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Abstract
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gradient terms on the Heisenberg group. The picture is completed with the
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1. Introduction

In this paper we first study existence and uniqueness of nonnegative non-

trivial radial stationary entire solutions u of

∆ϕ
Hmu = f(u)`(|DHmu|Hm), (1.1)

where ∆ϕ
Hmu is the ϕ–Laplacian on the Heisenberg group Hm, whose rigorous

definition will be given in Section 2, and then for

∆ϕ
Hmu ≥ f(u)`(|DHmu|Hm) (1.2)

Liouville type theorems, that is non–esistence of nonnegative nontrivial entire

solutions u.

The operator ∆ϕ
Hm includes as main prototype the well known Kohn–Spencer

Laplacian in Hm. Moreover, f , ` and ϕ satisfy throughout the paper

f, ` ∈ C(R+
0 ), f > 0 and ` > 0 in R+, (H )

ϕ ∈ C(R+
0 ) ∩ C1(R+), ϕ(0) = 0, ϕ′ > 0 in R+,

lim
s→∞

ϕ(s) = ϕ(∞) =∞.
(φ)

In particular, in the case of the p–Laplacian, that is when ϕ(s) = sp−1, p > 1,

we simply write ∆p
Hmu.

Since 1957 it is well known that for semilinear coercive inequalities in the

Euclidean setting, existence of solutions, as well as nonexistence, involves the

Keller–Osserman condition, cfr. [15], [23]. For further generalization to quasilin-

ear inequalities, possibly with singular of degenerate weights, we refer to [7]–[10],

[21]–[22]. The first result in this direction, but in the Heisenberg group setting,

can be found in [17, 2]. Recently, this has been extended to the Carnot groups

in [1], adding further restrictions due to the presence of a new term which arises

since the norm is not ∞–harmonic in that setting.

Since we are interested in nonnegative entire solutions of elliptic coercive

inequalities in all the space, as in [10, 17, 2] we make use of an appropriate
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generalized Keller–Osserman condition for inequality (1.2). To this aim we also

assume throughout the paper that∫
0+

tϕ′(t)

`(t)
dt <∞,

∫ ∞ tϕ′(t)

`(t)
dt =∞, (φL)

holds. Thus the function K : R+
0 → R+

0 given by

K(s) =

∫ s

0

tϕ′(t)

`(t)
dt (1.3)

is a C1–diffeomorphism from R+
0 to R+

0 , with

K ′(s) =
sϕ′(s)

`(s)
> 0 in R+, (1.4)

thanks to (φ) and (H ). Consequently K has increasing inverse K−1 : R+
0 → R+

0

and denoting by F (s) =
∫ s

0
f(t) dt we say that the generalized Keller–Osserman

condition holds for (1.2) if ∫ ∞ ds

K−1(F (s))
<∞. (KO)

If ` ≡ 1, then K coincides with the function

H(s) = sϕ(s)−
∫ s

0

ϕ(t) dt, s ≥ 0,

which represents the Legendre trasform of Φ(s) =
∫ s

0
ϕ(t) dt for all s ∈ R+

0 .

Furthermore, in the case of the p–Laplacian, H(s) = (p − 1)sp/p, so that if

` ≡ 1, then (KO) reduces to the well known Keller–Osserman condition for the

p–Laplacian, that is
∫∞

F (s)−1/pds <∞.

At this point we roughly recall that the nonexistence of entire solutions

for coercive problems is connected with the validity of condition (KO), while

the failure of (KO) gives existence of entire solutions. In particular, in the

latter case Theorem 1.5 of [8], relative to the Euclidean case, shows that we

can expect only unbounded solutions or equivalently large solutions. We are

now in a position to extend and to generalize in several directions the core of

Corollary 1.4 of [10], without requiring any monotonicity on `.
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Theorem 1.1. Let f(0) = 0 and `(0) > 0 in (H ). Then (1.1) admits a non-

negative local radial stationary C1 solution. If furthermore f is nondecreasing

in R+
0 and ∫ ∞ dt

K−1(F (t))
=∞ (V sKO)

holds, then (1.1) possesses a nonnegative entire large radial stationary solution

u of class C1(Hm). Finally, if in addition∫
0+

dt

K−1(F (t))
=∞ (1.5)

is valid, then u > 0 in Hm.

The request of Theorem 1.1 are fairly natural and general. Theorem 1.1 can

be applied not only in the p–Laplacian case, ϕ(s) = sp−1, p > 1, but also in the

generalized mean curvature case, ϕ(s) = s(1 + s2)(p−2)/2, p ∈ (1, 2). For other

elliptic operators we refer to [25] and [2].

The next result concerns uniqueness of radial stationary solutions of (1.1),

as in Theorem 1.1 we do not require any monotonicity assumption on ` in R+
0 .

Theorem 1.2. Assume that f and ` are locally Lipschitz continuous in R+
0 ,

that `(0) > 0 and finally that ϕ−1 ∈ Liploc(R+
0 ). Then, for each fixed u0 > 0

equation (1.1) admits a unique radial stationary solution u, with u(O) = u0,

where O is the natural origin in Hm, in the open maximal ball BR of Hm.

When ϕ is the p–Laplacian operator Theorem 1.2 is applicable if and only if

1 < p ≤ 2. The remaining case p > 2 seems to be fairly delicate. Theorem 1.2

is valid under general assumptions, so that in principle we cannot assert that

the solution is entire. For existence of entire solutions we refer the interested

reader to Theorem 4.2, which yields to the proof of Theorem 1.1.

In what follows we assume monotonicity on f . In particular in the next

theorem we require strict monotonicity on f , similarly as in [8, 17, 1, 2]. Indeed,

this assumption is due to the technique used, that is to an argument involving

a comparison theorem.
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For the first Liouville type theorem we assume that ` is b–monotone nonin-

creasing on R+
0 , that is there exists b ∈ (0, 1] such that

inf
t∈[0,s]

`(t) ≥ b `(s) for all s ∈ R+
0 .

Clearly, if ` is monotone nonincreasing in R+
0 , then ` is 1–monotone nonin-

creasing on the same set, furthermore the above condition allows a controlled

oscillatory behavior of ` on R+
0 . Similar results when ` is monotone nonincreas-

ing can be found earlier in [10].

Theorem 1.3. Suppose that f is strictly increasing in R+
0 and that ` is b–

monotone nonincreasing in R+
0 . Assume that there exist an exponent τ < 1 and

a constant θ ≥ 1 such that

(φ1) sτϕ′(st) ≤ θϕ′(t) for all s ∈ (0, 1], t ∈ R+.

Then every nonnegative bounded C1–solution u of (1.2) is constant in Hm.

The restriction that the solutions are assumed bounded in Theorem 1.3 is

essential. Indeed, the simple inequality ∆Hmu ≥ `(|DHmu|Hm) · u, with `(s) =

4m/(s2 + 1), admits the regular nonnegative unbounded entire solution u(q) =

w(|z|) = |z|2 + 1, q = (z, t) ∈ Hm.

The restriction (φ1) implies in particular that ϕ(∞) = ∞, as required in

the main assumption (φ). Furthermore, (φ1) is satisfied with τ = 2 − p and

θ = 1 whenever ϕ is homogeneous, that is ϕ(s) = sp−1, p > 1. Clearly, if

ϕ′ is nondecreasing in R+, again (φ1) is automatic for every τ ∈ [0, 1) and

θ = 1. Of course there are cases in which ϕ′ is nonincreasing in R+ and (φ1)

holds, as for instance in the case of the generalized mean curvature operator,

ϕ(s) = s(1 + s2)(p−2)/2, p ∈ (1, 2), for which (φ1) holds with τ = 2− p ∈ (0, 1).

Finally, the exponent τ in (φ1) can be negative only if ϕ′(s)→ 0 as s→ 0+ and

ϕ′(s)→∞ as s→∞, as for the p–Laplacian operator when p > 2.

Under the assumptions of Theorem 1.3, then `(0) > 0 by (H ) and the b–

monotonicity. If furthermore `(∞) = lims→∞ `(s) > 0, then the corresponding

nonexistence results can be deduced from inequalities including no gradient
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terms, since ∆ϕ
Hmu ≥ f(u)`(|DHmu|Hm) ≥ `(∞)f(u). Thus the truly significant

new case for Theorem 1.3 is when `(∞) = 0.

For quasilinear elliptic inequalities of the type ∆ϕ
Hmu ≥ f(u) we refer to

the pioneering work of Mitidieri and Pohozaev in the Euclidean setting, see i.e.

[19, 20, 21], and to recent contributions due to D’Ambrosio and Mitidieri, see

for instance [5, 6] and the references therein. In [5, 6] the results are also ob-

tained for a wide class of degenerate elliptic operators in the Heisenberg group.

