy to prove the following result useful in the proof of
Theorem 13.

Lemma 14 Given a function f ∈ L1(I,Rn) and two vectors x0, x1 ∈ Rn the second order
Dirichlet problem 

x′′(t) = f(t) for a.e. t ∈ [0, T ]

x(0) = x0,

x(T ) = x1.

has a unique solution given by

x(t) =

(
1− t

T

)
x0 +

t

T
x1 −

t

T

∫ T

0

(T − r)f(r)dr +

∫ t

0

(t− r)f(r)dr. (4.15)

Proof of Theorem 13. The proof is very similar to the one of Theorem 10, hence we
enphasize only the differences. First of all, we will prove the existence for every n ∈ N of
at least a solution of the following sequence of finite dimensional problems

x′′(t) = Pnf(t, x(t), x′(t)), for a.e. t ∈ I,
x(0) = PnMx,

x(T ) = PnLx.

(4.16)
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in the set Qn defined in (4.7), where the constant R and B are obtained exactly as in the
proof of Theorem 10. To this aim we introduce the sequence of translated problems for
m ∈ N,

x′′(t) = Pnf(t, x(t), x′(t)) + φ(x(t))(β(‖x′(t)‖)χθm(t) + 1
m

), for a.e. t ∈ I,
x(0) = PnMx,

x(T ) = PnLx,

(4.17)

where φ is defined in (4.8), the sequence {θm} is from Theorem 9 and β is the map in
condition (F4).
By Lemma 14 for any q ∈ Qn and λ ∈ [0, 1] the linear Dirichlet problem

x′′(t) = λPnf(t, q(t), q′(t)) + φ(q(t))(β(‖q′(t)‖)χθm(t) + 1
m

), for a.e. t ∈ I,
x(0) = λPnMq

x(T ) = λPnLq

(4.18)

has a unique solution given by

x(t) = (1− t
T

)λPnMq + t
T
λPnLq

− t

T

∫ T

0

(T − r)
[
λPnf(r, q(r), q′(r)) + φ(q(r))

(
β(‖q′(r)‖)χθm(r) +

1

m

)]
dr

+

∫ t

0

(t− r)
[
λPnf(r, q(r), q′(r)) + φ(q(r))

(
β(‖q′(r)‖)χθm(r) +

1

m

)]
dr.

Thus, denoting it by T mn (q, λ) ∈ W 2,1(I,Hn), we can define the map T mn : Qn × [0, 1] →
C1(I,Hn). It is clear that x is a solution of (4.18) if and only if x ∈ T mn (x, 1). We shall
apply Theorem 7 to prove the solvability of (4.18).

(a) We show that the multimap T mn has closed graph in the space Qn× [0, 1]×C1(I,Hn).
Assume that (qj, λj, xj) → (q0, λ0, x0) ∈ Qn × [0, 1] × C1(I,Hn), where xj = T mn (qj, λj).
Then xj(0) = λjPnMqj and xj(T ) = λjPnLqj and passing to the limit when j → ∞ we
obtain x0(0) = λ0PnMq0 and x0(T ) = λ0PnLq0, for the continuity of Pn,M and L.
From (F2) and the continuity of φ, β and Pn it follows that, for a.e. t ∈ I, the sequence

λjPnf(t, qj(t), q
′
j(t)) + φ(qj(t))

(
β(‖q′j(t)‖)χθm(t) +

1

m

)
converges to

λ0Pnf(t, q0(t), q′0(t)) + φ(q0(t))

(
β(‖q′0(t)‖)χθm(t) +

1

m

)
.

According to the definition of Qn and (F4) we obtain that for every j ∈ N∥∥∥∥λjPnf(t, qj(t), q
′
j(t)) + φ(qj(t))

(
β(‖q′j(t)‖)χθm(t) +

1

m

)∥∥∥∥ ≤ 2β(2B) + 1. (4.19)

Therefore, Lebesgue’s dominated convergence Theorem implies that the sequence {xj(t)}
converges to

γ0(t) = (1− t
T

)λ0PnMq0 + t
T
λ0PnLq0

− t

T

∫ T

0

(T − r)
[
λPnf(r, q0(r), q′0(r)) + φ(q0(r))

(
β(‖q′0(r)‖)χθm(r) +

1

m

)]
dr

+

∫ t

0

(t− r)
[
λPnf(r, q0(r), q′0(r)) + φ(q0(r))

(
β(‖q′0(r)‖)χθm(r) +

1

m

)]
dr
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for every t ∈ I. Thus, the uniqueness of the limit yields, for every t ∈ I, x0(t) = γ0(t), i.e.
that x0 ∈ T mn (λ0, q0). We have thus proved the closure of the graph.

