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Abstract

In the Italian academic system, a student can enroll for an exam immediately

after the end of the teaching period or can postpone it; in this second case the

exam result is missing. We propose an approach for the evaluation of a student

performance along the course of study, accounting also for non-attempted exams.

The approach is based on an Item Response Theory model that includes two dis-

crete latent variables representing student performance and priority in selecting the

exams to take. We explicitly account for non-ignorable missing observations as the

indicators of attempted exams also contribute to measure the performance (within-

item multidimensionality). The model also allows for individual covariates in its

structural part.
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1 Introduction

The Italian university system suffers from high drop-out rates and slow progression

(OECD, 2016; Gitto et al., 2015). An in-depth analysis of university student careers

is necessary to improve the system through planning courses and student guidance. In

particular, the performance of students at the end of the first academic year is highly

predictive of the final outcome; its evaluation can consider an overall measure, such as

the total number of gained credits (Grilli et al., 2016), or it can exploit a multivariate

analysis of first-year exams (Bertaccini et al., 2013). Specifically, Bertaccini et al. (2013)

proposed an item response multiple indicators multiple causes model, where each compul-

sory first-year exam corresponds to a binary item. The success corresponds to passing the

exam within the first year. However, this model does not account for two aspects which

are common in the Italian university system: (i) courses with a large number of students

are divided into parallel groups; (ii) a student can take first-year exams in any order and

not necessarily during the first year. The issue of parallel groups may be addressed by in-

troducing a distinct item for each group. The second aspect requires to extend the model

to account for student decision to take an exam during the first year or to postpone it.

Thus, for a certain student at a given time point the result of an exam can be missing for

two reasons: (i) the item corresponding to that exam is not due since the student belongs

to another group; (ii) the exam is due, but the student decided to postpone it after the

first year of study. The first kind of missing data is structural and thus it can be assumed

to be ignorable, whereas the second kind of missing data is potentially informative, as it

could be related to student performance. Indeed, the data analyzed in this paper show
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that the number of postponed exams is highly (and negatively) correlated with student

performance on the attempted exams, as measured by the rate of passed exams and their

average grade.

In the context at issue, we aim at developing a model-based approach that can help

decision makers in planning the degree programs and organizing student tutoring. In

particular, the model should be useful for: (i) evaluating student performance by consid-

ering, for first-year exams, both the decision to take the exam and the result if the exam

is taken; (ii) characterizing first-year exams in terms of their difficulty and discrimination

power; (iii) comparing parallel groups of each exam to check whether they behave sim-

ilarly; (iv) clustering students into homogeneous classes of performance, controlling for

observed student characteristics.

We illustrate the proposed model through the analysis of student careers at the Uni-

versity of Florence, considering freshmen of the academic year 2013/2014 who are enrolled

in the degree programs Business and Economics. These programs share six compulsory

courses in the first year. Given the large number of freshmen, each course is organized in

four parallel groups on the basis of the first letter of the student’s surname. This entails

a set of 6× 4 = 24 items, thus generating the structural missing values mentioned above.

A student can take exams in any order during the examination sessions of the academic

year (January, February, June, July, September, December). To take an exam in a given

examination session, the student has to enroll via a web procedure, which is also used to

record the exam result. Most freshmen cannot manage the entire workload, so they decide

to postpone one or more exams to the following academic years. A student postponing

an exam never enrolls for that exam during the first year, thus generating a missing value
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that is potentially informative. Therefore, postponing an exam out of the observation

period generates Missing Not At Random (MNAR) values that, by definition, are not

ignorable (Little & Rubin, 2002; Mealli & Rubin, 2015).

The model we develop is of Item Response Theory (IRT) type (Hambleton & Swami-

nathan, 1985; Van der Linden & Hambleton, 1997; Bartolucci et al., 2015) and accounts

for both structural and non-ignorable missing values. There exist several approaches in

the IRT literature to handle non-ignorable missingness; for a detailed review see Rose

et al. (2010). Common practice consists in ignoring omitted item responses or in recod-

ing them as wrong or partially correct responses. Rose et al. (2010), through a complex

simulation study, concluded that both approaches are quite simplistic and give rise to

strongly biased item parameter estimates. Valid alternatives explicitly account for the

non-ignorability of the missingness process and rely on suitable extensions of IRT models,

such as latent regression models (Mislevy, 1987; Zwinderman, 1991) and multidimensional

IRT models (Reckase, 2010). In the latent regression IRT approach, the latent trait is

regressed on the observed response rate, which is used as a proxy for the propensity to

answer. On the contrary, in the multidimensional IRT approach a new latent trait for the

propensity to answer and a response indicator (observed/missing) for each item are intro-

duced. This new latent trait is usually correlated with that measured by the test items

and both latent traits may affect the values of the item response indicators. Therefore, in

the latent regression approach the non-ignorable missingness is represented through a co-

variate contributing to explain the latent trait, whereas in the multidimensional approach

the presence of missing item responses provides additional information to measure the

latent trait. Despite the two approaches have different perspectives, they typically yield
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similar parameter estimates, as illustrated by Rose et al. (2010).

In our setting, we consider the decision to take an exam as an indicator of student

performance, thus as an important outcome per se. Therefore, we adopt the multidi-

mensional IRT approach, whose use for the treatment of MNAR responses was originally

proposed by Lord (1983) and further developed in the parametric setting by Holman &

Glas (2005). In particular, we assume that student overall behavior is driven by two

latent variables. The first latent variable affects both the enrollment decision and the

exam result, thus representing student performance that is of main interest; the second

latent variable only affects the enrollment decision, thus representing student priority in

taking the exams. Exams are treated as items with ordinal responses measuring the latent

variable representing student performance, whereas binary indicators of exam enrollment

also measure the latent variable for the exam priority. This structure, where a set of items

contributes to measure more latent variables, is known as within-item multidimensionality

(Adams et al., 1997). For a review of potentialities of within-item multidimensional IRT

models see Cai (2010) and the references therein.

The resulting multidimensional IRT model with continuous latent traits is also known

as two-tier model, which represents a particular within-item multidimensional formulation

with each item loading on at most two latent variables (Gibbons & Hedeker, 1992; Cai,

2010). Differently from the usual approach, we adopt a finite mixture specification, namely

we assume that the latent traits have a discrete rather than continuous distribution.

This choice increases the flexibility of the model as it avoids parametric assumptions on

the distribution of such traits, and it results in a semi-parametric maximum likelihood

estimator in the sense of Lindsay et al. (1991). We denote the proposed model as LC-IRT
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model, where LC stands for Latent Class (Lazarsfeld & Henry, 1968; Goodman, 1974) as

we interpret the support points of the discrete distribution as latent classes. This approach

allows us to cluster individuals into homogeneous groups and it has a practical utility in all

those applications where decision-makers are interested in addressing individuals sharing

the same characteristics to the same treatment. The weights of the mixture correspond

to the class membership probabilities. We let these probabilities depend on individual

characteristics.