More recently, D’Ambrosio, Farina, Mitidieri and Serrin proved in [4] com-

parison principles, uniqueness, regularity and symmetry results for p–regular

distributional solutions of quasilinear very weak elliptic equations of coercive

type and for related inequalities. Finally, D’Ambrosio and Mitidieri presented

in [7] Liouville theorems and applications to general systems, which include the

celebrated Allen–Cahn equation, Ginzburg–Landau systems, Gross–Pitaevskii

systems and Lichnerowicz type equations.

Recently, in [17, 2] results similar to Theorem 1.3 are given when ` is C–

monotone nondecreasing in R+
0 , that is there exists C ≥ 1 such that

sup
t∈[0,s]

`(t) ≤ C `(s) for all s ∈ R+
0 .

In the next result we extend Theorem 1.3–(i) of [17] from the p–Laplacian

inequality in Hm to the ∆ϕ
Hm operator.

Theorem 1.4. Suppose that f is also nondecreasing in R+
0 , and that ` is also

C–monotone nondecreasing in R+
0 . If (V sKO) holds, then there exists a non-

negative large solution u ∈ C1(Hm) of inequality (1.2).

Theorem 1.4 extends also the existence Theorem 6.1 of [2], where (φL) is

replaced by a stronger condition. More details are given in Section 7.

Furthermore, we recall that the converse of Theorem 1.4, that is nonexistence

of nonnegative entire solutions of inequality (1.2) when (KO) is valid, has been

established in Theorem 1.1 of [17]. In particular, Theorem 1.1 of [17] is the

generalization of Theorem 1.3–(ii) of [17] and is given under the further requests

that `(0) > 0 and that f is strictly increasing in R+
0 . These two conditions
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appear also in [8, 17, 1] and are used in the main proofs when a general solution

u of (1.2) is compared with an appropriate radial stationary solution v of the

reverse inequality, in order to overcome the difficulty at points in which DHmu =

DHmv = 0. Lately, Theorem 1.1 of [17] has been further extended to the case

`(0) = 0 in the nonexistence Theorems 5.1 and 5.2 of [2], but under more

stringent conditions on the regularity of solutions due to the necessity of a deep

analysis on the set where the horizontal gradient vanishes.

The paper is organized as follows. In Section 2 we recall some preliminary

notions related to the operator ∆ϕ
Hm on Heisenberg group, as well as regularity

properties of weak solutions. Section 3 deals with the radial version of ∆ϕ
Hm .

In Section 4 we prove Theorem 1.1, the main existence theorem of the paper,

where no monotonicity assumptions on ` are required. Furthermore, in Section 5

we present a uniqueness result which is, as far as we know, the first attempt

for general equations with gradient terms on the Heisenberg group Hm. The

proof of Theorem 1.3, which is a Liouville type result for bounded solutions

of (1.2), is given in Section 6 under the nonincreasing b–monotonicity on `.

Finally, in Section 7 we give the proof of the existence Theorem 1.4 assuming

the nondecreasing C–monotonicity on `.

2. Preliminaries

Let Hm be the Heisenberg group of dimension 2m+ 1, that is the Lie group

whose underlying manifold is R2m+1 endowed with the non–Abelian group law

q ◦ q′ =

(
z + z′, t+ t′ + 2

m∑
i=1

(yix
′
i − xiy′i)

)
for all q, q′ ∈ Hm, with

q =(z, t)= (x1, . . . , xm, y1, . . . , ym, t), q′ =(z′, t′)= (x′1, . . . , x
′
m, y

′
1, . . . , y

′
m, t
′).

The vector fields

Xj =
∂

∂xj
+ 2yj

∂

∂t
, Yj =

∂

∂yj
− 2xj

∂

∂t
,

∂

∂t
, (2.1)
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for j = 1, . . . ,m, constitute a basis for the real Lie algebra of left–invariant vector

fields on Hm. This basis satisfies the Heisenberg canonical commutation rela-

tions for position and momentum [Xj , Yk] = −4δjk∂/∂t, all other commutators

being zero. A vector field in the span of {Xj , Yj}mj=1 will be called horizontal.

The Kohn–Spencer Laplacian, or equivalently the horizontal Laplacian in Hm,

is defined as follows

∆Hm =

m∑
j=1

(X2
j +Y 2

j ) =

m∑
j=1

(
∂2

∂x2
j

+
∂2

∂y2
j

+ 4yj
∂2

∂xj∂t
− 4xj

∂2

∂yj∂t

)
+ 4|z|2 ∂

2

∂t2
,

and ∆Hm is hypoelliptic according to the celebrated Theorem 1.1 due to Hörmander

in [14].

In Hm the natural origin is denoted by O = (0, 0). Define

r(q) = r(z, t) = (|z|4 + t2)1/4 for all q = (z, t) ∈ Hm,

where | · | denotes the Euclidean norm in R2m. The Korányi norm is homoge-

neous of degree 1, with respect to the dilations δR : (z, t) 7→ (Rz,R2t), R > 0.

Indeed, for all q = (z, t) ∈ Hm

r(δR(q)) = r(Rz,R2t) = (|Rz|4 +R4t2)1/4 = Rr(q).

Hence, the Korányi distance, is

d(q, q′) = r(q−1 ◦ q′) for all (q, q′) ∈ Hm ×Hm,

and the Korányi open ball, of radius R centered at q0, is

BR(q0) = {q ∈ Hm : d(q, q0) < R}.

For simplicity BR denotes the ball of radius R centered at q0 = O.

Let u ∈ C1(Hm) be fixed. The horizontal gradient DHmu is

DHmu =

m∑
j=1

(Xju)Xj + (Yju)Yj .

Furthermore, if f ∈ C1(R), then DHmf(u) = f ′(u)DHmu. The natural product

W · Z =

m∑
j=1

wjzj + w̃j z̃j ,

8



for W = wjXj+w̃jYj and Z = zjXj+z̃jYj produces |DHmu|2Hm = DHmu·DHmu

for the horizontal vector field DHmu. Moreover, if also v ∈ C1(Hm) then the

Cauchy–Schwarz inequality

|DHmu ·DHmv|Hm ≤ |DHmu|Hm |DHmv|Hm

continues to be valid.

The density function

ψ(z, t) = |DHmr|2Hm =
|z|2

r2(z, t)
for all (z, t) ∈ Hm, with (z, t) 6= 0, (2.2)

is homogeneous of degree 0, with respect to the dilatation δR. Clearly, ψ is

bounded in Hm, with 0 ≤ ψ ≤ 1. Furthermore, direct calculation shows

∆Hmr =
2m+ 1

r
ψ in Hm \ {O},

for details we refer to Section 2.1 of [17].

Let now W : Hm → Hm be a horizontal vector field of class C1, that is

W = (w1, · · · , wm, w̃1, · · · , w̃m, t), with wj , w̃j ∈ C1(Hm). Then the horizontal

divergence for W is

div0W =

m∑
j=1

[Xj(w
j) + Yj(w̃

j)].

If furthermore g ∈ C1(R), then the Leibnitz formula holds, namely

div0(gW ) = gdiv0(W ) +DHmg ·W.

In particular, ∆Hmu = div0DHmu for each u ∈ C2(Hm).

A well known generalization of the Kohn–Spencer Laplacian is the horizontal

p–Laplacian on the Heisenberg group defined by

∆p
Hmu = div0(|DHmu|p−2

Hm DHmu), p ∈ (1,∞).

From [3] and [16] we know that weak solutions of the equation ∆p
Hmu = 0

satisfy Harnack inequality and, as a consequence, up to a modification on a set

of Lebesgue measure zero, they are locally Hölder continuous of some exponent
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α ∈ (0, 1). However, in [12] Garofalo emphasized that the fundamental question

whether the horizontal gradient ∇Hmu of such a weak solution is also continuous

(or Hőlder continuous), with respect to the intrinsic distance attached to the

vector fields X1, . . . , Xm, Y1, . . . , Ym, is still open at the submission of this paper.

Substantial progress in that direction can be found in [18].

Furthermore, C1,α
loc regularity has been proved for solutions with special sym-

metries in [12], for instance in the first Heisenberg group H1 he obtains such

regularity for all weak solutions of the horizontal p–Laplacian, with p ≥ 2 which

are of the form u(z, t) = u(|z|, t). For the case 1 < p < 2 and other remarks we

refer to [26].

A further generalization of the horizontal p–Laplacian is defined as follows

∆ϕ
Hmu = div0(A(|DHmu|Hm)DHmu),

where A(s) = ϕ(s)/s with ϕ satisfying (φ). Of course, the horizontal p–

Laplacian follows by the choice ϕ(s) = sp−1, p > 1 and s ∈ R+
0 , so that

A(s) = sp−2 is defined in R+ and satisfies the required properties (φ).