(b) Now, we show that T mn is a compact map, i.e. that T mn (Qn × [0, 1]) is relatively
compact. From (4.15), we get that

x′(t) = − 1
T
λPnMq + 1

T
λPnLq

− 1

T

∫ T

0

(T − r)
[
λPnf(r, q(r), q′(r)) + φ(q(r))

(
β(‖q′(r)‖)χθm(r) +

1

m

)]
dr

+

∫ t

0

(t− r)
[
λPnf(r, q(r), q′(r)) + φ(q(r))

(
β(‖q′(r)‖)χθm(r) +

1

m

)]
dr.

Thus, from (4.19) it follows that the set {x′′ : x ∈ T mn
(
Qn×[0, 1]

)
} is bounded in L1(I,Hn)

and

||x′(t)|| ≤ 2

T
R + (2β(2B) + 1)T (T + 1),

implying that also {x′ : x ∈ T mn
(
Qn × [0, 1]

)
} is bounded in C(I,Hn). Similarly we

can prove that T mn
(
Qn × [0, 1]

)
is bounded in C(I,Hn) and the thesis follows from the

Ascoli-Arzelá Theorem as in (b) of Theorem 10.

(c) We show that T mn (Qn, 0) ⊂ int Qn.
Consider q ∈ Qn and consider x = T mn (q, 0). Then x is a solution of the Cauchy problem

x′′(t) = φ(q(t))(β(‖q′(t)‖)χθm(t) + 1
m

), for a.e. t ∈ I,
x(0) = 0

x(T ) = 0.

Then, according to (4.15), we get that

x(t) = − t

T

∫ T

0

(T − r)φ(q(r))

(
β(‖q′(r)‖)χθm(r) +

1

m

)
dr

+

∫ t

0

(t− s)φ(q(r))

(
β(‖q′(r)‖)χθm(r) +

1

m

)
dr,

thus (F4) implies for a.e. t ∈ I, ||x(t)|| ≤ 2
(
β(2B) T

m
+ T 2

m

)
. We obtain that T mn (Qn ×

{0}) ⊂ Qn for m sufficiently big.

(d) We prove that T mn (·, λ) has no fixed points on ∂Qn for every λ ∈ (0, 1).
We reason by contradiction assuming the existence of (q, λ) ∈ ∂Qn × (0, 1) such that
q ∈ T mn (q, λ). Then there exists t0 ∈ [0, T ] such that ‖q(t0)‖ = R or ‖q′(t0)‖ = 2B.
Similarly as in Theorem 10 we can prove that ‖q′(t)‖ ≤ B for every t ∈ I. Hence it must
hold ‖q(t0)‖ = R. If t0 = 0, then, by condition (M), R = ‖q(0)‖ ≤ λ‖Pn‖‖M‖‖q‖0 < R,
a contradiction. If t0 = T, we get the same contradiction by (L), hence t0 ∈ (0, T ) and
from now on the proof follows as in (d) of Theorem 10.

Thus, Theorem 7 ensures for any m ∈ N the existence of xm ∈ W 2,1(I,Hn)∩Qn solution of
problem (4.18). Again as in the proof of Theorem 10 a standard limiting argument implies
that, for every n ∈ N, there exists xn ∈ Qn solution of (4.16). Moreover, it is possible to
prove that fn ⇀ f0 ∈ L1(I,H) with fn(t) = f(t, xn(t), x′n(t)), x′n ⇀ y0 in C(I,H) with
y0(t) := γ0 +

∫ t
0
f0(s) ds, t ∈ I, and xn ⇀ x0 in C(I,H) with x0(t) = δ0 +

∫ t
0
y0(s)ds.