The proposed model extends the multidimensional finite mixture model of Bacci &

Bartolucci (2015) in two directions. Firstly, it allows for mixed items (i.e., binary and

ordinal) instead of just binary items: such an extension is needed to fully exploit items

with a varying number of ordered categories used in many fields, like customer satisfaction

and health assessment; see, for instance, the Short Form-36 (SF-36) and Short Form-

12 (SF-12) questionnaires used to measure the health-related quality of life (Stewart &

Ware, 1992; Ware & Sherbourne, 1992). The second extension accounts for structural

missing values, in addition to informative ones: this feature allows us to face situations

where unequal sets of items are proposed to different groups of subjects or to the same

subjects at different occasions. These situations are common in educational large-scale

assessment surveys, like the Programme for International Student Assessment (PISA;

OECD, 2014), as well as in the longitudinal health assessment setting, like the repeated

mild cognitive impairment assessment through original Montreal Cognitive Assessment

(MoCA) test and its alternate versions (Smith et al., 2007; Lebedeva et al., 2016), where

items are administered according to a rotating scheme to avoid cheating and memory

bias, respectively.
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The general version of the proposed model can handle a wide range of datasets in-

volving the measurement of multiple latent traits. For example, it may properly manage

longitudinal item response data, when a given set of items is administered to the same

individuals at several time occasions, as well as the measurement of latent traits repre-

senting specific sub-domains, as often happens in the educational and health settings (e.g.,

quality of life is usually decomposed in physical domains and psychological domains).

The procedures to estimate the proposed multidimensional LC-IRT model are imple-

mented in the R package MLCIRTwithin (Bartolucci & Bacci, 2016; Bacci & Bartolucci,

2016), freely downloadable from http://CRAN.R-project.org/package=MLCIRTwithin.

The package has been recently updated to account for the new features of the proposed

model, namely ordinal responses and structural missing values.

The remainder of the paper is organized as follows. Section 2 describes the data about

freshmen at the University of Florence. Section 3 illustrates the general multidimensional

LC-IRT model and Section 4 provides details on its estimation. Section 5 is devoted to

the application; in particular, this section describes model selection, including tests for

the ignorability of the missing data mechanism and for the homogeneity of groups of the

same academic course. Finally, in Section 6 we discuss the main features of the proposed

approach and possible developments.

2 Data description

The data set used for the proposed analysis is obtained from the administrative archive

on student careers. This archive is referred to the freshmen of the academic year 2013/2014

enrolled in the degree programs Business (“Economia Aziendale”) and Economics (“Econo-
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mia e Commercio”) of the University of Florence.

The data set includes background characteristics of students and their careers until

December 2014. The first year entails six compulsory courses, three in the first semester

and three in the second semester. All courses have parallel classes with distinct teachers,

according to the first letter of the student’s surname. Five courses are common to the two

degree programs (Business and Economics), and are divided in four groups (A-C, D-L,

M-P, Q-Z), while the course Management differs between the two degree programs, and

students are split in two groups for each program (A-L, M-Z).

Students can take the exams in any order, not necessarily at the end of the corre-

sponding course. The exams of the first-semester courses can be taken in any of the six

sessions from January to December, while the exams of the second-semester courses can

be taken in any of the four sessions from June to December. In order to take the exam

in the chosen session, the student has to enroll online. If a student decides to postpone

an exam to the next academic year, the enrollment record for that exam is empty.

In the analysis we consider the 861 freshmen who enrolled for at least one exam until

December 2014 (89% of the freshmen). For each student, the data set contains information

on the number of enrollments for each of the six exams, alongside with their outcomes.

Passed exams are scored with integer grades ranging from 18 to 30, plus “30 with honors”.

For each exam (merging groups), Table 1 reports the percentage of students who enrolled

for at least one of the six sessions of 2014 (enrollment rate), the distribution of the outcome

for students enrolled at least once, considering the best outcome if the exam is repeated,

and the percentage of students who passed the exam by December 2014 (passing rate),

both conditional on enrollment and overall. The overall passing rate is obtained as the
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product of the enrollment rate by the conditional passing rate.

[Table 1 about here.]

Table 1 highlights the large variability of student performance across the courses. It

is worth noting that the overall passing rate may result from markedly different patterns.

For example, the overall passing rate for Accounting is higher than for Law (53.8% versus

25.6%), which is mainly due to different enrollment rates (93.5% versus 48.3%), whereas

the conditional passing rates are similar (57.5% versus 52.9%). On the contrary, the higher

overall passing rate for Statistics with respect to Mathematics (40.4% versus 21.1%) is

mainly due to different conditional passing rates (60.3% versus 34.2%), while being the

enrollment rates similar (67.0% versus 67.8%).

Table 2 shows the performance of freshmen by gender, High School (HS) type, HS

grade (ranging from 60 to 100), late matriculation, degree program, and course group.

The table reports the average number of attempted exams (enrolled at least once) and

the number of passed exams.

[Table 2 about here.]

Considering the six compulsory courses, on average students attempted 3.8 exams

and passed 2.2 exams, with students from Scientific high schools or with a high HS

grade (greater than 80 out of 100) performing better. On the contrary, late matriculated

students perform worse in terms of both attempted and passed exams.
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3 Model formulation

A distinctive feature of the case study under consideration is represented by missing

observations on exam results, which could reflect student performance. Indeed, we expect

that the tendency to attempt a certain exam in a given session is higher for students with

better performance so that exam results are not missing at random.

In general, data are Missing At Random (MAR) if the conditional distribution of

the response indicator, given observed and unobserved data, is the same whatever the

unobserved data for all the parameter values (see Mealli & Rubin, 2015, Definition 1). If

this condition does not hold, data are MNAR (Mealli & Rubin, 2015, Definition 5), thus

the missingness mechanism is non-ignorable and it should be explicitly modeled to avoid

incorrect inferential conclusions.

In the statistical literature, different approaches have been proposed to deal with

situations of MNAR data, including: (i) the selection approach (Diggle & Kenward, 1994),

in which a model is specified for the distribution of the complete (i.e., observed and

unobserved) data and the conditional distribution of the missing indicators, given these

data; (ii) the pattern-mixture approach (Little, 1993), in which a model is formulated for

the marginal distribution of the missing indicators and the conditional distribution of the

complete data, given these indicators; (iii) the shared-parameter approach (Wu & Carroll,

1988), which introduces a latent variable to capture the association between the observed

responses and the missing process. As mentioned in Section 1, the multidimensional IRT

approach may be exploited to formulate a shared-parameter model that may also be seen

as a finite mixture Structural Equation Model (SEM); this approach have been developed
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by Bacci & Bartolucci (2015) in particular. See Jedidi et al. (1997), Dolan & van der

Maas (1998), and Arminger et al. (1999) for details on finite mixture SEMs.

It is important to recall that the model of Bacci & Bartolucci (2015) is characterized

by a set of multiple equations that define the relationships among latent variables and

observed item responses, missigness indicators, and individual covariates. The resulting

model is a multidimensional LC-IRT model (Bartolucci, 2007; von Davier, 2008; Bacci

et al., 2014) allowing for within-item multidimensionality (Adams et al., 1997) in which

certain items measure more latent traits. Here we propose an extension of this model ac-

counting for ordinal item responses and structural missingness (in addition to potentially

non-ignorable missingness).