As in [17] we write the A–Laplacian in Euclidean divergence form by making

use of the following matrix B = B(q), defined by

B(q) = B(z, t) =


I2m 2y

−2x

2yt − 2xt 4|z|2

 , (2.3)

where xt = (x1, x2, . . . , xm) and yt = (y1, y2, . . . , ym). Throughout the paper

we denote by div, D, and <,> respectively the ordinary Euclidean divergence,

the gradient and the scalar product in R2m+1. Consequently, BDu = DHmu,

where BDv is the vector in R2m+1 whose components in the standard basis

{∂xj , ∂yj , ∂t}mj=1 are given by the matrix multiplication B with the components

of Du in the same basis. With this in mind we deduce the required expression

∆A
Hmu = div0(A(|DHmu|Hm)DHmu) = div(A(|DHmu|Hm)BDu). (2.4)

In particular

< Du,BDv >= DHmu ·DHmv.
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If ϕ(s) = s, s ∈ R+
0 , then (2.4) reduces to the well known formula for the

Kohn–Spencer Laplacian, that is ∆A
Hmu = ∆Hmu = div(BDu).

Multiplying (2.4) by φ ∈ C∞0 (Hm), we get∫
R2m+1

φ∆ϕ
Hmu =

∫
R2m+1

φ div(A(|DHmu|Hm)BDu)

= −
∫
R2m+1

A(|DHmu|Hm) < BDu,Dφ >

= −
∫
R2m+1

A(|DHmu|Hm)DHmu ·DHmφ.

Hence the weak formulation of (1.2) is given by

−
∫
R2m+1

A(|DHmu|Hm)DHmu ·DHmφ ≥
∫
R2m+1

f(u)`(|DHmu|Hm)φ, (2.5)

for all φ ∈ C∞0 (Hm), φ ≥ 0.

In conclusion, we say that u ∈ C1(Hm) is an entire (weak) classical solution

of (1.2) if (2.5) is satisfied for all φ ∈ C∞0 (Hm), with φ ≥ 0.

Later we make use of the next comparison theorem given in Proposition 2.1

of [17], in the extended version stated in Proposition 4.2 of [2].

Proposition 2.1. Let Ω ⊂⊂ Hm be a relatively compact domain. If u and v

are of class C(Ω) ∩ C1(Ω) and satisfy∆ϕ
Hmu ≥ ∆ϕ

Hmv in Ω,

u ≤ v on ∂Ω,

(2.6)

then u ≤ v in Ω.

Finally, we report the strong maximum principle given in Proposition 2.2

of [17].

Proposition 2.2. Let Ω ⊂ Hm be a domain and let ϕ satisfy (φ1). Assume

that u is a solution of class C(Ω) ∩ C1(Ω) of the inequality

∆ϕ
Hmu ≥ 0 in Ω (2.7)

and that u(qM ) = sup
Ω
u = u∗ for some qM ∈ Ω. Then u ≡ u∗ in Ω.
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3. Radial version of the ϕ–Laplacian

Let υ be a radial regular function, that is for all q = (z, t) ∈ Hm

υ(q) = α(r(q)), r(q) = r(z, t) = (|z|4 + t2)1/4, (3.1)

where α : R+
0 → R, α ∈ C(R+

0 ) ∩ C2(R+). From (2.2), it results

|DHmr|Hm = ψ1/2,

so that

|DHmυ(q)|Hm = |α′(r)| · |DHmr|Hm = |α′(r)|ψ1/2. (3.2)

Thus

∆ϕ
Hmυ = ψ1/2

[
ψ1/2ϕ′(|α′(r)|ψ1/2)α′′(r)

+
2m+ 1

r
sgn(α′(r))ϕ(|α′(r)|ψ1/2)

]
,

(3.3)

which is the radial version of ∆ϕ
Hmυ. As noted in [17], it is possible to shift

the origin for the Korányi distance from O to any other point q0, indeed if we

denote with r̄(q) = d(q0, q) = r(q−1
0 ◦ q), direct calculation shows

[Xj(r̄)](q) = [Xj(r)](q
−1
0 ◦ q), [Yj(r̄)](q) = [Yj(r)](q

−1
0 ◦ q).

Hence the invariance with respect to the left multiplication holds, namely

∆ϕ
Hm(α ◦ r̄)(q) = ∆ϕ

Hm(α ◦ r)(q−1
0 ◦ q). (3.4)

This property will be useful in what follows.

A further particular radial case of (1.2) is the subcase of radial stationary

solutions, that is solutions of the form

v(q) = w(|z|), q = (z, t) ∈ Hm, (3.5)

where w : R+
0 → R, w ∈ C(R+

0 ) ∩ C2(R+). This case is morally the case t = 0

of (3.1), with r(q) = |z| and | · | the Euclidean norm in R2m. Consequently, the

density function ψ, given in (2.2), is identically 1. In particular

DHm |z| =
m∑
j=1

(Xj |z|)Xj + (Yj |z|)Yj =

m∑
j=1

∂|z|
∂xj

Xj +
∂|z|
∂yj

Yj =
z

|z|
,
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so that

∆Hm |z| =
m∑
j=1

X2
j |z|+ Y 2

j |z| =
m∑
j=1

∂2|z|
∂x2

j

+
∂2|z|
∂y2

j

=

m∑
j=1

1

|z|
−

x2
j

|z|3
+

1

|z|
−

y2
j

|z|3
=

2m− 1

|z|
.

In turn |DHm |z||Hm ≡ 1, that is ψ ≡ 1. Consequently,

∆ϕ
Hmv = ϕ′(|w′(|z|)|)w′′(|z|) +

2m− 1

|z|
sgn(w′(|z|))ϕ(|w′(|z|)|). (3.6)

Hence, as noted above, radial stationary functions in the Heisenberg group Hm

behave as Euclidean radial functions in R2m.

4. Proof of the existence Theorem 1.1

The next result can be proved using some of the main ideas of the proof of

Proposition 3.1 in [10], see also Chapter 4 in [25], but with notable improvements

in several directions. We recall in passing that (H ), (φ) and (φL) are supposed

to hold throughout the paper, without further mentioning. We point out that no

monotonicity assumptions are required on `. For simplicity in notation we put

|z| = r in what follows. Furthermore we assume that ℘ is sufficiently smooth,

just for simplicity. For the results of this section, the case ϕ(∞) < ∞, not

covered in this paper, could be treated as in Chapters 4 and 8 of [25], where

` ≡ 1.

Theorem 4.1. Assume that ℘ ∈ C1(R+
0 ), with ℘ and ℘′ nondecreasing in R+

0 ,

and ℘ > 0 in R+. Suppose furthermore that f(0) = 0 and `(0) > 0. Then for

all η > 0 and r0, r1 ∈ R+
0 , with 0 < r0 < r1, problem

[℘A(|w′|)w′]′ = ℘f(w)`(|w′|) in (r0, r1], 0 < r0 < r1,

w ≥ 0, w′ ≥ 0, w′(r0) = 0,

w(r1) = η, w < η in [r0, r1),

(4.1)

admits a C1 solution w in [r0, r1], with the property that there exists s1 ∈ [r0, r1)

such that w(r) ≡ w(r0) ≥ 0 in [r0, s1], w′ > 0 in (s1, r1] and w′ is differentiable
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in (s1, r1], so that w satisfies the equation

ϕ′(w′)

`(w′)
w′′ = σf(w)− ℘′

℘
· ϕ(w′)

`(w′)
(4.2)

in (s1, r1].

If w(r0) = 0, then ∫
0+

du

K−1(F (u))
<∞. (4.3)

If r0 = 0 the same conclusions hold provided that

lim sup
r→0+

r℘′(r)

℘(r)
<∞. (4.4)

Proof. For the purpose of this proof, we shall redefine f so that f(u) = f(η)

for all u ≥ η, and f(u) = 0 when u ≤ 0. This will not affect the conclusion

of the proposition, since clearly any ultimate solution w of (4.1), with w ≥ 0,

w′ ≥ 0 in [r0, r1], satisfies 0 ≤ w ≤ η.