Therefore x0 ∈ W 2,1(I,H), x′0(t) = y0(t) for every t ∈ I and x′′0(t) = f0(t) for a.a. t ∈ I.
Moreover (M) implies xn(0) = Mxn ⇀ Mx0, and xn(0) ⇀ x0(0) yields x0(0) = Mx0.
Similarly (L) implies x0(T ) = Lx0. Finally, the conclusion of the proof is exactly as the
one of Theorem 10.
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5 Proofs of Theorems 2, 3 and 4

We write problem (1.2) in an abstract form as
x′′(t) = F (t, x(t), x′(t)), for a.e. t ∈ [0, T ],

x(0) = x(T ),

x′(0) = x′(T )

(5.1)

and problems (1.3) and (1.4) as
x′′(t) = F (t, x(t), x′(t)), for a.e. t ∈ [0, T ],

x(0) = Mx,

x(T ) = Lx

(5.2)

where the map F : [0, T ] × H × H → H is defined in Section 2 and the operators
M : C(I,H)→ H and L : C(I,H)→ H are defined respectively by

Mx =
k∑
i=1

αix(ti), Lx =
k∑
i=1

βix(ti),

with αi, βi ∈ R, i = 1, . . . , n and 0 < t1 < · · · < tn ≤ T for (1.3) and

Mx =
1

T

∫ T

0

p1(t)x(t) dt, Lx =
1

T

∫ T

0

p2(t)x(t) dt,

with p1, p2 ∈ L1(I,R) for (1.4).
Easily assumptions (4) and (5) imply conditions (M) and (L) respectively. In this section
we will prove that the map F satisfies the conditions (F1)-(F4) and (4.3). Thus, applying
Theorems 10 and 13 we obtain the existence of a solution respectively of (5.1) and of
(5.2). Hence, as a consequence, of (1.2), (1.3) and (1.4).
We start proving condition (F3).

Let wn
E→ w0. We have

‖g(wn)− g(w0)‖2
2 =

∫
Ω

∣∣∣∣wn(ξ)

(∫
Ω

k(ξ, η)wn(η) dη

)
− w0(ξ)

(∫
Ω

k(ξ, η)w0(η) dη

)∣∣∣∣2 dξ
≤ 2

∫
Ω

|wn(ξ)|2
(∫

Ω

|k(ξ, η)| |(wn(η)− w0(η))| dη
)2

dξ

+ 2

∫
Ω

|wn(ξ)− w0(ξ)|2
(∫

Ω

|k(ξ, η)| |w0(η)| dη
)2

dξ

≤ 2K2|Ω|‖wn − w0‖2
2(‖wn‖2

2 + ‖w0‖2
2).

Hence g is E − E continuous from the boundedness of {wn}. Moreover we have

‖h(t, wn)− h(t, w0)‖2
2 =

∫
Ω

|h(t, wn(ξ))− h(t, w0(ξ))|2 dξ

=

∫
Ω

|h′2(t, ηn(ξ))|2 · |(wn(ξ)− w0(ξ))|2 dξ

≤ N2‖wn − w0‖2
2,

17



where ηn(ξ) is a number between wn(ξ) and w0(ξ). Hence h(t, wn)
E→ h(t, w0) and then

h(t, ·) is E − E continuous.
So (w, v) 7−→ F (t, w, v) is continuous from E×E into E, for each t ∈ [0, T ] and condition
(F3) is satisfied.

Now we prove condition (F2).

Let wn
H→ w0. We have that∫

Ω

∥∥∥∥wn(ξ)

(∫
Ω

Dk(ξ, η)wn(η) dη

)
+Dwn(ξ)

(∫
Ω

k(ξ, η)wn(η) dη

)
−Dw0(ξ)

(∫
Ω

k(ξ, η)w0(η) dη

)
− w0(ξ)

(∫
Ω

Dk(ξ, η)w0(η) dη

)∥∥∥∥2

Rn
dξ

≤ 4

∫
Ω

|wn(ξ)− w0(ξ)|2
(∫

Ω

‖Dk(ξ, η)‖Rn|wn(η)| dη
)2

dξ

+4

∫
Ω

|w0(ξ)|2
(∫

Ω

‖Dk(ξ, η)‖Rn|wn(η)− w0(η)| dη
)2

dξ

+4

∫
Ω

‖Dwn(ξ)−Dw0(ξ)‖2
Rn

(∫
Ω

|k(ξ, η)||wn(η)| dη
)2

dξ

+4

∫
Ω

‖Dw0(ξ)‖2
Rn

(∫
Ω

|k(ξ, η)||wn(η)− w0(η)| dη
)2

dξ

≤ 4K2|Ω|‖wn − w0‖2
H(‖wn‖2

H + ‖w0‖2
H).