Considering an individual randomly drawn from the population of interest, let Yj be

the ordinal response to item j = 1, . . . ,m, where the response categories are labelled from

1 to L. A missing response is denoted with Yj = NA (NA stands for “Not Available”);

we recall that two types of missing response are possible: (i) item j is not due by design

(structural missing, thus ignorable); (ii) item j is due but it is skipped (potentially non-

ignorable missing). The two types of missing data are distinguished by the response

indicator Rj, assuming value NA if item j is not due, value 0 if item j is skipped; moreover,

Rj = 1 if item j is answered. Note that the total number of items is 2m, namely m test

items further to m response indicators.

The item responses Yj, along with the response indicators Rj, contribute to mea-

sure two latent traits, assumed to be independent given a set of exogenous individual

covariates denoted by X = (X1, . . . , XC)′. The first latent trait is described by a multi-

dimensional latent variable U = (U1, . . . , US)′, representing the abilities measured by the
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test items. The second latent trait, corresponding to the multidimensional latent variable

V = (V1, . . . , VT )′, represents individual preferences in choosing the test items to answer

(i.e., the exam to take) or to skip. This structure is represented in the path diagram of

Figure 1, which refers to the special case of our application (Section 5), where both latent

traits have a single component (S = T = 1).

[Figure 1 about here.]

In the following, we assume that U and V have a discrete distribution with kU vectors

of support points uhU = (u1hU , . . . , uShU )′, hU = 1, . . . , kU , and kV vectors of support

points vhV = (v1hV , . . . , vThV )′, hV = 1, . . . , kV , respectively. This specification allows us

to cluster individuals into latent classes that are homogeneous with respect to the latent

traits. Note that if kV = 1 then latent trait V is ruled out and response indicators

Rj contribute only to the assessment of U , as in Harel & Schafer (2009). Besides, in the

spirit of concomitant variable LC models (Dayton & Macready, 1988; Formann, 2007), we

allow the membership probabilities of the latent classes to depend on observed covariates

through a multinomial logit model (see also Bacci & Bartolucci, 2015):

log
λhU (x)

λ1(x)
= x′φhU , hU = 2, . . . , kU , (1)

log
πhV (x)

π1(x)
= x′ψhV

, hV = 2, . . . , kV , (2)

with λhU (x) = Pr(U = uhU |X = x) and πhV (x) = Pr(V = vhV |X = x), where the

covariate vector x includes a constant term, that is, x = (1, x1, . . . , xC)′. The vectors of

coefficients φhU = (φhU1, . . . , φhUC)′ and ψhV
= (ψhV 1, . . . , ψhV C)′ represent the effects of

the covariates on the reference category logits.
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The relationships among the latent variables in U and V and the item responses

Y1, . . . , Ym and the response indicators R1, . . . , Rm are described by the measurement part

of the model, specified as a multidimensional LC-IRT model (for details, see Bacci et al.,

2014). The proposed model is an extension of the model of Bacci et al. (2014), in that

the multidimensional model structure is completely general, in the sense that it allows

each indicator to measure one component in U and one component in V (within-item

multidimensionality).

Let qhUhV ,j = Pr(Rj = 1|U = uhU ,V = vhV ) denote the probability of answering item

j conditionally on U and V and let phU ,jy = Pr(Yj ≥ y|U = uhU ) denote the probability

that the answer to item Yj is y or higher (y = 2, . . . , L), conditionally on the latent trait

U . To select the components of U and V entering the probabilities qhUhV ,j and phU ,jy, we

introduce two sets of indicators zUsj and zV tj, equal to 1 if item j measures components

Us and Vt, respectively. Then, we specify a multidimensional LC Two-Parameter Logistic

(2PL) model (Bartolucci, 2007) for the probability of answering item j:

log
qhUhV ,j

1− qhUhV ,j
= γUj

S∑
s=1

zUsjushU + γV j

T∑
t=1

zV tjvthV − δj, (3)

where δj can be interpreted as the difficulty to answer item j, as higher values of δj reduces

the probability to answer the item; moreover, γUj and γV j are discrimination parameters,

measuring the effects of the latent traits U and V , respectively, on the probability to

answer the item. Note that, when γUj = 0 for all items, the probabilities of answering

the items do not depend on the latent variables in U , thus the missingness process is

ignorable (see the ignorability test described in Section 5.3). Moreover, the ordinal item

13



responses Yj are modeled through a graded response parameterization (Samejima, 1969):

log
phU ,jy

1− phU ,jy
= αj

S∑
s=1

zUsjushU − βjy, y = 2, . . . , L, (4)

where βjy is specific of item j and category y and it may be interpreted as a difficulty

parameter, since higher values of βjy (y = 2, . . . , L) push the probability distribution of

the item towards the bottom of the scale. On the other hand, αj is a discrimination

parameter, measuring the effect of variables in U on the probability distribution of the

item.

In order to ensure the identification of the proposed within-item multidimensional

model, two necessary conditions must be satisfied. The first one requires that at least one

item loads only on one of the components of U or only on one of the components of V . In

our specific context related to the treatment of non-ignorable missingness, this condition

is always satisfied, as item responses Y1, . . . , Ym measure only latent vector U . Second,

suitable constraints on the item parameters are required. In particular, we constrain one of

the discrimination parameters (γUj, γV j, αj) to be equal to 1 and one difficulty parameter

(δj, βjy) to be equal to 0 for every component of each latent variable. Generally speaking,

any item may be chosen to be constrained, paying attention to select a different item for

each dimension. In equation (3) we constrain γV jt = 1 and δjt = 0, whereas in equation

(4) we constrain αjs = 1 and βjs1 = 0, with js and jt (js, jt = 1, . . . ,m) denoting a specific

item, say the first one, which measure components s (s = 1, . . . , S) and t (t = 1, . . . , T )

of U and V , respectively.

The proposed model can be used to predict probabilities for the item result Yj and

response indicator Rj conditionally on specific values of the latent traits U and V . For
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instance, from equation (4) the probability that item j results in category y is:

Pr(Yj = y|U = uhU ) =

= Pr(Yj ≥ y + 1|U = uhU )− Pr(Yj ≥ y|U = uhU ) =

=
1

1 + exp[−(αj
∑S

s=1 zUsjushU − βj,y+1)]
− 1

1 + exp[−(αj
∑S

s=1 zV sjushU − βjy)]
.

As another example, from equation (3) the probability that item j is answered turns

out to be:

Pr(Rj = 1|U = uhU ,V = vhV ) =

=
1

1 + exp[−(γUj
∑S

s=1 zUsjushU + γV j
∑T

t=1 zV tjvthV − δj)]
.