We shall make use of the Leray–Schauder fixed point theorem. Denote by

X the Banach space X = C1[r0, r1], endowed with the usual norm ‖w‖ =

‖w‖∞ + ‖w′‖∞. Let T be the mapping from X to X, defined pointwise for all

w ∈ X and r ∈ [r0, r1] by

T [w](r) = η −
∫ r1

r

ϕ−1

(
1

℘(s)

∫ s

r0

℘(τ)f(w(τ))`(|w′(τ)|)dτ
)
ds. (4.5)

Clearly, T [w](r1) = η. Furthermore, for each r ∈ (r0, r1]

T [w]′(r) = ϕ−1

(
1

℘(r)

∫ r

r0

℘(τ)f(w(τ))`(|w′(τ)|)dτ
)
. (4.6)

Obviously T [w]′ is continuous and nonnegative in (r0, r1], since 0 ≤ f(w) ≤ fη

for all w ∈ X, where fη = maxu∈[0,η] f(u) > 0, and ` > 0 in R+ by (H ). As a

matter of fact

0 ≤ 1

℘(r)

∫ r

r0

℘(τ)f(w(τ))`(|w′(τ)|)dτ ≤ fη max
r∈[r0,r1]

`(|w′(r)|)(r − r0)

= Cw(r − r0),

with Cw = fη maxr∈[r0,r1] `(|w′(r)|). Therefore T [w]′(r) approaches 0 as r → r+
0 ,

and in turn T [w] ∈ X, with T [w]′(r0) = 0.
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Let w be a fixed point of T in X. We claim that w(r0) ≥ 0. Otherwise

w(r0) < 0, while w(r1) = η > 0. Thus there exists a first point s1 ∈ (r0, r1)

such that w(r) < 0 in [r0, s1) and w(s1) = 0. Consequently f(w(r)) = 0 in

[r0, s1] and so w′ ≡ 0 for r ∈ [r0, s1] by (4.6). Hence, w(s1) = w(r0) < 0 which

is impossible, proving the claim. Therefore, w ≥ 0 and w′ ≥ 0 in [r0, r1] by

(4.6). Moreover, we assert that w < η in [r0, r1). Indeed, from the fact that

f > 0 in (0, η] and ` > 0 in R+
0 , it follows that for all r ∈ [r0, r1)∫ r1

r

ϕ−1

(
1

℘(s)

∫ s

r0

℘(τ)f(w(τ))`(|w′(τ)|)dτ
)
ds

≥
∫ r1

max{τ0,r}
ϕ−1

(
1

℘(s)

∫ s

r0

℘(τ)f(w(τ))`(|w′(τ)|)dτ
)
ds > 0,

where τ0 is a point in [r0, r1) such that f(w(r)) > 0 for all r ∈ (τ0, r1], which

exists since f ◦ w ∈ C[r0, r1], f(w(r1)) = η > 0 and `(|w′(r)|) > 0 for all

r ∈ [τ0, r1]. The assertion now follows from (4.5).

Define the homotopy H : X × [0, 1]→ X by

H[w, σ](r) = ση −
∫ r1

r

ϕ−1

(
σ

℘(s)

∫ s

r0

℘(τ)f(w(τ))`(|w′(τ)|)dτ
)
ds. (4.7)

By the above argument, any fixed point wσ = H[wσ, σ] is in X and has the

properties that wσ ≥ 0, w′σ ≥ 0 in [r0, r1] and wσ(r1) = ση. Additionally, by

(4.6) we find that ϕ(w′σ) is of class C1[r0, r1], and then from (4.7) that wσ is a

classical distribution solution of the problem[℘A(|w′σ|)w′σ]′ = σ℘f(wσ)`(|w′σ|) in (r0, r1],

w′σ(r0) = 0, wσ(r1) = ση.

(4.8)

In turn, it is evident that any function w1 which is a fixed point of H[w, 1]

(that is w1 = H[w1, 1]) is a nonnegative distribution solution of (4.1), with

w′1(r0) = 0, w1 ≥ 0 and w′1 ≥ 0 in [r0, r1], and w1 < η in [r0, r1), as shown

above.

We assert that such a fixed point w = w1 exists, using the Browder version

of the Leray–Schauder theorem (see Theorem 11.6 of [13]).

To begin with, obviously H[w, 0] ≡ 0 for all w ∈ X, that is H[w, 0] maps

X into the single point w0 = 0 in X. (This is the first hypothesis required
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in the application of the Leray–Schauder theorem.) We next show that H is

compact from X × [0, 1] into X. First, H is continuous on X × [0, 1]. Indeed,

let (wj , σj)j ∈ X × [0, 1], with wj → w in X, that is wj → w and w′j → w′

uniformly in [r0, r1], and σj → σ. Clearly σjf(wj)`(|w′j |)→ σf(w)`(|w′|), since

the modified function f is continuous in R, and so H[wj , σj ]→ H[w, σ] by (4.7)

and the dominated convergence theorem, as required.

Next let (wk, σk)k be a bounded sequence in X × [0, 1], say ‖w′k‖∞ ≤ L for

some L > 0 and for all k ∈ N. Put `L = maxτ∈[0,L] `(τ). It is clear from (4.7)

that

‖H[wk, σk]′‖∞ ≤ ϕ−1(c), c = fη`L(r1 − r0), (4.9)

since ϕ−1 is strictly increasing in R+ by (φ) and ℘ is assumed to be nondecreas-

ing in R+
0 . Consequently, (H[wk, σk])k is equi–bounded in X and equi–Lipschitz

continuous in [r0, r1]× [0, 1]. Define

Ik(r0, r) =

∫ r

r0

℘(τ)f(wk(τ))`(|w′k(τ)|)dτ and Jk(r0, r) =
Ik(r0, r)

℘(r)
.

Then for all r, with 0 < r0 ≤ r ≤ r1,

0 ≤ Jk(r0, r) ≤ c and lim
r→r+0

Jk(r0, r) = 0,

where c is given in (4.9).

Now, fix ε > 0 and let δ = δ(ϕ−1, ε) > 0 be the corresponding number of

the uniform continuity of ϕ−1 in [0, c]. Take any r, s, with 0 < r0 ≤ r < s ≤ r1

and |s− r| < δ/C, where

C = fη`L (1 + κ) , where κ = max
t∈[r0,r1]

t℘′(t)

℘(t)
.

This is possible since r0 > 0 and ℘(t) ≥ ℘(r0) > 0. Now, for some ξ ∈ (r, s)

|℘(s)− ℘(r)|
℘(s)

(r − r0) =
℘′(ξ)|s− r|

℘(s)
s
r − r0

s
≤ s℘′(s)

℘(s)
|s− r|,

since ℘′ is nondecreasing in R+
0 . Therefore for all k∣∣∣σkJk(r0, r)− σkJk(r0, s)
∣∣∣ ≤ ∣∣∣∣℘(s)− ℘(r)

℘(r)℘(s)
Ik(r0, r)−

1

℘(s)
Ik(r, s)

∣∣∣∣
16



≤ 1

℘(s)
|Ik(r, s)|+ |℘(s)− ℘(r)|

℘(r)℘(s)
|Ik(r0, r)|

≤ fη`L
(
|s− r|+ |℘(s)− ℘(r)|

℘(r)℘(s)

∫ r

r0

℘(τ)dτ

)
(4.10)

≤ fη`L
(
|s− r|+ |℘(s)− ℘(r)|

℘(s)
(r − r0)

)
≤ fη`L

(
1 +

s℘′(s)

℘(s)

)
|s− r| ≤ C|s− r| < δ.

In conclusion, we have for all r, s, with 0 < r0 ≤ r < s ≤ r1 and |s− r| < δ/C

∣∣H[wk, σk]′(r)−H[wk, σk]′(s)
∣∣ =

∣∣ϕ−1 (σkJk(r0, r))− ϕ−1 (σkJk(r0, s))
∣∣ < ε,

uniformly in k.

As an immediate consequence of the Ascoli–Arzelà theorem H then maps

bounded sequences into relatively compact sequences in X, so H is compact.

To apply the Leray–Schauder theorem it is now enough to show that there

is a constant M > 0 such that

‖w‖ ≤M for all (w, σ) ∈ X × [0, 1], with H[w, σ] = w. (4.11)

Let (w, σ) be a pair of type (4.11). But, as observed above, w ≥ 0, w′ ≥ 0 in

[r0, r1], being w = H[w, σ], so that ‖w‖∞ = w(r1) ≤ ση ≤ η. We claim that

there exists s1 = s1(w, η), with r0 ≤ s1 < r1, such that w′ > 0 in (s1, r1] and

w′ ≡ 0 in [r0, s1]. Indeed, the set W+ = {r ∈ [r0, r1] : w′(r) > 0} is nonempty,

being 0 ≤ w(r0) < η and w(r1) = η, and (relatively) open in [r0, r1], being

w ∈ C1[r0, r1]. Put s1 = inf W+. Clearly s1 ∈ [r0, r1) and w ≡ w(r0) in [r0, s1],

since we already proved that w ≥ w(r0) and w′ ≥ 0 in [r0, r1]. Now, for any

fixed r ∈ (s1, r1] there exists s ∈ (s1, r) such that w′(s) > 0 and integrating the

equation in (4.8) on [s, r] we get∫ r

s

[℘A(|w′|)w′]′dτ = σ

∫ r

s

℘f(w) `(|w′|)dτ ≥ 0,

that is ℘(r)A(|w′(r)|)w′(r) ≥ ℘(s)A(|w′(s)|)w′(s) > 0. Hence, w′ > 0 in (s1, r1],

w′(s1) = 0 being s1 ≥ r0 and w′(r0) = 0. In particular, w > w(r0) ≥ 0 in (s1, r1]

and w < η in [r0, r1), as shown above.
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Moreover, w′ is differentiable in (s1, r1] and by the equation in (4.8)

[℘ϕ(w′)]′ = σ℘f(w)`(|w′|),

which is equivalent in (s1, r1] to (4.2). By (4.2) and the fact that ℘ is nonde-

creasing in R+
0 , we get at once that in (s1, r1]

ϕ′(w′)

`(w′)
w′′ ≤ f(w).