Hence {Dg(wn)} converges to Dg(w0) in L2. Moreover, as before, ‖g(wn)− g(w0)‖2 → 0

and hence ‖g(wn)− g(w0)‖H → 0. Thus, g(wn)
H→ g(w0).

Now, let t ∈ [0, T ]. To prove the H − H continuity of the map h(t, ·) we assume by

contradiction that there exists a sequence {w̃n} and ε > 0 such that w̃n
H→ w0 and

‖h(t, w̃n)− h(t, w0)‖H > ε for any n ∈ N. Thus we have

ε2 < ‖h(t, w̃n)− h(t, w0)‖2
H =∫

Ω

(
|h(t, w̃n(ξ))− h(t, w̃0(ξ))|2 + ‖Dh(t, w̃n(ξ))−Dh(t, w0(ξ))‖2

Rn
)
dξ.

For the continuity in E of the map h(t, ·), w.l.o.g. has to be∫
Ω

‖Dh(t, w̃n(ξ))−Dh(t, w0(ξ))‖2
Rn dξ > ε2 ∀n ∈ N. (5.3)

By the convergence of {w̃n} to w0 in H there exists a subsequence {w̃nk} such that
w̃nk(ξ)→ w0(ξ) for a.e. ξ ∈ Ω. We have the following estimate∫

Ω

‖Dh(t, w̃nk(ξ))−Dh(t, w0(ξ))‖2
Rn dξ =

∫
Ω

‖h′2(t, w̃nk(ξ))Dw̃nk(ξ)− h′2(t, w0(ξ))Dw0(ξ)‖2
Rn dξ

≤ 2

∫
Ω

|h′2(t, w̃nk(ξ))|2‖Dw̃nk(ξ)−Dw0(ξ)‖2
Rn dξ

+2

∫
Ω

|h′2(t, w̃nk(ξ))− h′2(t, w0(ξ))|2‖Dw0(ξ)‖2
Rn dξ

By the continuity of the map h′2 it follows h′2(t, w̃nk(ξ)) → h′2(t, w0(ξ)) for a.e. ξ ∈ Ω.
Moreover by hypothesis (1) we have

|(h′2(t, w̃nk(ξ))− h′2(t, w0)(ξ))|2‖Dw0(ξ)‖2
Rn ≤ 4N2‖Dw0(ξ)‖Rn
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and
|h′2(t, w̃nk(ξ))|2‖Dw̃nk(ξ)−Dw0(ξ)‖2

Rn ≤ N2‖Dw̃nk(ξ)−Dw0(ξ)‖2
Rn .

Thus by the convergence of {w̃n} to w0 in H and by the Lebesgue’s Convergence Theorem∫
Ω

‖Dh(t, w̃nk(ξ))−Dh(t, w0(ξ))‖2
Rn dξ −→ 0 as k →∞,

obtaining a contradiction with (5.3). Hence for any sequence {wn} such that wn
H→ w0 it

follows h(t, wn)
H→ h(t, w0).

Hence (w, v) 7−→ F (t, w, v) is continuous from H × H into Hω, for each t ∈ [0, T ] and
condition (F2) is satisfied.

To verify condition (F1) we will prove that h(·, w) is continuous, for every w ∈ H. In fact,
let t0 ∈ [0, T ] and {tn} ⊂ [0, T ] be such that tn → t0. According to (1) we obtain that
h(tn, w(ξ)) → h(t0, w(ξ)) and Dh(tn, w(ξ)) = h′2(tn, w(ξ))Dw(ξ) → h′2(t0, w(ξ))Dw(ξ) =
Dh(t0, w(ξ)) for a.a. ξ ∈ Ω. As a consequence of (2.2) and by the boundedness of |h(·, 0)|
in [0, T ], the previous convergences are also dominated in E, implying that h(tn, w)

H→
h(t0, w). Therefore, h(·, w) is continuous, and hence, it is measurable.