4 Likelihood inference

The proposed LC-IRT model under within-item multidimensionality can be estimated

through the maximization of the discrete marginal log-likelihood

`(η) =
n∑
i=1

logLi(yi,obs, ri|xi), (5)

where η is the vector of model parameters involved in assumptions (1) to (4) further to the

support points of U and V , yi,obs = (yi1, . . . , yim)′ is the vector of observed item responses

for subject i, ri = (ri1, . . . , rim)′ is the vector of response indicators for subject i, and xi

is the vector of covariates for subject i. The joint marginal likelihood Li(yi,obs, ri|xi) of

subject i in equation (5) is given by:

Li(yi,obs, ri|xi) =

kU∑
hU=1

kV∑
hV =1

λhU (xi)πhV (xi)phUhV (yi,obs, ri),

where, given the local independence assumption,

phUhV (yi,obs, ri) =
m∏

j=1 (rj=1)

phU ,jy

m∏
j=1 (rj 6=NA)

q
rj
hUhV ,j

(1− qhUhV ,j)1−rj . (6)
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Note that if item j is not due, that is, it is missing by design (rj = NA), it does not

contribute to equation (6); on the other hand, if item j is due but it is skipped (rj = 0)

it contributes to equation (6) only through the term (1− qhUhV ,j).

The estimation of the proposed model can be performed by the specific R package

MLCIRTwithin (Bartolucci & Bacci, 2016), which maximizes the marginal log-likelihood

in (5) through the EM algorithm (Dempster et al., 1977), along the same lines as in Bacci

& Bartolucci (2015). Moreover, it allows for several options, such as: (i) different number

of latent classes for the two latent variables, (ii) binary or ordinal responses for both the

item response process and the missingness process, (iii) Rasch or 2PL parameterization for

binary items and graded response or partial credit (Masters, 1982) parameterization for

ordinal items, (iv) multinomial logit or global logit parameterization (Agresti, 2013) for

the sub-model that explains the effect of covariates on the probabilities, (v) user-specific

constraints on support points and item parameters. For more details on the functioning

of the package and for a comparison with alternative softwares devoted to the estimation

of within-item multidimensional IRT models see Bacci & Bartolucci (2016).

For model selection we rely on information criteria to compare non-nested models

(mainly, for the choice of the number of support points kU and kV ), while we use the

likelihood-ratio test to compare nested models. As concerns information criteria, it is

worth reminding that the issue of the relative fit is deeply discussed in the literature

about mixture models. It is well known that the two most commonly used criteria, that

is, the Akaike’s Information Criterion (AIC; Akaike, 1973) and the Bayesian Information

Criterion (BIC; Schwarz, 1978), may lead to select different models (McLachlan & Peel,

2000), in particular with large sample sizes. However, several comparative studies (Dias,
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2006; Nylund et al., 2007; Yang & Yang, 2007) provide evidence in favor of BIC that

typically penalizes the log-likelihood much more than AIC.

In order to simplify the interpretation of the results and the comparison of models

with different specifications, we standardize the support points as

û∗shU =
ûshU − µ̂Us

σ̂Us

, s = 1, . . . , S, (7)

v̂∗thV =
v̂thV − µ̂Vt

σ̂Vt
, t = 1, . . . , T, (8)

where µ̂Us and σ̂Us are the mean and the standard deviation of ûs1, . . . , ûskU , whereas µ̂Vt

and σ̂Vt are the mean and the standard deviation of v̂t1, . . . , v̂tkV . The item parameters in

equations (3) and (4) must be transformed coherently as follows:

α̂∗j = α̂j

S∑
s=1

zUsjσ̂Us , (9)

β̂∗jy = β̂jy − α̂j
S∑
s=1

zUsjµ̂Us , (10)

γ̂∗1j = γ̂1j

S∑
s=1

zUsjσ̂Us , (11)

γ̂∗2j = γ̂2j

T∑
t=1

zV tjσ̂Vt , (12)

δ̂∗j = δ̂j − γ̂1j
S∑
s=1

zUsjµ̂Us − γ̂2j
T∑
t=1

zV tjµ̂Vt . (13)

The standard errors of the transformed item parameters are obtained through the

delta method (Casella & Berger, 2006).

5 Analysis of student careers

We applied the LC-IRT model described in Section 3 to the analysis of the performance

of university students described in Section 2. In the following we illustrate model specifi-

cation and fitting, including a test for the hypothesis of ignorability of the missing data
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mechanism, and we report estimates of model parameters. We also discuss the main re-

sults, focusing on the discrimination and difficulty of the exams and the interpretation of

the latent structure.

5.1 Model specification

For the analysis of the performance of university students we assumed S = 1 and T = 1,

that is, all exams measure the same latent perfomance (U = U), and there is one latent

tendency to take an exam (V = V ). The unidimensionality of the latent variable U is in

line with our main purpose of clustering freshmen into homogenous groups on the basis of

their outcome during the first year of study. This latent performance has a case-specific

meaning, since it is intended to summarize the motivation and the multidisciplinary skills

needed to tackle the six exams of the first year of the two considered degree programs in

academic year 2013/14.

We took explicitly into account that, for each of the six exams, there are four teachers

and each of them defines a group, whose assignment to students depends on the first letter

of the surname. Consequently, each combination exam-by-group defines a different item

and the total number of items is therefore m = 24.

The tendency to take an exam, corresponding to V , is measured by the binary variable

Rj for j = 1, . . . , 24 that is observed for a given student when item j corresponds to his/her

group; Rj is missing by design otherwise (rj = NA). Given that Rj is observed (rj 6= NA),

it equals 1 if the student enrolls for the corresponding exam at least once during the year

and it equals 0 if the student skips the exam. Skipping the exam may depend both on the

tendency V to take an exam and on the performance U that university exams contribute
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to measure. The structure of the proposed model is illustrated by the path diagram in

Figure 1. Conditional on the enrollment, the student can fail or pass the exam with a given

grade, ranging from 18 to 30, plus 30 with honors. Our data set includes 3, 314 exams,

of which 44% are failures. The distribution of grades of passed exams is quite “irregular”

in the sense that there are many accumulation points (see Figure 2): for example, grade

18 has a peak, while grade 29 is rarely used as compared to grades 28 and 30. Moreover,

the maximum grade, namely 30 with honors, is out of the quantitative scale.

[Figure 2 about here.]

Therefore, we treated the grade as an ordinal variable. Specifically, we coded the result

on exam j by the ordinal variable Yj with the following categories:

Yj = NA if Rj = 0,

Yj = 0 if Rj = 1 and Zj = NA,

Yj = 1 if 18 ≤ Zj ≤ 21,

Yj = 2 if 22 ≤ Zj ≤ 24,

Yj = 3 if 25 ≤ Zj ≤ 27,

Yj = 4 if Zj ≥ 28,

where Zj is the exam grade in the original scale, with Zj ≥ 18 if the exam is passed, and

Zj = NA if the exam is failed.

We specified a multinomial logit model for the effect of the observed student charac-

teristics (i.e., degree program, gender, HS grade, HS type, and late matriculation) on the

probabilities of the latent variables U in equation (1) and V in equation (2). Moreover,

we specified a graded response model as in equation (4) for the exam result Yj, and a 2PL

model as in equation (3) for the enrollment Rj.
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5.2 Model fitting

In order to select the number of latent classes for U and V , we fitted a series of models with

covariates, making comparisons through the BIC. These models are fitted as described

in Section 4. As a first step, we considered values of kU and kV equal or greater than 2,

so as to faithfully reflect the latent structure described by the path diagram in Figure 1.