Multiplying by w′ > 0, integrating on [s1, r], r ∈ (s1, r1], we have

K(w′(r)) =

∫ w′(r)

0

sϕ′(s)

`(s)
ds =

∫ r

s1

w′ϕ′(w′)

`(w′)
w′′ds

≤ F (w(r))− F (w(s1)) ≤ F (w(r)) ≤ F (η).

(4.12)

Since w ≡ w(r0) in [r0, s1], we have shown the important a priori estimate for w′

0 ≤ w′(r) ≤ K−1 (F (η)) = W for all r ∈ [r0, r1]. (4.13)

Hence, by (4.13) also ‖w′‖∞ ≤W . Thus we can take M = η +W in (4.11).

The Leray–Schauder theorem therefore implies that the mapping T [w] =

H[w, 1] has a fixed point w ∈ X, which is the required solution of (4.1), proving

the assertion above.

If w(r0) = 0, that is w ≡ w(r0) = 0 in [r0, s1], then (4.13) and integration

on [s1, r1] give∫ η

0

du

K−1(F (u))
=

∫ r1

s1

w′(r)dr

K−1(F (w(r)))
≤ r1 − s1 <∞,

that is (4.3) holds.

Finally, if r0 = 0 and (4.4) holds, then we can proceed word by word as in

the case r0 > 0. The only change occurs at the end of (4.10) where now

κ = sup
t∈(0,r1]

t℘′(t)

℘(t)
,

which is finite by (4.4).
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In particular, we have shown under the assumptions of Theorem 4.1, with

also (4.4) when r0 = 0, that for all r0, r1, with 0 ≤ r0 < r1, problem (4.1)

admits a classical maximal solution w in [r0, R), where R is defined by

R = sup{τ ≥ r1 : w can be defined in [r0, τ ] as a solution of (4.1)}.

Of course, R > r1, by the use of the standard initial value problem theory,

being w(r1) = η, w′(r1) > 0. Furthermore, there exists s1 ∈ [r0, r1) such that

w(r) ≡ w(r0) ≥ 0 in [r0, s1] and

w′ > 0 in (s1, R). (4.14)

In particular, when r0 = 0, the function v = v(|z|) = w(r), r = |z|, is a radial

stationary solution of (1.1) when ℘(r) = r2m−1 in the open ball BR of Hm.

Theorem 4.2. Assume that ℘ ∈ C1(R+
0 ), with ℘ and ℘′ nondecreasing in R+

0 ,

and ℘ > 0 in R+. Suppose furthermore that f(0) = 0, `(0) > 0 and (V sKO)

holds. Then any maximal solution v, constructed in Theorem 4.1, is a C1 max-

imal solution of

[℘ A(|v′|)v′]′ = ℘f(v)`(|v′|) (4.15)

in (r0, R), and v has the property that R =∞. If furthermore (1.5) holds and

lim sup
r→∞

1

℘(r)

∫ r

r1

℘(s)ds =∞, (4.16)

then v has also the property that v∗ = limr→∞ v(r) = ∞ and v > 0 in I =

(r0,∞), v′ > 0 in I and v ∈ C2(I).

In particular, v is a positive entire large radial stationary solution of (1.1)

when r0 = 0 and ℘(r) = r2m−1.

Proof. Let v be a classical maximal solution of (4.15) in [r0, R), constructed as

in Theorem 4.1. We want to show that v is global, namely that R =∞. Suppose

by contradiction that R <∞. We claim that, if R <∞, then necessarily

lim
r→R−

v(r) = v∗ =∞, (4.17)
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where the existence of the limit is guaranteed by the monotonicity of v, that is

by (4.14). To prove (4.17), assume by contradiction that the limit is finite, that

is v∗ ∈ (η,∞). Since v′ > 0 in (s1, R), from (4.15) it follows that [℘ ϕ(v′)]
′
> 0

in (s1, R), therefore the function ℘ ϕ(v′) is monotone increasing and approaches

a limit as r → R−. Consequently, being ℘ positive and continuous in r = R,

also ϕ(v′(r)) approaches a limit as r → R−. In turn, since ϕ : R+
0 → [0, a),

0 < a ≤ ∞, is a homeomorphism, then v′ approaches a limit v′R as r → R−,

with v′R ∈ [0, a). As shown in (4.12)

K(v′(r)) ≤
∫ r

s1

f(v)v′ ds ≤ F (v(r)) ≤ F (v∗). (4.18)

By the invertibility of K and the definition of v we have 0 ≤ v′(r) ≤ V ∗ for

all r ∈ [r0, R), where V ∗ = K−1(F (v∗)). It follows at once that v′R < ∞,

contradicting the maximality of R. Hence the claim (4.17).

Now we prove that if v∗ =∞, then R =∞, obtaining the required contradic-

tion. By (4.18), as noted above, K(v′(r)) ≤ F (v(r)) in (s1, R). Consequently,

v′(r) ≤ K−1(F (v(r))) in [s1, R), and by integration on [s1, r], with r ∈ (s1, R),

we obtain ∫ v(r)

v(s1)

ds

K−1(F (s))
=

∫ r

s1

v′(s)

K−1(F (v(s)))
ds ≤ R− s1.

By (V sKO) and the fact that v∗ =∞, we get a contradiction by letting r → R−,

because the left hand side term goes to infinity. In conclusion the case R <∞

cannot occur, and so R =∞, as stated.

Now we prove the second part of the theorem, namely that v∗ = ∞, under

conditions (1.5) and (4.16). Assume by contradiction that v∗ < ∞. By (4.14)

and (4.18) we have 0 < v′(r) ≤ V ∗ for all r ∈ I = (r0,∞), where V ∗ =

K−1(F (v∗)), as defined above. Furthermore, `∗ = mins∈[0,V ∗] `(s) > 0 by (H )

and the assumption `(0) > 0.

Moreover, (4.15) is valid in I = (r0,∞), since v(r1) = η by (4.1). Now,

v > η in (r1,∞) by (4.14), f is nondecreasing in R+
0 and f(η) > 0 by (H ),

so that [℘A(|v′|)v′]′ ≥ c ℘ in [r1,∞), where c = f(η)`∗ > 0. Thus, using that
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0 < v′(r) ≤ V ∗ <∞ in (r1,∞) and integrating on [r1, r] for all r > r1, we get

ϕ(V ∗) ≥ ϕ(v′(r)) ≥ ℘(r1)

℘(r)
ϕ(v′(r1)) +

c

℘(r)

∫ r

r1

℘(s)ds ≥ c

℘(r)

∫ r

r1

℘(s)ds

by (φ). By letting r → ∞, assumption (4.16) gives the obvious contradiction

ϕ(V ∗) =∞. Therefore, v∗ =∞, as stated.

Since v solves (4.1), clearly v(r0) ≥ 0, but the case v(r0) = 0 cannot occur

by Theorem 4.1 thanks to assumption (1.5). Since v′ ≥ 0 in [r0,∞), it then

follows that v > 0 in [r0,∞). Integrating (4.15) in [r0, r], by (H ) and being

`(0) > 0, we get

℘(r)ϕ(v′(r)) =

∫ r

r0

℘(s)f(v)`(v′)ds > 0.

Thus (φ) yields that v′(r) > 0 for all r > r0 and

v′(r) = ϕ−1

(
1

℘(r)

∫ r

r0

℘(s)f(v)`(v′)ds

)
.

Hence v′ is differentiable in I, with

v′′ =
`(v′)

ϕ′(v′)

[
f(v)− ℘′

℘

ϕ(v′)

`(v′)

]
in I. (4.19)

In particular, v ∈ C2(I).

The last part of the theorem is just a consequence of the fact that ℘(r) =

r2m−1 verifies (4.4) and (4.16), taking r0 = 0 in Theorem 4.1. Thus the maximal

solution v = v(r), r = |z|, is a positive entire large radial stationary solution

of (1.1).

Proof of Theorem 1.1. It is enough to apply Theorems 4.1 and 4.2, with

r0 = 0 and ℘(r) = r2m−1, m ≥ 1, to the radial stationary version of (1.1).

5. Qualitative properties and uniqueness

We now turn to the radial stationary equation of (1.1) and assume through-

out the section that (H ) and (φ) hold, with `(0) > 0, without further mention-

ing.
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Proposition 5.1. Problem

[r2m−1A(|v′|)v′]′ = r2m−1f(v)`(|v′|) in R+,

v(0) = v0 > 0, v′(0) = 0.
(5.1)

has a solution on some interval [0, r0], r0 > 0.