Now let Θ ⊂ H be bounded, w ∈ Θ and t ∈ [0, T ]. We have that

‖F (t, w, v)‖2
H =

∫
Ω

∣∣∣∣cv(ξ) + bw(ξ) + w(ξ)

(∫
Ω

k(ξ, η)w(η) dη

)
+ h(t, w(ξ))

∣∣∣∣2 dξ
+

∫
Ω

‖cDv(ξ) + bDw(ξ) + w(ξ)

(∫
Ω

Dk(ξ, η)w(η) dη

)
+Dw(ξ)

∫
Ω

k(ξ, η)w(η) dη) + h′2(t, w(ξ))Dw(ξ)
∥∥2

Rn dξ

≤ 5c2‖v‖2
H + 5b2‖w‖2

H + 9K2|Ω|‖w‖4
H + 8δ2|Ω|+ 8N2‖w‖2

H

Hence

‖F (t, w, v)‖H ≤
√

5c2‖v‖2
H + 5b2‖w‖2

H + 9K2|Ω|‖w‖4
H + 8δ2|Ω|+ 8N2‖w‖2

H ,

so condition (F4) is satisfied.
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To prove condition (4.3) notice first that we have the following equality,

〈w,F (t, w, v)〉 = c〈w, v〉+ b‖w‖2
H +

∫
Ω

w(ξ)

(
w(ξ)

∫
Ω

k(ξ, η)w(η) dη + h(t, w(ξ))

)
dξ

+

∫
Ω

〈
Dw(ξ), w(ξ)

(∫
Ω

Dk(ξ, η)w(η) dη

)〉
Rn

dξ

+

∫
Ω

〈
Dw(ξ), Dw(ξ)

∫
Ω

k(ξ, η)w(η) dη

〉
Rn

dξ

+

∫
Ω

〈Dw(ξ), h′2(t, w(ξ))Dw(ξ)〉Rn dξ =

= c〈w, v〉+ b‖w‖2
H +

∫
Ω

w(ξ)h(t, w(ξ)) dξ +

∫
Ω

〈Dw(ξ), h′2(t, w(ξ))Dw(ξ)〉Rn dξ

+

∫
Ω

(w(ξ))2

(∫
Ω

k(ξ, η)w(η) dη

)
dξ

+

∫
Ω

〈
Dw(ξ), w(ξ)

∫
Ω

Dk(ξ, η)w(η) dη

〉
Rn

dξ

+

∫
Ω

‖Dw(ξ)‖2
Rn

(∫
Ω

k(ξ, η)w(η) dη

)
dξ.

By virtue of (1) and (2.2) the following estimation is true

〈w,F (t, w, v)〉 ≥ c〈w, v〉+ b‖w‖2
H −

∫
Ω

|w(ξ)| (|h(t, 0)|+N |w(ξ)|) dξ

−N
∫

Ω

∥∥Dw(ξ)
∥∥2

Rn dξ −K
(∫

Ω

|w(ξ)|2 dξ
)(∫

Ω

|w(η)| dη
)

−K
(∫

Ω

‖Dw(ξ)‖Rn|w(ξ)| dξ
)(∫

Ω

|w(η)| dη
)

−K
(∫

Ω

‖Dw(ξ)‖2
Rn dξ

)(∫
Ω

|w(η)| dη
)

≥ c〈w, v〉+
(
b−N

)
‖w‖2

H − δ|Ω|1/2 ‖w‖2 −K|Ω|1/2‖w‖2‖w‖2
H

−1

2
K|Ω|1/2‖w‖2‖w‖2

H

≥ c〈w, v〉 − 3

2
K|Ω|1/2‖w‖3

H + (b−N)‖w‖2
H − δ|Ω|

1/2 ‖w‖H

≥ c〈w, v〉+

(
−3

2
K|Ω|1/2‖w‖2

H + (b−N)‖w‖H − δ|Ω|
1/2

)
‖w‖H ≥ c〈w, v〉,

provided R1 ≤ ‖w‖H ≤ R2 where

R1,2 =
b−N ±

√
(b−N)2 − 6δ|Ω|K
3K|Ω|1/2

.

Thus condition (4.3) is satisfied for w ∈ H with R1 ≤ ‖w‖ ≤ R2 and every v with
〈w, v〉 = 0.

Thus applying respectively Theorems 10 and 13 we obtain the claimed result.

Remark 15 Notice that in the case b = N +
√

6δK|Ω| it holds R1 = R2 and we can
reach a conclusion only for ‖w‖ = R1 = R2.
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[3] Andres J., Malaguti L., Pavlac̆ková M.: Hartman-type conditions for multivalued
Dirichlet problems in abstract spaces, Aims Proc. 2014, to appear.