According to the results reported in Table 3, we selected kU = 4 latent classes for U , and

kV = 2 latent classes for V .

[Table 3 about here.]

In order to check for local maxima, we repeated the model estimation process with

different random starting values of the parameters.

5.3 Testing for the ignorability of the missing data mechanism

In our setting, missing data with respect to variable Yj arise from the decision to skip exam

j in the first year of study. As is already clear, the specified model assumes that the choice

to take exam j depends on two latent variables, one representing student performance,

and the other one representing student priority in selecting the exams to take. Since the

latent performance level affects both the decision to take exam j and its result Yj, the

missing data mechanism is treated as non-ignorable (see Section 3).

To test for the ignorability assumption we compared the proposed multidimensional

LC-IRT model with a restricted model where exam enrollment does not depend on the

performance U , namely we tested the hypothesis γUj = 0,∀j = 1, . . . , 24.

The Likelihood-Ratio Test (LRT) statistic is LRT = 2 × (6, 533.720 − 6, 338.268) =
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390.904, with 24 degrees of freedom yielding a very low p-value. Therefore we proceeded

with the proposed multidimensional LC-IRT model accounting for the non-ignorable miss-

ing mechanism.

5.4 Discrimination parameters

Table 4 reports the discrimination parameters of equation (4) for the exam outcome Yj,

and the discrimination parameters of equation (3) for exam enrollment Rj. In order to

increase the interpretability of the results, all the parameters reported in Table 4 are

scaled according to equations (9) to (13) .

[Table 4 about here.]

Note that all the discrimination parameters α̂∗j relating exam results Yj to the perfor-

mance U are significantly different from zero, namely all the exams contribute to measure

the latent performance. Accounting, Mathematics, and Statistics tend to have a higher

discrimination power, that is, the results of these exams are more sensitive to variations

in student performance. However, there are differences across groups of the same course,

especially for Law and Management.

According to equation (3), enrollment for an exam Rj is affected by student perfor-

mance U through the γ∗Uj parameters, and by the latent variable V through the γ∗V j

parameters. The effect of the latent variable V is positive for Mathematics and Statistics,

and negative for Law; thus V can be interpreted as the tendency of the student to take

exams in quantitative subjects as opposed to exams in qualitative subjects. Considering

statistical significance at 5%, student performance U significantly affects the enrollment
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for most exams, whereas student tendency V has a significant effect for just around one-

third of the items.

The dependence of the Rj variables for the exam enrollment on the performance U

suggests that a model for evaluating student performance should account for enrollment

decisions; in statistical terms, this provides evidence that the enrollment process gen-

erating missing exam grades is not ignorable, as confirmed by the likelihood-ratio test

described in Section 5.3.

5.5 Predicted probabilities of exam enrollment and exam result

Equations (3) and (4) include five difficulty parameters for each item j, specifically four

parameters β∗1j . . . β
∗
4j (after standardization) for each exam result Yj, and parameter δ∗j

(after standardization) for each exam enrollment variable Rj. The estimates of the diffi-

culty parameters (shown in the online Supplementary Material, Tables 1-2) are not easily

interpretable, thus we converted such parameters into response probabilities, condition-

ally on given values of latent traits (U = u, V = v). In particular, Table 5 reports the

probabilities of exam results for an average performance student, that is, U = 0, those

probabilities depend only on the difficulty parameters. In addition, the right part of Table

5 reports the conditional probability of passing the exam Pr(Yj > 0|U) for certain values

of student performance, that is, U = −σU , U = 0, and U = +σU , with σU denoting the

estimated standard deviation of performance U .

[Table 5 about here.]

We note a large variability among courses and, in some cases, also across groups of the

same course. For the majority of items, the most likely result is a failure. Moreover, for
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the majority of the courses the modal grade of passed exams is 18−21, with some notable

exceptions, such as Management Econ M-Z. The values of the discrimination parameters

α̂∗j imply that the probability to pass the exam depends on student performance: the

range reported in the last column of Table 5 is large, with relevant differences both within

and between courses.

The probabilities reported in Table 5 can be used to predict the performance of a

student for given values of the latent variable U , depending on the chosen degree program

and the group assigned on the basis on the first letter of the surname. For example, for

a student with a high level of performance (say, +σU), enrolled in the degree program

Business and belonging to the A-C group, the probability to pass all the exams can be

obtained by multiplying the six probabilities Pr(Yj > 0 | U = +σU) corresponding to the

A-C group, that is, 0.940× 0.643× . . .× 0.942 = 0.191. It is worth noting that the same

probability rises to 0.362 for a student belonging to the Q-Z group, whereas it drops to

0.173 for a student enrolled in the degree program Economics and belonging to the D-L

group. Similar computations show that the probability to pass all six exams is less than

0.01 for students with average performance (U = 0).

In a similar way we can compute the probability of other patterns. For example, the

probability to pass only Accounting for a student with performance level equal to the

average, who is enrolled in the degree program Business and belongs to the D-L group, is

0.352× (1− 0.197)× . . .× (1− 0.453) = 0.015; it rises to 0.025 for a colleague belonging

to the same group but enrolled in the degree program Economics and to 0.070 for a

colleague enrolled in the same degree program but belonging to group M-P. Moreover,

for a student with a low performance level (say, −σU), enrolled in the degree program
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Business and belonging to the D-L group, the probability to pass one exam out of six

is 0.306, obtained by adding the probability to pass only Accounting, the probability to

pass only Mathematics, and so on. For a similar student belonging to group M-P the

probability to pass only one exam rises to 0.349.

Table 6 reports the probability to enroll for an exam for some values of U and V .

The first column of Table 6 reports the probabilities for a student with average values

for both latent variables (U = 0, V = 0), thus depending only on the estimated difficulty

parameters δ̂∗j .

[Table 6 about here.]

Similarly to the exam result Yj, the enrollment for the examRj shows a large variability

among courses and, in some cases, also across groups of the same course. The enrollment

rate is high for Accounting and low for Microeconomics and Law. Moreover, Microeco-

nomics shows large differences between groups, ranging from 0.14 to 0.60. Looking at the

last two columns of Table 6, we see that the probability to enroll in the exam depends

more on student performance U than on tendency V , with the exception of Mathematics.

The effect of V is relevant and positive for Mathematics and Statistics and negative for

Law, confirming the interpretation of V in terms of tendency to take quantitative exams.

5.6 Estimated latent structure and effects of the covariates

Table 7 reports the estimated support points and corresponding average probabilities for

the latent classes of performance U and tendency V . The support points û∗hU and v̂∗hV are

standardized as described by equations (7) and (8).
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[Table 7 about here.]

Table 8 reports the estimated coefficients φ̂hU c (hU = 2, 3, 4) of the multinomial logit

model (1) for the probabilities λhU of the latent performance U , and the estimated coef-

ficients ψ̂hV c (hV = 2) of the multinomial logit model (2) for the probabilities πhV of the

latent tendency V . Note that, since V has only two components, the multinomial logit

model (2) reduces to a binary logit model.