Proof. Any local solution of (5.1), for small r > 0, must be a fixed point of

the operator

T [v](r) = v0 +

∫ r

0

ϕ−1

(
1

s2m−1

∫ s

0

τ2m−1f(v(τ))`(|v′(τ)|)dτ
)
ds. (5.2)

Fix ε > 0 so small that [v0 − ε, v0 + ε] ⊂ R+, so that by (H )

0 < i = min
[v0−ε,v0+ε]

f(u) ≤ max
[v0−ε,v0+ε]

f(u) = M <∞,

0 < l = min
[0,ε]

`(t) ≤ max
[0,ε]

`(t) = L <∞.

Let r0 = r0(ε) be so small that

r0ϕ
−1(r0LM) + ϕ−1(r0LM) ≤ ε. (5.3)

This can be done since ϕ−1(0) = 0 by (φ). Denote by C1[0, r0] the usual

Banach space of real functions of class C1 in [0, r0], endowed with the norm

u 7→ ‖u‖ = ‖u‖∞ + ‖u′‖∞. Put v0(r) ≡ v0 ∈ C1[0, r0] and let

C = {v ∈ C1[0, r0] : ‖v − v0‖ ≤ ε},

that is v ∈ C if and only if ‖v−v0‖∞+‖v′‖∞ ≤ ε. Clearly C is the closed ball in

C1[0, r0] of center v0 and radius ε > 0, so that C is closed, convex and bounded

in C1[0, r0]. If v ∈ C then v([0, r0]) ⊂ [v0−ε, v0 +ε] and v′([0, r0]) ⊂ [−ε, ε], and

in turn 0 < f(v(r)) ≤M and 0 < `(|v′(r)|) ≤ L for all r ∈ [0, r0]. Furthermore,

0 ≤
∫ s

0

(τ
s

)2m−1

f(v(τ))`(|v′(τ)|)dτ ≤
∫ s

0

f(v(τ))`(|v′(τ)|)dτ, 0 < s ≤ r0,

where the last integral approaches 0 as s → 0+ by (H ). Thus the operator T

in (5.2) is well defined.
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We show that T : C → C and that T is compact. Indeed for v ∈ C we have

‖T [v]− v0‖∞ =

∫ r0

0

ϕ−1

(∫ s

0

(τ
s

)2m−1

f(v(τ))`(|v′(τ)|)dτ
)
ds

≤ r0ϕ
−1(r0LM)

‖T [v]′‖∞ ≤ ϕ−1

(∫ r0

0

f(v(τ))`(|v′(τ)|)dτ
)
≤ ϕ−1(r0LM).

Thus T [v] ∈ C and so T (C) ⊂ C by (5.3). Let (vk)k be a sequence in C and fix

r, t be two points in [0, r0]. Then

|T [vk](r)− T [vk](t)| =
∣∣∣∣∫ t

r

ϕ−1

(∫ s

0

(τ
s

)2m−1

f(vk(τ))`(|v′k(τ)|)dτ
)
ds

∣∣∣∣
≤ ϕ−1(LM)|r − t|.

Furthermore, as in (4.10), we compute∣∣∣∣ Ik(r)

r2m−1
− Ik(t)

t2m−1

∣∣∣∣ ≤ LM( |r − t|+ (2m− 1) |r − t|
)

= 2mLM |r − t| ,

where as in Theorem 4.1

Ik(r) =

∫ r

0

τ2m−1f(vk(τ))`(|v′k(τ)|)dτ. (5.4)

Now for all σ > 0 there exists δ = δ(ϕ−1, σ) > 0, thanks to the uniform

continuity of ϕ−1 in [0, r0LM ], such that for all r, t ∈ [0, r0], with |r − t| <

δ/2mLM , we have for all k

|T [vk]′(r)− T [vk]′(t)| =
∣∣∣∣ϕ−1

(
Ik(r)

r2m−1

)
− ϕ−1

(
Ik(t)

t2m−1

)∣∣∣∣ ≤ σ.
Therefore, by the Ascoli–Arzelà theorem T maps bounded sequences into rela-

tively compact sequences, with limit points in C, since C is closed.

Finally T is continuous, because if v ∈ C and (vk)k ⊂ C are such that

‖vk − v‖ tends to 0 as k → ∞, then by the Lebesgue dominated convergence

theorem, we can pass under the sign of integrals twice in (5.2), and so T [vk]

tends to T [v] pointwise in [0, r0] as k →∞. By the above argument, it is obvious

that ‖T [vk]− T [v]‖ → 0 as k →∞ as claimed.

By the Schauder fixed point theorem, T possesses a fixed point v in C.

Clearly, v ∈ C1[0, r0] by the representation formula (5.2), that is

v(r) = v0 +

∫ r

0

ϕ−1

(∫ s

0

(τ
s

)2m−1

f(v(τ))`(|v′(τ)|)dτ
)
ds, (5.5)
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as desired.

Once it is known that a solution v of (5.1) exists, then v necessarily obeys

to (5.5). In particular, problem (5.1) admits a classical maximal solution v in

[0, R), where R is defined by

R = sup{r ≥ r0 : v can be defined in [0, r] as a solution of (5.1)}.

Of course, R > r0, by the use of the standard initial value problem theory, being

v(r0) > 0, v′(r0) > 0. Furthermore, the solution v = v(r) = v(|z|), r = |z|, is a

radial stationary solution of (1.1) in the open ball BR of Hm.

Proof of Theorem 1.2. Let v1 and v2 be two C1 solutions of (5.1), and [0, R̃)

be the maximal interval in which both v1 and v2 exist. Assume by contradiction

that there exists ρ0 ∈ (0, R̃) such that v1(ρ0) 6= v2(ρ0). Let R, with ρ0 < R < R̃,

be fixed. Then v′1 > 0 and v′2 > 0 in (0, R] by (5.5). Put V = max{v1(R), v2(R)}

and

V ′ = max

{
max
r∈[0,R]

v′1(r), max
r∈[0,R]

v′2(r)

}
.

We denote by L and Lϕ−1 the Lipschitz constants of ` and ϕ−1 in [0, V ′], re-

spectively, and by M the Lipschitz constant of f in [v0, V ]. Set

f1 = max
t∈[v0,V ]

f(t), l1 = max
t∈[0,V ′]

`(t).

Fix r ∈ [0, R]. Then

|f(v1)`(v′1)− f(v2)`(v′2)| ≤ `(v′1)|f(v1)− f(v2)|+ f(v2)|`(v′1)− `(v′2)|

≤ l1M |v1 − v2|+ f1L|v′1 − v′2|

≤ l1M
∫ r

0

|v′1 − v′2| ds+ f1L|v′1 − v′2|.

(5.6)

Choose δ > 0 so small that

Lϕ−1cδ < 1 where cδ =
l1Mδ2

2
+ f1Lδ. (5.7)

Since, for all r ∈ (0, δ]∣∣∣∣ I1(r)

r2m−1
− I2(r)

r2m−1

∣∣∣∣ ≤ ∫ r

0

(s
r

)2m−1

|f(v1)`(v′1)− f(v2)`(v′2)|ds
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≤
∫ r

0

|f(v1)`(v′1)− f(v2)`(v′2)|ds

≤ l1M
∫ r

0

ds

∫ s

0

|v′1 − v′2| dτ + f1L

∫ r

0

|v′1 − v′2| ds

≤ l1Mδ2

2
max
r∈[0,δ]

|v′1(r)− v′2(r)|+ f1Lδ max
r∈[0,δ]

|v′1(r)− v′2(r)|

= cδ max
r∈[0,δ]

|v′1(r)− v′2(r)|,

then

|v′1(r)− v′2(r)| =
∣∣∣∣ϕ−1

(
I1(r)

r2m−1

)
− ϕ−1

(
I2(r)

r2m−1

)∣∣∣∣
≤ Lϕ−1

∣∣∣∣ I1(r)

r2m−1
− I2(r)

r2m−1

∣∣∣∣
≤ Lϕ−1cδ max

r∈[0,δ]
|v′1(r)− v′2(r)|,

Therefore

max
r∈[0,δ]

|v′1(r)− v′2(r)| ≤ Lϕ−1cδ max
r∈[0,δ]

|v′1(r)− v′2(r)|, (5.8)

so that v′1 ≡ v′2 on [0, δ] by (5.7). Hence, v1 ≡ v2 on [0, δ], since v1(0) = v2(0) =

v0. Repeating the argument a finite number of times, being [0, R] compact, we

get that v1 ≡ v2 on [0, R]. This is impossible since ρ0 ∈ [0, R] and completes

the proof.

Remark 5.2. Clearly Theorem 1.2 can be applied both in the p–Laplacian

case, ϕ(s) = sp−1 when p ∈ (1, 2] and in the generalized mean curvature case,

ϕ(s) = s(1 + s2)(p−2)/2, p ∈ (1, 2). Finally, Theorem 1.2 cannot be applied in

the p–Laplacian case when p > 2, since ϕ−1 fails to be of class Liploc(R+
0 ).