[4] Barbu V.: Nonlinear Semigroups and Differential Equations in Banach Spaces, No-
ordhoff International Publishing, Leyden, 1976.

[5] Benedetti I., Loi N., Malaguti L., Obukhovskii V.: An approximation solvability
method for nonlocal differential problems in Hilbert spaces, Comm. in Cont. Math.,
to appear.

[6] Benedetti I., Malaguti L., Taddei V.: Nonlocal semilinear evolution equations without
strong compactness: theory and applications, Bound. Val. Probl., 2013:60 (2013), 1–
18.

[7] Benedetti I., Taddei V., Väth M.: Evolution problems with nonlinear nonlocal bound-
ary conditions, J. of Dyn. Diff. Eq., 25 no.2 (2013), 477–503.

[8] Bochner S., Taylor A.E.: Linear functionals on certain spaces of abstractly-valued
functions, Ann. Math. 39 (1938), 913–944.

[9] Carrillo J.A., Vazquez J.L.: Some free bundary problems involving non-local diffusion
and aggregation, Phil. Trans. R. Soc. A 373 no. 2050 (2015), 16 pp.

[10] De Araujo G.M., Guzman R.B., De Menezes S.B.: Periodic solutions for nonlinear
telegraph equation via elliptic regularization, Comp. Appl. Math. 28 no. 2 (2009),
135–155.

[11] Diestel J., Ruess W.M., Schachermayer W.: Weak compactness in L1(µ,X), Proc.
Amer. Math. Soc. 118 (1993), 447–453.

[12] Gilding B.H., Kersner R.: The Characterization of reaction-convection-diffusion pro-
cesses by travelling waves, J. Diff. Eq., 124 (1996), 27–79.

[13] Hu S. , Papageorgiou N.S., Handbook of multivalued analysis, Vol. I: Theory, Math-
ematics and its Applications, 419, Kluwer Academic Publishers, Dordrecht, 1997.

[14] Hutson V., Shen W., Vickers, G. T. Spectral theory for nonlocal dispersal with periodic
or almost-periodic time dependence. Rocky Mountain J. Math. 38 (2008), 1147–1175.

[15] Jang T.S.: A new solution procedure for the nonlinear telegraph equation, Comm.
Nonlin. Sci. Numer. Simul. 29 (2015), 307–326.

[16] Jin Y., Zhao X.Q.: Spatial dynamics of a periodic population model with dispersal,
Nonlin. 22 (2009), 1167–1189.

21



[17] Kmit I.: Fredholm solvability of a periodic Neumann problem for a linear telegraph
equation, Ukr. Math. J. 65 no. 3 (2013), 423-434.

[18] Li W., Zhang H.: Positive doubly periodic solutions of telegraph equations with delays,
Bound. Val. Probl. 2015 (2015), 12 pp.

[19] Malaguti L., Rubbioni P.: Nonsmooth feedback controls of nonlocal dispersal models,
Nonlin., 29 (2016) 823–850.

[20] McKibben M., Discovering evolution equations with applications, vol. 1. CRC Press,
2011.

[21] Schmitt K., Thompson R.C.: Boundary value problems for infinite systems of second-
order differential equations, J . Diff. Eq. 18 (1975), 277–295.

[22] Paicu A., Vrabie I.I.: A class of nonlinear evolution equations subjected to nonlocal
initial conditions, Nonlin. Anal. 72 (2010), 4091–4100.

[23] Rashidinia J., Mohammadi R.: Tension spline approach for the numerical solution
of nonlinear Klein-Gordon equation, Comp. Phys. Comm. 181 (2010), 78–91.

[24] Samia Y., Lutscher F.: Coexistence and spread of competitors in heterogeneous land-
scapes, Bull. Math. Biol. 72 no. 8 (2010), 2089-2112.

[25] Yuan W., Xiong W., Jianming W.: All meromorphic solutions of an auxiliary or-
dinary differential equation and its applications, Acta Math. Sci. Ser. B 35 no. 5
(2015), 1241–1250.

[26] Wang F., An Y.: Existence and multiplicity results of positive doubly periodic solu-
tions for nonlinear telegraph sustem, J. Math. An. Appl. 349 (2009), 30–42.

22