[Table 8 about here.]

In the model selection process, we retained covariates with a p-value< 0.05 on at least

one equation, except for gender, which was retained even if not significant in any equation,

since the model enclosing gender has a better fit than the model without gender (LRT

statistic equal to 15.373 with 4 degrees of freedom and p-value= 0.004); we also outline

that gender is recognized as a key variable in several educational studies (e.g. Conger &

Long, 2010). The HS type covariate has four categories: we retained these four categories

to avoid merging very different types of school.

The distribution of the performance U has four support points and it is right skewed.

The average probability of class 1 (λ1 = 0.228) is close to the observed proportion of

students who did not pass any exam (0.243). Class 4 is the smallest one (λ4 = 0.083) and

it includes very good students, with a performance equal to about two standard deviations

above the mean. Some student characteristics have a significant effect on the performance

(Table 8): students with a higher grade and students with a scientific HS degree tend to

belong to latent classes of better performance (i.e., class 3 and class 4), while the reverse

holds for late matriculated students.
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The distribution of the tendency V gives rise to two latent classes of similar size,

with support points −0.949 and 1.054. As noted in Section 5.5, students belonging to

class 2 prefer to take quantitative exams. For a baseline student (male, with degree

in Business, HS grade at a mid-point, HS type technical, no late matriculation), the

probability to belong to class 2 is 0.295. This probability raises to 0.462 for a baseline

student but enrolled in the degree of Economics and to 0.749 for a baseline student but

with a scientific HS degree. On the contrary, this probability decreases to 0.166 for a late

matriculated student.

In order to characterize the latent classes of performance U , we allocated the students

to these classes according to the maximum posterior probability as in Bacci & Bartolucci

(2015). Figure 3 reports enrollment rates and passing rates (conditional on enrollment

and overall) for all the exams, considering the students assigned to the corresponding

class. All the rates increase moving from class 1 to class 4, though the conditional passing

rate grows faster then the enrollment rate. Coherently, the average number of enrolled

exams increases from 2.83 for class 1 through 3.54 for class 2 and 4.42 for class 3, up to

4.89 for class 4, whereas the average number of passed exams is equal to 0.80, 1.61, 3.06,

and 4.16 for each latent class, respectively. Figure 4 represents the enrollment rate (left

panel) and the conditional passing rate (right panel) separately for the six exams. We

notice different patterns. For example, Accounting shows a nearly flat enrollment rate,

and a steep passing rate, while Microeconomics has an opposite pattern. The rate with

the highest variation among the latent classes is the conditional passing rate of Math.

The average grades of the exams passed by the students assigned to each class are 22.05,

22.79, 24.80, and 26.68, respectively. Therefore, moving from class 1 to class 4, students
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show better outcomes in terms of all the considered aspects, namely number of enrolled

exams, number of passed exams and average grade. This pattern allows us to interpret

U as an overall performance level.

[Figure 3 about here.]

[Figure 4 about here.]

5.7 Testing differences across groups of the same course

The results of Sections 5.4 and 5.5 show that, for some courses, discrimination and diffi-

culty are markedly different across the four groups. In the model described by equa-

tions (3) and (4), an item j corresponds to a group of a given course, for example

j = 1 corresponds to group A-C of Accounting. The model has eight parameters for

each item j: three discrimination parameters (αj, γUj, γV j) and five difficulty parameters

(β1j, β2j, β3j, β4j, δj).

A test of homogeneity for the four groups of a given course can be performed comparing

the full model with a restricted model, where the items corresponding to the four groups

have the same set of parameters. For example, for the course of Accounting the restricted

model assumes α1 = α2 = α3 = α4, and similarly for the other parameters, for a total of

3× 8 = 24 restrictions.

Table 9 reports the LRT statistics comparing the full model with a restricted model

for each course, collapsing the items corresponding to different groups. These statistics

can be interpreted in terms of differences among groups of a given course.

[Table 9 about here.]
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Mathematics shows the lowest LRT value, followed by Statistics, while Management

has the highest value. All test statistics deal to reject the homogeneity assumption, except

for Mathematics, thus confirming the appropriateness of a model treating the groups as

distinct items with certain structural missing values.

5.8 Sensitivity analysis

The results of Section 5.4 suggest a weak role of the latent variable V on each exam

enrollment variable Rj; see equation (3) for the specification of this relation. Indeed, the

discrimination parameters of V (γ̂∗2j) in Table 4 are significant (at 5%) for only one-third

of the items, and they are lower in absolute value than the discrimination parameters of

U (γ̂∗1j). Moreover, the standard errors for the parameters of Mathematics courses are

abnormally high (for details see standard errors ŝeγ∗V j
for group Q-Z in Table 4 and also

standard errors ŝeδ∗j referred to all groups of Mathematics shown in the online Supple-

mentary Material, Table 2).

The latent tendency V is related to non-response patterns, but its deletion does not

alter the feature of the model to account for informative missing data. In particular, to

evaluate the role of V in the current application, we compared the selected model (kU = 4,

kV = 2 in Table 3) against a restricted version without V (kU = 4, kV = 1), entailing a

reduction of model parameters from 226 to 194. In the restricted version of the model,

the standard errors for Mathematics are no more problematic (see estimates shown in the

online Supplementary Material, Tables 3-5), anyway the main findings about the effects

of the latent performance U are unchanged (online Supplementary Material, Tables 6-9).

The additional complexity associated to the inclusion of the latent tendency V is not
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worthwhile in terms of model fit as measured by the BIC (the restricted model has a BIC

value of 14,166.19, as compared to 14,203.86 for the full model). However, we decided

to carry out the analysis with a model including V , since it gives additional insights

into the student decision process. Moreover, this specification is useful to illustrate the

potentialities of the proposed approach, which allows for more flexibility in modeling

non-response patterns.

6 Conclusions

In order to evaluate university student performance during the first year of study, we

proposed an IRT approach that jointly account for the observed exam results and for the

information on the exam enrollment. Indeed, in our case it often happens that a student

does not enroll for a given exam during the first year, thus the corresponding exam

result is missing. To take into account such informative missing mechanism, the proposed

multidimensional latent class IRT model has a latent variable U , representing student

performance, which affects both the enrollment decision and the exam result. Another

latent variable V accounts for student preferences in choosing which exams to take during

the first year. Our model is an extension of the finite mixture model of Bacci & Bartolucci

(2015), accounting for mixed items (i.e., binary and ordered) and two kinds of missing

data (i.e., structural and informative). It is worth noting that the IRT approach exploits

the multivariate nature of the observed outcomes as each first-year exam is treated as an

item. This is an advantage over usual approaches based on a summary measure of student

outcome, such as the total number of gained credits.

The analysis showed that, even controlling for student latent performance U and
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preference V , the enrollment rates vary both between disciplines and between groups

of the same discipline. Such differences may stem from several factors, including the

teacher ability to motivate the student and organizational issues. Moreover, we found that

the enrollment depends mainly on student latent performance U , so that the enrollment

mechanism is not ignorable. Therefore, the prediction of student outcome requires to

jointly model the enrollment decision and exam result.