6. Nonexistence under nonincreasing b–monotonicity on `

We recall that conditions (φ), (φL) and (H ) are assumed throughout the

paper.

Lemma 6.1. Assume that (φ1) holds. Let ` be b–nonincreasing in R+ and f

nondecreasing in R+
0 . Fix

0 < ε < η < a <∞, and 0 < r0 < r1 <∞.
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Then, there exist a finite radius R > r1 and a strictly increasing, convex function

α : [r0, R) −→ [ε, a), α ∈ C2[r0, R), such that for every q ∈ Hm the radial

function v = α ◦ dq satisfies

∆ϕ
Hmv ≤ f(v)`(|DHmv|Hm) in BR(q) \Br0(q)

v = ε on ∂Br0(q),

v = a on ∂BR(q),

ε ≤ v ≤ η on Br1(q) \Br0(q).

(6.1)

Proof. Fix ε, η, a, r0 and r1 as in the statement. Let σ ∈ (0, 1] be a parameter

to be determined later and choose Rσ > r0 such that

Rσ − r0 =

∫ a

ε

ds

K−1(σF (s))
. (6.2)

Clearly Rσ is uniquely determined and finite, being a finite. Moreover, since the

right hand side diverges as σ → 0+, there exists σ so small that R = Rσ > r1.

We implicitly define the function ασ for all r ∈ [r0, R) by

R = r +

∫ a

ασ(r)

ds

K−1(σF (s))
.

By construction, ασ(r0) = ε by (6.2). Moreover, since K−1(σF ) > 0 and the

integral in (6.2) is finite, then ασ(r) ↑ a as r → R−. A first differentiation yields

α′σ = K−1(σF (ασ)).

Hence ασ is monotone increasing and σF (ασ) = K(α′σ) in [r0, R). Differentiat-

ing once more we get

σf(ασ)α′σ = K ′(α′σ)α′′σ =
α′σϕ

′(α′σ)

`(α′σ)
α′′σ.

Thus ασ is strictly convex, being ασ > 0 and α′′σ > 0 by (H ), so that

[ϕ(α′σ)]′ = ϕ′(α′σ)α′′σ = σf(ασ)`(α′σ). (6.3)

Now set v = α ◦ dq, so that v is a radial function in Hm and v ∈ C2
H radial

function on BRσ (q) \Br0(q), where v ∈ C2
H means that the horizontal gradient

of v is well defined and continuous. For further details we refer to [2] and [11].
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We claim that there exists σ ∈ (0, 1], σ sufficiently small and independent of

q, such that v is the required solution of (6.2). For simplicity in what follows we

write α in place of ασ. Hence, considering (H ), the positivity of α′, the radial

expression (3.3), together with (3.2), and (φ1) with s = ψ
1
2 ∈ (0, 1] by (2.2), we

have

∆ϕ
Hmv

f(v)`(|DHmv|Hm)
=
ψϕ′(α′(r)ψ

1
2 )α′′(r)

f(α)`(α′(r)ψ
1
2 )

+
2m+ 1

r
· ψ

1
2ϕ(α′(r)ψ

1
2 )

f(α)`(α′(r)ψ
1
2 )

≤ θ

b
· ψ1−τ/2 · ϕ

′(α′(r))α′′(r)

f(α)`(α′(r))
+

2m+ 1

r
· ψ

1
2ϕ(α′(r)ψ

1
2 )

b f(α)`(α′(r))

≤ θ

b
σ +

2m+ 1

r
· ψ

1
2ϕ(α′(r)ψ

1
2 )

b f(α)`(α′(r))
,

where in the last two inequalities we have used that `(α′(r)ψ
1
2 ) ≥ b`(α′(r)) by

the nonincreasing b–monotonicity of `, (6.3) and the fact that 1− τ/2 > 0 being

τ < 1 by (φ1). Furthermore, sτ−1ϕ(st) ≤ θϕ(t) for all s ∈ (0, 1] and t ∈ R+
0 ,

integrating (φ1) with respect to the variable t. Hence,

ψ
1
2ϕ(α′(r)ψ

1
2 )

f(α)`(α′(r))
≤ ψ1−τ/2 · θ ϕ(α′(r))

f(α)`(α′(r))
≤ θ ϕ(α′(r))

f(α)`(α′(r))

as above.

On the other hand, (6.3) and an integration over [r0, r], r0 < r < R, yield

ϕ(α′(r)) = ϕ(α′(r0)) + σ

∫ r

r0

f(α(s))`(α′(s))ds.

In turn, using the monotonicity of f and the b–monotonicity of ` we deduce

ϕ(α′(r))

f(α)`(α′(r))
=

ϕ(α′(r0))

f(α)`(α′(r))
+

σ

f(α)`(α′(r))

∫ r

r0

f(α(s))`(α′(s))ds

≤ ϕ(α′(r0))

bf(α(r0))`(α′(R))
+ σ

f(α(r))
∫ r
r0
`(α′(s)) ds

bf(α(r))`(α′(R))

≤ ϕ(α′(r0))

bf(α(r0))`(α′(R))
+ σ

`(0)

b2`(α′(R))
(r − r0).

Combining all the above estimates we get for all r with r0 < r < R

∆ϕ
Hmv

f(v)`(|DHmv|Hm)
≤ θσ

b
+

2m+ 1

br

[
ϕ(α′(r0))

bf(α(r0))`(α′(R))
+ σ

`(0)

b2`(α′(R))
(r − r0)

]
≤ σ

b

[
θ +

2m+ 1

b2
`(0)

`(α′(R))

]
+

2m+ 1

b2r0

ϕ(α′(r0))

f(α(r0))`(α′(R))
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Since K(0) = 0 and α(r0) = ε, by (6.3) we have α′(r0) = K−1(σF (ε)) → 0 as

σ → 0. We take σ so small, say σ ≤ σ̄, in order to satisfy

σ

b

[
θ +

2m+ 1

b2
`(0)

`(α′(R))

]
+

2m+ 1

b2r0

ϕ(α′(r0))

f(α(r0))`(α′(R))
≤ 1.

This can be done, since α′(R) = K−1(σF (α(R))) = K−1(σF (a)) → 0 as σ →

0+ and `(0) > 0.

In turn the claim is proved being v a radial solution of

∆ϕ
Hmv ≤ f(v)`(|DHmv|Hm)

in BR(q) \Br0(q), with r0 < R <∞, by (H ).

It remains to show that ε ≤ v ≤ η on Br1(q) \ Br0(q). To this aim we ob-

serve that by the monotonicity of α it is enough to verify that α(r1) = ασ(r1) ≤

η for a certain σ, even smaller if necessary. Hence, from the trivial identity∫ a

α(r1)

ds

K−1(σF (s))
= R− r1 = (R− r0) + (r0 − r1)

=

∫ a

ε

ds

K−1(σF (s))
+ r0 − r1

and the fact that α(r1) > ε, we deduce∫ α(r1)

ε

ds

K−1(σF (s))
= r1 − r0.

On the other hand, taking σ > 0 so small that
∫ η
ε
ds/K−1(σF (s)) > r1 − r0,

then α(r1) ≤ η. This completes the proof of the lemma.

Proof of Theorem 1.3. Let u be a nonnegative bounded entire solution of

(1.2). We denote u∗ = supHm u(q). Assume by contradiction that u 6≡ u∗. By

the strong maximum principle, Proposition 2.2 as given in [17], we have u < u∗

on Hm. Choose r0 > 0 and define

u∗0 = sup
Br0

u < u∗.

We now choose η > 0 so small that u∗−u∗0 > 2η. Next take q̃ ∈ Ωr0 = Hm\Br0 ,

such that u(q̃) > u∗ − η. Take also ε and a in such a way that 0 < ε < η and
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a > 2η+ ε, obviously a > η. Put r1 = r(q̃) so that r1 > r0. For such a choice of

r0, r1, a, ε, η by Lemma 6.1 we can construct the radial function v(q) = α(r(q))

on BR \Br0 , with α and R > r1, which is a solution of (6.1).

Being v(q̃) ≤ η, it follows that

u(q̃)− v(q̃) > u∗ − η − v(q̃) > u∗ − η − η = u∗ − 2η.

Since u(q)− v(q) ≤ u∗0 − ε < u∗ − 2η − ε for all q ∈ ∂Br0 and

u(q)− v(q) ≤ u∗ − a < u∗ − 2η − ε for all q ∈ ∂BR,

we deduce that the function u− v attains a positive maximum µ on BR \ Br0 .

Let Γµ be a connected component of the set

{q ∈ BR \Br0 : u(q)− v(q) = µ}.

For any ξ ∈ Γµ, we have

u(ξ) > v(ξ), |DHmu(ξ)|Hm = |DHmv(ξ)|Hm .

As a consequence in Γµ

∆ϕ
Hmu(ξ) ≥ f(u(ξ))`(|DHmu(ξ)|Hm) > f(v(ξ))`(|DHmv(ξ)|Hm) ≥ ∆ϕ

Hmv(ξ),

since f(u(ξ)) > f(v(ξ)), by the strict monotonicity of f and since ` > 0 in R+
0

by assumption. Hence by the C1 regularity of u and v, in a sufficiently small

neighborhood N of Γµ, the functions u and v satisfy

∆ϕ
Hmu ≥ ∆ϕ

Hmv (6.4)

weakly in N . Fix now a point ξ ∈ Γµ, and for any % ∈ (0, µ), denote by Ωξ,%

the connected component containing ξ of the set

{q ∈ BR \Br0 : u(q) > v(q) + %}.

Let us now choose % so close to µ that Ωξ,% ⊂ N . This can be shown by a

compactness argument, for further details we refer to the proof of Theorem 4.3

of [2, page 702]. On ∂Ωξ,% we have u(q) = v(q) + %. Since v(q) + % solves

∆A
Hm(v + %) = ∆ϕ

Hmv ≤ f(v)`(|DHmv|Hm) ≤ f(v + %)`(|DHm(v + %)|Hm),
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thanks to the monotonicity of f and the fact that ` is nonnegative in R+
0 , we

get by Proposition 2.1, namely Proposition 4.2 of [2], that

u(q) ≤ v(q) + %.

But u(ξ) = v(ξ) + µ. This contradicts the fact that ξ ∈ Ωξ,% and shows that

u ≡ c, where c is a nonnegative constant.

7. Existence under nondecreasing C–monotonicity on `

In this section we extend to the ∆ϕ
Hm operator Theorem 1.3–(i) of [17] given

for the p–Laplacian in the Heisenberg group as well as the existence Theorem 6.1

of [2].

In particular, in [2], the proof of Theorem 6.1, relative to the existence of

entire large solutions of (1.2), uses the same main argument developed in [17].

We are planning to adapt the same construction in our context. It should

be pointed out that Theorem 6.1 of [2] is proved under stronger conditions

than (φL), namely assuming∫
0+

ϕ′(t)

`(t)
dt <∞,

∫ ∞ ϕ′(t)

`(t)
dt =∞.

Proof of Theorem 1.4. Let (V sKO) hold. We are going to construct a large

entire radial stationary C1 solution u = u(|z|) of inequality (1.2), that is u is of

the form (3.5).

First, let us define implicitly the function w on R+
0 by setting

r =

∫ w(r)

1

ds

K−1(F (s))
. (7.1)

Hence, w is well defined, w(0) = 1 and w(r) > 1 for all r > 0 because of the

positivity of the left hand side of (7.1) and of the function K−1 ◦ F in R+.

Clearly, w(r) → ∞ for r → ∞ by (V sKO). Differentiating (7.1) in R+, we

obtain

w′(r) = K−1(F (w(r))) > 0, (7.2)
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so that K(w′) = F (w) and differentiating again

K ′(w′)w′′ = f(w)w′,

that is in R+ by (1.4) and (H ),

w′′ϕ′(w′) = f(w)`(w′). (7.3)

Fix ρ > 0 and define Aρ = {(z, t) ∈ Hm : |z| < ρ}. Let u1 be the radial

stationary function defined on Hm \Aρ by the formula

u1(z, t) = w(|z|), |z| = r, in Hm \Aρ.

Of course, |DHmu1|Hm = w′ by (3.2), being ψ ≡ 1 and w′ > 0. Using (3.6), (φ)

and (7.3), we see that u1 satisfies

∆ϕ
Hmu1 = ϕ′(w′)w′′ +

2m− 1

|z|
ϕ(w′) ≥ f(u1)`(|DHmu1|Hm)

in Hm\Aρ. Hence u1 is a large radial stationary C1 solution of (1.2) in Hm\Aρ.

To produce a solution of (1.2) in Aρ, fix v0 > 0, Θ > 0 which are numbers

to be chosen later. Put

v(r) = v0 +
1

Θ

∫ rΘ

0

ϕ−1(τ)dτ, (7.4)

obviously v is well defined since ϕ−1(0) = 0 and by (φ). Define

u2(z, t) = v(|z|), |z| = r, in Aρ.

From

v′(r) = ϕ−1(rΘ), r = |z|, (7.5)

we have v′(0) = 0, and so the function u2 is of class C1 in Hm with DHmu2(0) =

0. Using (3.6) along v, we get

∆ϕ
Hmu2 = ϕ′(v′)v′′ +

2m− 1

|z|
ϕ(v′) = Θ +

2m− 1

|z|
Θ|z| = 2mΘ, (7.6)

since ϕ(v′(|z|)) = Θ|z| by (7.5). If

2mΘ ≥ Cf(v(ρ))`(v′(ρ)), (7.7)
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where C is the constant of the C–monotonicity of `, then by virtue of v′, v′′ > 0

in R+, the monotonicity of f and the C-monotonicity of `, we obtain

∆ϕ
Hmu2 ≥ f(v(|z|))`(v′(|z|)) = f(u2)`(|DHmu2|Hm)

in Aρ. In turn, assuming the validity of (7.7), we get that u2 is a solution of

inequality (1.2) in Aρ.

The next step is to join u1, u2 so that the resulting function is C1. To this

aim we choose the positive parameters ρ, Θ, v0 in such a way that (7.7) and

v(ρ) = w(ρ), v′(ρ) = w′(ρ) (7.8)

are verified. In other words, by (7.2) and (7.4) we need to prove that the

following conditions hold

(i) v0 +
1

Θ

∫ ρΘ

0

ϕ−1(τ)dτ = w(ρ), (ii) ϕ−1(ρΘ) = K−1(F (w(ρ))),

(iii) 2mΘ ≥ Cf(v(ρ))`(v′(ρ)).

Let w(ρ) = µ. Then by (7.1) we have µ > 1. Furthermore, by performing the

change of variables t = ϕ−1(τ) in the integral of (i) so that dτ = ϕ′(t)dt and

v′(ρ) = ϕ−1(ρΘ) by (7.5), we have to verify

(i) v0 +
1

Θ

∫ K−1(F (µ))

0

tϕ′(t)dt = µ, (ii) ρΘ = ϕ(K−1(F (µ))),

(iii) Θ ≥ C

2m
f(µ)`(K−1(F (µ))).

Toward this aim, let µ be such that 1 < µ ≤ 2 and define

ρ =

∫ µ

1

ds

K−1(F (s))
> 0. (7.9)

Since K−1 ◦ F is monotone increasing in R+
0 and positive in R+, then

µ− 1

K−1(F (2))
≤ ρ ≤ µ− 1

K−1(F (1))
, (7.10)

being 1 < µ ≤ 2. Consequently ρ → 0 as µ → 1+. Thus we can choose µ so

close to 1 that

ρ ≤ min

{
1

K−1(F (2))
,

2m ϕ(K−1(F (1)))

C2f(2)`(K−1(F (2)))

}
(7.11)
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With this choice of ρ we immediately obtain that Θ defined in (ii), satisfies

(iii). Indeed, by (ii) and (7.11),

Θ =
ϕ(K−1(F (µ)))

ρ
≥ C2f(2)`(K−1(F (2)))

2m
· ϕ(K−1(F (µ)))

ϕ(K−1(F (1)))

≥ Cf(µ)`(K−1(F (µ)))

2m
,

where in the last inequality we have used that `(K−1(F (µ))) ≤ C`(K−1(F (2)))

by the nondecreasing C–monotonicity of `, and the increasing monotonicity of

f and of ϕ ◦K−1 ◦ F .

Now it remains to prove the validity of (i). First observe that (ii) yields

1

Θ

∫ K−1(F (µ))

0

tϕ′(t)dt =
ρ

ϕ(K−1(F (µ)))

∫ K−1(F (µ))

0

tϕ′(t)dt

≤ ρK−1(F (µ))

ϕ(K−1(F (µ)))

∫ K−1(F (µ))

0

ϕ′(t)dt

= ρK−1(F (µ)) < ρK−1(F (2)),

being ϕ′ > 0 in R+, K−1 ◦ F strictly increasing in R+
0 and 1 < µ ≤ 2. In

particular, by (7.11) and the above inequality, it follows

1

Θ

∫ K−1(F (µ))

0

tϕ′(t)dt < 1,

so that it is possible to choose v0 > 0 in such a way that (i) holds, precisely

v0 = µ− 1

Θ

∫ K−1(F (µ))

0

tϕ′(t)dt > 0,

being 1 < µ ≤ 2.

Hence, we can conclude that, if µ is close enough to 1, the function

u(z) =

 u1(z) in Hm \Aρ,

u2(z) in Aρ

is a large radial stationary C1 solution of (1.2).
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