The probabilities of passing the exams and of exam grades for a student with a given

level of performance U are remarkably different among disciplines. As expected, Math-

ematics is the hardest exam, with low probability of passing the exam and low grades,

highlighting problems with either the course content or the use of the grading scale.

Moreover, some courses show worrying differences between groups concerning both en-

rollment rates and passing rates. This fact poses a serious issue of fairness, given that

the assignment of students to groups is based on surname, thus groups are expected to

be homogeneous with respect to student performance.

The model was used to cluster students into four latent classes of performance, corre-

sponding to widely different outcomes. In particular, assigning students to latent classes

on the basis of the maximum posterior probability, we observed that moving from the

first to the last latent class of U , students show better outcomes in terms of all considered

aspects, namely number of enrolled exams, number of passed exams, and average grade.

This pattern allows us to interpret the latent variable U as an overall performance level.

The structural part of the model relates class membership to observed characteristics.

It turned out that the probability to belong to classes of better performance is higher

for students coming from a scientific high school, students with a good school grade, and
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students beginning university in the academic year following the end of high school. Such

information can be used by potential freshmen and by the university management for

planning guidance and tutoring activities.

Beyond the case study here illustrated, the proposed LC-IRT model based on within-

item multidimensionality can be useful in a wide range of applications characterized by

binary and ordinal items with structural as well as informative missing item responses.

Examples include assessment in education, customer satisfaction, quality of life, and the

assessment of physical or psychological disabilities.

The model and the corresponding software can be extended to let the covariates affect

the item responses, so as to allow for differential item functioning (Thissen et al., 1988).

As for latent class models in general, the optimal number of latent classes is a controversial

issue (McLachlan & Peel, 2000) calling for further theoretical and simulation work.
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Figure 1: Path diagram of the LC-IRT model with latent traits (U and V : latent traits;
Y1, . . . , Ym: observed item responses; R1, . . . , Rm: item response indicators; X1, . . . ,
XC: exogenous individual covariates).
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Figure 2: Distribution of grades, passed exams.
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Figure 3: Enrollment and passing rates for all the exams.
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Figure 4: Enrollment rates (left panel) and passing rates conditionally on enrollment (right
panel), for each exam.
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Table 1: Enrollment rates and exam results of first-year exams by course (freshmen
2013/2014, University of Florence, degree programs Business and Economics, exami-
nation sessions from January to December 2014).

Course (semester) Enrollment Exam grade (%) Passing rate (%)
rate (%) failed 18-21 22-24 25-27 ≥ 28 enrolled overall

Accounting (I) 93.5 42.5 15.9 17.3 17.0 7.3 57.5 53.8
Mathematics (I) 67.8 65.8 16.2 7.3 6.8 4.0 34.2 21.1
Law (I) 48.3 47.1 14.2 16.1 14.4 8.2 52.9 25.6
Management (II) 72.5 30.6 8.2 16.7 23.2 21.3 69.4 50.3
MicroEcon (II) 41.8 41.9 10.6 11.4 18.1 18.1 58.1 24.3
Statistics (II) 67.0 39.7 16.8 13.5 11.4 18.5 60.3 40.4

Table 2: Average number of attempted and passed first-year exams by student char-
acteristics (freshmen 2013/2014, University of Florence, degree programs Business and
Economics, examination sessions from January to December 2014).

N Average number of exams
enrolled to passed

All freshmen 861 3.8 2.2
Gender

Male 502 3.8 2.1
Female 359 3.9 2.2

HS type
Technical 765 3.8 2.1
Humanities 201 3.7 1.9
Scientific 321 4.1 2.4
Other 284 3.6 1.8

HS grade
< 80 596 3.6 1.7
≥ 80 265 4.4 3.3

Late matriculation
No 759 4.0 2.3
Yes 102 3.0 1.3

Degree program
Business 588 3.8 2.1
Economics 273 3.9 2.3

Course group
A-C 257 3.7 2.2
D-L 240 3.8 2.2
M-P 204 4.0 2.1
Q-Z 160 3.9 2.3
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Table 3: Selection of the number of latent classes.

kU kV ˆ̀ # par BIC
2 2 -6520.37 208 14446.41
2 3 -6505.63 217 14477.76
3 2 -6387.18 217 14240.87
3 3 -6364.32 226 14255.96
4 2 -6338.27 226 14203.86
4 3 -6325.72 235 14239.58
5 2 -6323.84 235 14235.84
5 3 -6304.16 244 14257.30

Table 4: Estimated scaled discrimination item parameters.

Item U → Yj U → Rj V → Rj
Course Group α̂∗j ŝeα∗

j
p-value γ̂∗Uj ŝeγ∗Uj

p-value γ̂∗V j ŝeγ∗V j
p-value

Accounting A-C 2.127 0.285 <0.001 0.904 0.375 0.016 0.401 0.274 0.144
D-L 1.795 0.259 <0.001 0.535 0.349 0.125 0.594 0.433 0.170
M-P 2.527 0.380 <0.001 1.172 0.533 0.028 -0.503 0.525 0.338
Q-Z 2.337 0.357 <0.001 0.433 0.318 0.173 0.522 0.311 0.093

Mathematics A-C 2.241 0.410 <0.001 1.918 0.893 0.032 2.448 1.176 0.037
D-L 2.134 0.386 <0.001 1.278 0.440 0.004 2.251 0.772 0.004
M-P 1.731 0.402 <0.001 1.700 0.503 0.001 1.782 0.587 0.002
Q-Z 2.963 0.707 <0.001 5.050 4.605 0.273 6.783 5.266 0.198

Law A-C 1.849 0.427 <0.001 0.903 0.196 <0.001 -0.380 0.221 0.085
D-L 3.016 0.506 <0.001 1.303 0.254 <0.001 -0.390 0.267 0.144
M-P 1.391 0.306 <0.001 1.144 0.267 <0.001 -0.804 0.314 0.011
Q-Z 1.783 0.425 <0.001 1.033 0.241 <0.001 -0.279 0.214 0.192

Management Busi A-L 2.990 0.530 <0.001 2.287 0.389 <0.001 0.675 0.315 0.032
Busi M-Z 3.163 0.484 <0.001 1.339 0.249 <0.001 -0.304 0.221 0.169
Econ A-L 1.976 0.389 <0.001 1.106 0.250 <0.001 0.539 0.296 0.068
Econ M-Z 0.662 0.306 0.030 2.212 0.500 <0.001 0.605 0.455 0.184

MicroEcon A-C 1.249 0.325 <0.001 1.429 0.247 <0.001 0.310 0.238 0.193
D-L 1.130 0.402 0.005 3.114 0.598 <0.001 0.450 0.319 0.159
M-P 1.822 0.366 <0.001 1.889 0.353 <0.001 -0.447 0.294 0.128
Q-Z 2.350 0.588 <0.001 2.202 0.440 <0.001 0.926 0.282 0.001

Statistics A-C 2.787 0.445 <0.001 2.333 0.466 <0.001 0.946 0.387 0.014
D-L 2.496 0.389 <0.001 1.567 0.290 <0.001 0.808 0.295 0.006
M-P 2.867 0.497 <0.001 1.772 0.319 <0.001 0.104 0.292 0.722
Q-Z 2.258 0.468 <0.001 1.998 0.469 <0.001 1.020 0.347 0.003
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Table 5: Predicted probabilities of exam result Yj for some values of latent performance
U .

Item Pr(Yj = y | U = 0) Passing rate Pr(Yj > 0 | U)
Course Group 0 1 2 3 4 U = u

Failed 18-21 22-24 25-27 ≥ 28 −σU 0 +σU range
Accounting A-C 0.348 0.328 0.172 0.124 0.028 0.183 0.652 0.940 0.758

D-L 0.648 0.168 0.126 0.052 0.006 0.083 0.352 0.766 0.683
M-P 0.378 0.219 0.305 0.094 0.005 0.116 0.622 0.954 0.837
Q-Z 0.141 0.295 0.355 0.176 0.033 0.371 0.859 0.984 0.614

Mathematics A-C 0.839 0.114 0.029 0.012 0.005 0.020 0.161 0.643 0.623
D-L 0.803 0.136 0.037 0.019 0.005 0.028 0.197 0.674 0.646
M-P 0.872 0.069 0.036 0.016 0.007 0.025 0.128 0.453 0.427
Q-Z 0.906 0.085 0.005 0.004 0.000 0.005 0.094 0.667 0.662

Law A-C 0.824 0.105 0.060 0.008 0.004 0.033 0.176 0.576 0.544
D-L 0.530 0.168 0.237 0.057 0.008 0.042 0.470 0.948 0.906
M-P 0.709 0.142 0.042 0.092 0.016 0.093 0.291 0.623 0.530
Q-Z 0.480 0.259 0.177 0.070 0.014 0.154 0.520 0.866 0.711

Management Busi A-L 0.222 0.187 0.350 0.181 0.061 0.150 0.778 0.986 0.836
Busi M-Z 0.761 0.063 0.131 0.037 0.008 0.013 0.239 0.881 0.868
Econ A-L 0.381 0.204 0.209 0.163 0.043 0.184 0.619 0.921 0.738
Econ M-Z 0.101 0.026 0.093 0.571 0.209 0.821 0.899 0.945 0.124

MicroEcon A-C 0.707 0.124 0.102 0.049 0.018 0.106 0.293 0.591 0.485
D-L 0.809 0.046 0.046 0.063 0.036 0.071 0.191 0.422 0.351
M-P 0.355 0.157 0.161 0.248 0.078 0.227 0.645 0.918 0.691
Q-Z 0.650 0.117 0.067 0.081 0.085 0.049 0.350 0.850 0.801

Statistics A-C 0.501 0.292 0.120 0.055 0.032 0.058 0.499 0.942 0.884
D-L 0.547 0.231 0.157 0.041 0.024 0.064 0.453 0.909 0.846
M-P 0.673 0.197 0.076 0.038 0.017 0.027 0.327 0.895 0.868
Q-Z 0.625 0.197 0.057 0.073 0.048 0.059 0.375 0.852 0.793
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Table 6: Predicted probabilities of enrollment Rj for some values of latent performance U
and latent tendency V .

Item Pr(Rj = 1 | U = u, V = v)
Course Class u 0 −σU +σU 0 0 Range

v 0 0 0 −σV +σV ±σU ±σV
Accounting A-C 0.962 0.910 0.984 0.944 0.974 0.074 0.030

D-L 0.952 0.921 0.971 0.916 0.973 0.050 0.056
M-P 0.973 0.919 0.992 0.984 0.957 0.073 -0.027
Q-Z 0.913 0.872 0.942 0.861 0.946 0.070 0.085

Mathematics A-C 0.797 0.367 0.964 0.254 0.979 0.597 0.724
D-L 0.785 0.505 0.929 0.278 0.972 0.425 0.694
M-P 0.768 0.376 0.948 0.357 0.952 0.571 0.594
Q-Z 0.905 0.058 0.999 0.011 1.000 0.942 0.989

Law A-C 0.323 0.162 0.541 0.411 0.246 0.379 -0.165
D-L 0.506 0.218 0.790 0.602 0.409 0.572 -0.192
M-P 0.580 0.306 0.813 0.755 0.382 0.507 -0.373
Q-Z 0.564 0.315 0.784 0.631 0.495 0.469 -0.137

Management Busi A-L 0.879 0.424 0.986 0.787 0.934 0.562 0.148
Busi M-Z 0.792 0.499 0.936 0.837 0.737 0.437 -0.100
Econ A-L 0.644 0.374 0.845 0.513 0.756 0.471 0.243
Econ M-Z 0.885 0.456 0.986 0.807 0.933 0.530 0.126

MicroEcon A-C 0.268 0.081 0.605 0.212 0.333 0.524 0.121
D-L 0.144 0.007 0.791 0.097 0.209 0.784 0.112
M-P 0.599 0.184 0.908 0.700 0.488 0.724 -0.212
Q-Z 0.526 0.109 0.909 0.305 0.737 0.800 0.431

Statistics A-C 0.852 0.358 0.983 0.691 0.937 0.625 0.246
D-L 0.679 0.306 0.910 0.485 0.826 0.604 0.341
M-P 0.690 0.275 0.929 0.667 0.712 0.654 0.044
Q-Z 0.866 0.466 0.979 0.699 0.947 0.513 0.248

Table 7: Estimated support points and corresponding average probabilities for the latent
classes of performance U and tendency V .

Performance U Tendency V
latent class hU latent class hV

1 2 3 4 1 2
Support points (û∗hU , v̂∗hV ) -1.485 -0.129 0.784 1.937 -0.949 1.054

Average probabilities (λhU , πhV ) 0.228 0.395 0.294 0.083 0.526 0.474
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Table 8: Estimated coefficients of the multinomial logit models for the probabilities of the
latent classes of performance U and tendency V .

Performance U Tendency V
φ̂2c φ̂3c φ̂4c ψ̂2c

Constant 0.748∗ 0.568 -1.956∗ -0.869∗

Degree Economics -0.434 -0.030 0.045 0.716∗

Gender (ref: male) 0.434 0.059 -0.487 -0.147
HS grade ≥ 80 0.014 0.118∗ 0.265∗ -0.020
HS type (ref:technical)

HS humanities 0.138 0.148 0.691 -0.240
HS scientific -0.061 1.020∗ 2.219∗ 1.963∗

HS other -0.163 -0.163 -0.282 -0.336
Late matriculation -0.191 -1.415∗ -1.834∗ -0.744∗

Parameters with ∗ have p-value< 0.05 .

Table 9: Likelihood-ratio test comparing full model with models collapsing groups.
Exam logL # par LRT stat. df p-value
Full model -6338.27 226 – – –
Accounting -6389.59 202 102.64 24 0.000
Mathematics -6349.62 202 22.70 24 0.538
Law -6397.06 202 117.59 24 0.000
Management -6464.91 202 253.29 24 0.000
MicroEcon -6411.62 202 146.71 24 0.000
Statistics -6358.22 202 39.90 24 0.022
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